
Open Protocol Design for Complex Interactions in
Multi-agent Systems

Hamza Mazouzi
LAMSADE

University of Paris Dauphine
Paris, France

mazouzi@lamsade.dauphine.fr

Amal El Fallah
Seghrouchni

LIPN - UMR 7030
University of Paris 13
Villetaneuse, France

elfallah@lipn.univ-
paris13.fr

Serge Haddad
LAMSADE

University of Paris Dauphine
Paris, France

haddad@lamsade.dauphine.fr

ABSTRACT
This paper proposes a generic approach for protocol engi-
neering through the analysis, the specification, and the ver-
ification of such protocols when several agents are involved.
This approach is three folds: 1) Starting from semi-formal
specification by means of Protocol Diagrams (AUML), both
formal specification of interaction protocols and their verifi-
cation are allowed thanks to Colored Petri Nets (CPN); 2)
Debugging and qualitative analysis of interactions are based
on distributed observation associated with the true concur-
rency semantics (i.e. CPN unfolding) and ; 3) CPN formal-
ism is extended to Recursive CPN (RCPN) with abstraction
in order to deal with open protocols. The main interest of
abstraction is the design of flexible protocols giving agents
more autonomy during interaction. In addition, abstraction
allows concise modeling and easier verification.

measures, performance measures]

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods, Validation; I.2.11 [Artificial In-
telligence]: Distributed Artificial Intelligence—Multiagent
systems; I.5.2 [Pattern Recognition]: Design Methodol-
ogy—Pattern analysis

General Terms
Design, Verification

Keywords
AUML, Colored Petri Nets, distributed observation, formal
specification, protocol diagrams, true concurrency, valida-
tion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02 July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

1. INTRODUCTION
In order to support organizational interaction, commu-

nication, and cooperation in Multi-agent System (MAS),
many frameworks have been proposed to standardize inter-
action between agents. The most significant to date are
KQML [16] and FIPA [8]. These frameworks develop a
generic interaction language by specifying messages and pro-
tocols for inter-agent communication and cooperation. Nev-
ertheless, few works tackle the issue of protocol engineering
which typically comprises various stages including specifi-
cation, verification, performance analysis, implementation,
and testing. Recently, some approaches that covers some
of these stages have been proposed. In [4] a formal study
of the FIPA protocols is proposed. It focuses on the dy-
namic of interactions showing that some of them may lead
to incorrect behavior (e.g. deadlock). In [2] a nice approach
provides the specification of interaction protocols based on
service concept. In [15], the authors propose an extension
of AUML (Agent Unified Modeling Language) [19] to spec-
ify interaction protocols reducing the gap between informal
specification of interaction and semi-formal one. Since the
focus of these approaches was to provide protocols as a
global structure and to manage sophisticated interaction,
the protocol engineering issue remains a challenge for MAS
research. Hence, despite the mentioned efforts, some short-
comings persist: 1) How to translate from informal or semi-
formal specification into a formal one when designing in-
teraction protocols? 2) Formal specification is required in
order to allow validation of protocols: This rises three fun-
damental issues: what the relevant properties of protocols
are, how they can be validated and when: upstream, during
or downstream the interaction process? 3) How to evaluate
the success of protocols in practice and to make agents able
to explain their relationships within conversations or group
utterances in order to develop a proper view of other agents?
4) Which compromise is possible between the autonomy of
agents and their behavior following a given protocol?
This paper proposes a generic and global approach to an-
swer the previous questions. Genericity here means that the
approach is ACL independent even if our examples are based
on FIPA-ACL introduced as shared background of MAS
community. Global approach means that it covers all the
relevant stages to be considered for the protocol engineer-
ing. Two main phases (see figure 1) should be distinguished
in our approach: 1) Analysis and design phase detailed in

517

the second and the third sections: section two shows how
to translate interaction protocols from semi-formal speci-
fication based on the AUML Protocol Diagrams [20] into
their formal specification by means of Colored Petri Nets
(CPN) [10]. Section three discusses the main properties to
be satisfied to build correct interaction protocols and shows
how these properties can be expressed and validated using
the CPN formalism. 2) Execution phase corresponds to the

Execution

Observation

Recognition

Explanation

CPN Specification

Validation

Analysis

Specification of protocol diagramsA

U
M
L

(R)

C
P
N

 Analysis and Design phase Execution phase

Figure 1: The main phases of our approach

study of the dynamic of interaction: section four introduces
the pragmatics of interaction protocol design. It argues for
a qualitative evaluation and debugging after interactions’
occurrence. This evaluation is possible thanks to the dis-
tributed observation paradigm combined with the true con-
currency semantics inherent to the CPN unfolding.
Section five introduces the abstraction and its dual oper-
ation i.e. refinement to meet the agents’ autonomy. We
show how the abstraction concept reinforces this aspect and
increases the power of CPN formalism for modeling open
protocols.
To conclude our presentation, section six outlines our per-
spectives towards the learning of interaction protocols.

2. INTERACTION PROTOCOL DESIGN
In the following, we provide a formal semantics for se-

quence diagrams of AUML, an extension of UML for agents.
It refers to these sequence diagrams as Protocol Diagrams
(PD) [19]. In fact, in [19] the authors do not define for-
mal semantics for the communicative acts for AUML, but
instead use the UML meta-model.

2.1 From analysis to formal specification
One of the most interesting semi-formal representation of

protocols has been proposed by [20] namely protocol dia-
grams. Nevertheless, the protocols validation requires their
formal specification. This section proposes meaningful rules
to translate PD into CPN allowing thus their verification
and validation.
Last years, few relevant works on the topic of conversion of
UML models into Petri nets has been done [13, 22]. It seems
that the UML integration into Petri nets and vice-versa be-
comes increasingly useful to the users of these two tools.
Nevertheless, the study of the relationships between UML
and Petri nets (i.e. the translation rules) is still necessary.

The main expectation is to overcome the informal aspects
of UML.

2.2 Formal Specification by means of CPN

2.2.1 Why CPN formalism?
Interaction modeling is often based on misfit formalisms

such as the graphs of predefined states, to describe the
progress of the agent according to the kind of received mes-
sages. Other models, like automata or more specific graphs
(e.g. the Dooly-graph [21]) have also been used to describe
conversations between agents. These models are suitable
to specify the structure of the conversations when they ap-
pear as isolated communications. Nevertheless, they exhibit
a poor capacity for computing complex protocols, basically
because: 1) any graph state includes all the local states
of the agent which leads to the combinatory explosion in
the case of real and complex protocols; 2) most usual for-
malisms consider only sequential processes. Moreover, when
these formalisms take into account temporal aspects (in the
case of CPN, specified through the causality concept), they
assume the existence of a global clock what constitutes a
strong constraint, i.e., agents must run on the same site. In
addition, these models are very limited when facing the con-
currency of interactions, which is one of the main features
of MAS.
Our point of view is that it should be more judicious to
resort to well-known and well-proved formalisms for concur-
rent systems, such as CPN [10] for at least three reasons: 1)
they naturally take in charge concurrency; 2) they make the
factorization process of treatments easy; and 3) they offer
several methods for the analysis and the validation of the
modeled protocols. Last years, other works followed [14, 1]
and reinforced the choice of CPN as a formalism for the en-
gineering of protocols. In addition, in section 5.3, we show
how CPN formalism can be extended with abstraction and
dynamic refinement to deal with open protocols.

2.2.2 Example of protocol modeled by means of CPN

Broadcast

<X⊕1,R>
<X⊕1,R>

Inform (R)

<Y,X,P,R>

<Y,X,P,R>

<Y,X,P,R> <Y,X,P,R> <Y,X,P,R> <Y,X,P,R>

<Y,X⊕1,P,R

<X,X⊕1,P,R>

<X>

<X>

Receiving
of votes

Request
(Vote(P),R)

Receiving
of Request

Voting
R[X] = {yes / no}

Request
(Vote(P),R)

[X⊕1 ≠N]

[X⊕1 =N]

P: proposition to be voted on
R: Vector of responses / R[i] = voting of the agent i
[condition]: Predicate evaluated by the agent
⊕ : successor function (X⊕1(i) : successor of agent i)
X(i) = Y(i) = i : identity function

Figure 2: A circular voting protocol

Most of the protocols presented in MAS literature propose
bilateral interaction that have been proved insufficient since
the relevant cases involve groups of agents (e.g. protocols of
election or voting).
However, such protocols are frequently useful in a large class
of applications such as the coalition formation, the e-trading,

518

etc. In the following, we propose a new protocol called “Call
For Voting” (CFV) and give its CPN model.
Let’s assume that an agent A wants to join a group of agents
G = (A1, .., AN) located in a private place of e-market. The
admission of such an agent requires an agreement of the
group based on a vote within the group. The agent A ad-
dresses therefore a request to the group through its repre-
sentative, who will initiate a voting procedure. Thereafter,
he informs A that he has been accepted into the group (or
not).
The voting procedure can take several forms. So, it is pa-
rameterized by the vote decision rules (e.g. majority, una-
nimity, etc.) as local to each group of agents. Also, the vote
implementation should be circular, centralized, etc.. To bet-
ter efficiency, we choose the majority circular vote against
the centralized one, since it reduces the number of exchanged
messages (N instead of 2*(N-1) where N is the number of
agents).
Figure 2 presents a CPN model of the circular voting proto-
col, where the representative of the group initiates a circular
voting on the group of N agents by sending a Request(action
= Vote(P),R) to his successor (X ⊕ 1). P describes the pro-
posal submitted to the vote using a specification language
(e.g. first order logic) and R is a vector which serves to
record the votes (R[i]) of each agent Ai. At the reception
of R[i], Ai votes and transmits the request to its immediate
successor. The protocol ends when AN−1 votes and send
back an inform act to the representative agent which syn-
thesizes the result of the vote and informs the other agents
thanks to a broadcast protocol.

2.3 Guidelines for AUML protocol diagrams
translation into CPN

The objective of this section is to propose some general
guidelines which may be applied to formally specify AUML
protocols endowing them with a formal semantics and also to
the specification of other protocols for agent communication.
Such a semantics will enable the designer to validate his/her
specifications. More precisely, we focuse on the description
of dynamic aspects of protocols using the CPN’s elements
(places, transitions, arcs, functions, variables and domains).
The AUML objects become domains of colors and variables
in the CPN models. For more details about CPN, the reader
is invited to refer to [10]. Technically speaking, we introduce
an equivalence between the modeling elements proposed in
AUML diagrams and CPN. AUML diagrams represent sce-
narios of the dynamic behavior of protocols through the roles
of agents and the communications but lack formal semantics
required to validate protocols. The translation from AUML
to CPN cannot be automated since the first is informal and
the second is formal. What we can provide are guidelines to
help the designer. In the following, we propose the opera-
tional semantics which associates a CPN with a PD.

2.3.1 The CPN structure
The structure of the CPN can be obtained from the ele-

ments of the PDs as follows:
- The “life line” of agent’s role is represented implicitly by
a sequence of places and transitions belonging to this role
(browsed by tokens which symbolize identities of agents of
every role). The net is constituted therefore by one sub-net
(Petri net process) for each role acting during the interac-
tion and these nets are connected by places that correspond

to the exchanged messages.
- A message exchange between two roles is represented by a
synchronization place and arcs. The first ongoing arc con-
nects the transition of “message sending” to the “synchro-
nization place” while the second outgoing arc connects this
place to the “receiving message transition”.
- We add to the CPN model a function of transition label-
ing in order to interpret the messages exchanged through
“sending” and “receiving” transitions.
- We define transitions for the processing of the messages
to specify the activities triggered following the reception of
messages. The CPN could contain “internal transitions” the
firing of which involves decision making methods. In AUML,
it corresponds to a bar of activation. A causal order is de-
fined between the transitions of reception, processing, and
sending of messages and are connected sequentially through
the intermediate state places and arcs.
- Every sub-net associated with a role includes a starting
place, initially marked, and one or several ending transitions
representing the agent’s state, respectively at the beginning
and at the end of the execution of the interaction protocol.
It often happens that one needs to model flows and con-
trol points like the mutual exclusion. For that, we will be
brought to use some additional elements.

2.3.2 Domains, valuations and initial marking
Once the structure of the Petri net has been obtained, it

remains necessary to manage the variables using data types
and domains of colors, variables and guards. A domain of
color, representing information to determine the state of the
protocol, is associated with places in the Petri net model.
We thus consider the variables identified in the general case
as follows:
- Informations depicted by variables are mainly associated
with places. Domains of the transitions are generally de-
fined according to the domains of the results of functions
evaluation of input arcs.
- Places derived from methods (processing transitions) are
enriched by local variables such as result of a demand, re-
turn of a decision function, etc.
- Informations related to communication contains three parts:
the source, the destination and the value of the message.

2.3.3 Translation rules of AUML elements into CPN
This section presents the main situations to be taken in

charge by transformation rules.

R1: Choice or decision making
Figure 3 illustrates a possible transformation of the symbol
of sending a message among a list (exclusive or), so that
precisely one communicative act is sent. With each type of
message is associated a transition and a function on its input
arc. The function plays the role of a filter, i.e. it control the
firing of the transition corresponding to the message type.
Figure 4 shows how the symbol of decision is translated into
CPN. This symbol means what communicative act (zero or
more) will be sent.

R2: Concurrency or parallelism
Figure 5 models concurrency (parallel case or multi-threading)
of sending performatives by means of CPN.

R3: Synchronous and asynchronous communication

519

Send request

Send not-understood

Send query

<request,P,X,Y>

<not_understood,P,X,Y>

X : initiator agent
Y : participant agent
P : proposition or content of the message

<query,P,X,Y>

Figure 3: CPN model of “exclusive or”

CA-1 CA-2

CA-1

CA-2

CA-3 [if ca-1 = true] [if ca-2 = true]

 D Color domain ={CA-1,CA-2, CA-3}

CA-3

[if ca-3 = true]

Figure 4: CPN model of “inclusive or”

Asynchronous and respectively synchronous messages are
translated into one of CPNs given in figure 6, respectively
sides (a) and (b).

R4: Basic interaction
Figure 7 illustrates the transformation of the sending of a
request and the receiving of an answer into CPN.

R5: Cardinality of messages
The cardinality of a message in AUML translates the num-
ber of senders (n) and recipients (m) of a message. The
associated notation is to mention cardinalities at the begin-
ning and at the end (extremity) of the arrow. The transfor-
mation into CPN of this representation specifies the number
of initiating and participating agents through the domains
of the places. Figure 8 illustrates an example of a message
with cardinality.

CA-1

CA-2

CA-n

CA-1 CA-2 CA-n

[true]

Figure 5: CPN model of parallelism

a) Asynchronous message b) Synchronous message

Send CA

Role of agent 1 Role of agent 2 Role of agent 1 Role of agent 2

Receive CA Send CA Receive CA

Acknowledgment

Figure 6: CPN of (a)synchronous messages

CA-1

CA-2

Role of agent 1
Send CA-1

Receive
CA-1

Receive
CA-2

Send
CA-1

Role of agent 2

Figure 7: CPN of sending/reception message

R6: Repetition or loop
A loop in a part of AUML specification is represented by
an arrow and an expression of guard or an end condition.
In CPN, the loop is specified in the same way except that
the end condition is a guard expression associated with the
transition that starts the loop. A loop has a beginning and
“ending transitions” that are connected by a place and two
arcs (from the end transition to the place and from the place
to the “beginning transition”).

2.3.4 Example of Translation
Figure 9 presents the transformation of the FIPA-request-

when [8] protocol into CPN. The CPN such as it is specified
doesn’t support the overall semantics of a FIPA-request-
when interaction. Indeed, PDs of AUML don’t represent the
semantics of orders on the receptions of the messages, nor
the alternatives or possible competitions between activities

CA-1

Role of agent 1
D1

Role of agent 2

color D1 = index i with 1, …n declare agent_initiator
color D2 = index i with 1, …m declare agent_participant

D2

Role of agent 1 Role of agent 2

Figure 8: Message cardinality

520

associated with the processing of messages. Moreover, we
note through the CPN that the behavior of the participat-
ing agent is correct. Nevertheless, concerning the initiator,
there is no distinction between failure or success of inter-
action situations. The activities related to the reception of
messages in the PD are connected without distinction be-
tween acts that succeed or not. The designer interprets this
by a logical continuity of the interaction whereas on the re-
ception of the negative answer, the agent must suspend the
interaction in this protocol.

Initiator Participant

Request-when

[Precondition
holds]

not-understood

refuse-1

agree

refuse2

failure

informe-done

informe-ref

Figure 9: A translation of the protocol FIPA-
request-when diagram into CPN

3. INTERACTION PROTOCOL VALIDATION
After replacing each modeling element of PD by the cor-

responding segment CPN (developed in section 2.3.3), the
simulation tools of Petri net analysis should be applied to
validate the dynamic behavior of the protocol. Creating
a CPN protocol provides a model that explicitly identifies
roles and their state behavior. Furthermore, the model can
serve as an executable specification through the net simula-
tion. The reachability graph is then developed to verify and
identify properties of the protocol. In some cases, it is inter-
esting to establish some properties (e.g. eventual reception
of a message modeled through a transition firing), while in
other cases it is relevant to invalidate others (e.g. conflicting
use of resource).
To analyze CPN, we can first unfold the CPN into an ordi-
nary Petri net representing the equivalent behavior (under
the hypothesis of finite domains of colors and then apply
standard net analysis techniques and algorithms. In this
section, we discuss some important verifiable properties of
CPN protocols and their interpretation in MAS.
When a protocol is modeled by means of CPN, two kinds of
properties should be verified: 1) Structural properties are re-
lated to the CPN topology. They are marking-independent
and help to build correct protocols during the specification
phase. The main interest is to free the designer from setting

the number of agents, of resources, etc., at earlier stages ; 2)
Behavioral properties concern the qualitative behavior once
the initial marking of the protocol is fixed. In the following
some relevant properties are discussed in terms of CPN and
their incidence on the interaction protocols:
- Structural liveness of a CPN protocol guarantees the ex-
istence of an initial state such that for any accessible state,
at least one operation is executed.
- Cyclic occurrences guarantee the existence of a control so
that all the operations can be executed an infinity of times.
This is not often desirable in protocols.
- Consistency guarantees the existence of a control such as
all the operations are executable. This enables an agent to
come back periodically to his initial state (or some home
states if any).
- Boundedness guarantees that the occurrences of the mod-
eled objects remains limited for any initial state (i.e. the
messages are continuously treated and do not accumulate in
the net). In fact, the CPN places often convey agents’ iden-
tities and messages. Hence, this property enable a ceaseless
growth of sending of messages without their processing.
- Accessibility guarantees the controllability of the interac-
tion. It makes it possible to lead a conversation to a desired
state starting from the initial state.
- Absence of deadlock guarantees that given an initial state,
at least one operation can be carried out whatever the state
reached during a conversation.
- Liveness is even stronger than the absence of deadlock.
From the protocol point of view, it guarantees that for any
initial state, all the operations (independently) can be al-
ways be executed whatever the agent’s decision. Moreover,
in our model we added a semantics for the possible results
of the conversations by means of final transitions.

4. STUDY OF INTERACTION DYNAMICS
In [5] we have proposed an efficient mechanism to study

the dynamic of interaction, which corresponds to the execu-
tion phase (see figure 1).

4.1 Main steps of the execution phase
This phase relies upon four steps: 1) First, the execu-

tion of the MAS incorporates an on-line distributed ob-
servation mechanism which captures the traces of the rel-
evant events underlying the agents’ interactions; namely
sending/receiving messages related to the interaction proto-
cols. 2) The second step exploits the obtained traces, builds
the global causal graph (GCG) of all events [4] underlying
MAS execution. This is ensured off-line and based on logi-
cal clocks proposed by J. Fidge [7]. 3) The third step is the
recognition of interactions. It is based on a pattern match-
ing algorithm as detailed in [5] and briefly presented in sec-
tion 4.2 . The algorithm is jointly based on the GCG and the
CPN models used as filters (CPN patterns) (see Figure 10).
4) The last step exploits the outputs of our algorithm in
order to explain the behavior of interacting agents.

4.2 Pattern matching algorithm based on un-
folding Petri nets

Our aim is to represent two aspects in our model: The
first expresses serial and concurrent events to be observed,
i.e., the interaction states achieved by agents; the second
aspect describes the causally precedence relation that exists
among communicative acts occurred during computation.

521

3RVVLEOH H[HFXWLRQV

5HFRJQLWLRQ
EDVHG RQ

3DUWLDO 2UGHU
6HPDQWLFV

3URWRFRO ILOWHUV �&31 PRGHOV�

&DXVDO JUDSK RI REVHUYHG
HYHQWV �0$6 UXQQLQJ�

Figure 10: Pattern matching algorithm

The next stage consists in carrying out interaction protocols
by recognizing them. The recognition of interactions is pro-
vided by a pattern matching algorithm (or filtering) where
filters are available as CPN protocols library.
Our algorithm is based on the partial-order semantics of
Petri nets and well-known as unfolding of Petri nets [18].
The main interest of this method is that, at the opposite of
the interleaving concurrency semantics, it enables to asso-
ciate a set of unfoldings with a given CPN, in our case, an
interaction protocol. An unfolding, also called a “process
net”, formalizes a concurrent run of a protocol which can
be interpreted in terms of causality between the associated
events.

4.3 Partial-order semantics of Petri nets
An unfolding is an acyclic Petri net where the places rep-

resent tokens of the markings and the transitions represent
firings of the original net (see the possible executions in fig-
ure 10). To build an unfolding, the following steps have to
be executed iteratively:

• start with the places corresponding to the initial mark-
ing,

• develop the transitions associated with the firings (with
respect to the semantics of CPN) of every initially en-
abling transition,

• link input places to the new transitions,
• produce output places,
• link the output places to the new transitions.
Let it be remarked that the unfolding may be infinite if

the original net includes an infinite sequence. Several meth-
ods [17, 6] have been proposed in order to avoid the infinite
state problem in the verification of systems and provide fi-
nite unfoldings. In our case, the infinite number of state is
not faced since the unfolding we look for corresponds to a
specific protocol computation and necessarily is finite.

4.4 Recognition process
Our algorithm starts from the GCG and tries to recog-

nize the protocol(s) that have been executed. Each protocol
model is a CPN with which several computations may be
associated. Hence, our goal is to identify the right instance
of the right protocol. We overcome this difficulty thanks to

the true concurrency semantics by means of the unfolding
Petri net techniques [18] which enable to associate a set of
unfolding nets with a given protocol modeled as CPN. For
technical details of our algorithm, the reader is invited to
see [5]. In the following, we present an example of unfolding
and recognition principles.

4.4.1 Recognition process example
Let us consider two protocols (cf. figure 11) which pro-

vide the same service (sending query messages to agents and
receiving of their answers). In the first protocol the execu-
tion is optimal, i.e., in parallel way; whereas in the second
protocol the sending of messages and the reception of the
associated answers are sequential. One can easily verify in
Protocol2 that, except for the first firing of T1 initially en-
abled from the initial marking, each following firing of T2

requires at least a token in the input places P1 and in P5.
As for P1, (n-1) tokens have been produced by T1, while a
token in P5 imposes the firing of T3 which corresponds to a
(n-1) sequences of T2 followed by T3 .
Techniques of partial orders offer a suitable framework for
the analysis of interaction dynamics. One can verify dur-
ing the development of different executions of the protocols
that all executions produced by the Protocole2 can be gen-
erated by the Protocole1. Knowing that the two protocols
can produce a same execution, filtering is assured thanks to
the causal graph whose semantics will permit to keep only
protocols which can produce such a causal graph.
Let us now observe a computation of one of the two proto-
cols given through a causal graph CG in (figure 12.b). The
algorithm presented below develops all the possible process
nets (see figure 12.a) in order to recognize the right CPN
and the right process. The cycle of our algorithm (Step 1
to 5) is executed iteratively until all the events of CG are
examined.
Step 0 : the algorithm begins at the places corresponding to
the initial marking of each CPN (P0 in Protocol1 and (P0,
P5) in Protocol2). The set of events without predecessors is
extracted from the CG (i.e. initially the only event (e1(A)).
Step 1-2 : For each of the expected events (here e1(A)), the
algorithm tries to recognize the fired transitions labeled by
these events concurrently in the two CPNs. In our exam-
ple, only the transition T1 labeled by e1(A) is fired both in
Protocol1 and Protocol2. Consequently, the event is recog-
nized by the two protocols and the output places are created
and linked accordingly.
Step 3-4 : Step 3 checks that the causal dependency of the
recognized events through the process net is the same one
as the CG. In the contrary case, the corresponding process
net is rejected. When the transition labeled by an event is
not fireable (Step 4) the associated process net is rejected.
This is the case if the Protocol2 for the transitions T2(A)
and T2(B).
Step 5 : The set of events without predecessors is updated
by removing the events already examined and adding new
ones, i.e. their successors (of course, only those without pre-
decessors).
Step 6 : The algorithm fails because all the developed pro-
cess nets are eliminated.
Step 7 : if the CG has been covered by the algorithm, it is
necessary to check that the obtained process net is maximal,
i.e. no transition can be fired. Otherwise, the protocol has
not been executed completely.

522

< S - X > < Y >

< Y >

< X >

e3 : Reception of a
response from agent

<Y>

< X >

e2 : Sending a request
to the agent <Y>

< Y >

< S - X > < Y >

T1

T2

T3

T4

P0

P4

P3

P2

P1

 e1

 e4 (a) Protocol 1
Parallel sending

P5

< S - X > < Y >

< Y >

< X >

e3 : Reception of a
response from agent

<Y>
< X >

e2 : Sending a request
to the agent <Y>

< Y >

< S - X > < Y >

T1

T2

T3

T4

P0

P4

P3

P2

P1

 e1

 e4 (b) Protocol 2
Sequential sending

AG = {A,B, C}; X = {A}; Y = {B,C}

Figure 11: Two CPN protocols to be recognized

4.5 Explanation and analysis
Various points of analysis can be deduced from the algo-

rithm. It allows to:

• recognize the protocol which has produced a given in-
teraction,

• distinguish in term of events different interactions within
an execution,

• know the different states visited by agents during a
conversation,

• know the finality of a conversation (success, failure)
and to analyze the historic of such situation through
its causal graph,

• validate a posteriori the protocols using experiments
and debugging tools, etc.

5. DESIGN OF OPEN PROTOCOLS
Interaction protocols can range from negotiation schemes

to simple requests for a task. While referring to FIPA-ACL,
the distinction between primitive and composite commu-
nicative acts make protocols specification increasingly com-
plex and consequently provides robustness and more expres-
siveness for large scale of application.

5.1 Open protocols based on abstraction
The main contribution of CPN as illustrated above is

modeling protocols in which elementary actions associated
with irreducible tasks (primitive acts) and complex tasks

Concurrent
events to be
recognized

Unfolding net of protocol 1 Unfolding net of protocol 2

Initial state

e
1
(A)

e
2
(B) , e

2
(C)

e
3
(B) , e

3
(C)

e
4
(A)

∅ Success Failure

The Causal graph of a

protocol computation

involving agents

A,B,C

P
4
(A) P

1
(B) P

1
(C)

P
2
(B) P

2
(C)

P
3
(B) P

3
(C)

e
4
(A)

e
2
(B) e

2
(C)

e
1
(A)

e
3
(C)

P
0

e
3
(B)

P
4
(A) P

1
(B) P

1
(C)

P
2
(B) P

2
(C)

e
1
(A)

e
2
(B) e

2
(C)

P
0

P
5

e
2
(B)

e
1
(A)

e
3
(C)

e
2
(C)

e
4
(A)

e
3
(B)

(a) (b)

Figure 12: The unfolding process of the two proto-
cols according to the CG

(composite acts) are not distinguished. The Recursive Col-
ored Petri Net (RCPN) formalism, introduced in this paper,
can be viewed as an extension of recursive Petri nets, defined
by [9], which have been successfully used for specifying plans
of agents in MAS [3]. We complement this work to offer a
power of expressivity in modeling protocols. It permits to
consider an action of a protocol as another sub-protocol or a
composite act which leads to provide an abstraction and dy-
namics in the structure of the conversation. In addition, the
hierarchical aspect of RCPN supports the dynamic refine-
ment of transitions and allows a protocol to be considered
at different levels of abstraction.
The recursive Petri net formalism we have introduced over-
comes some limitations of usual categories of Petri nets [12]
(e.g. ordinary Petri Nets, High-Level Petri Nets (HLPN)
and even Hierarchical HLPN(HHLPN)) that are apparent if
one considers a Petri net as an interaction protocol:

- transitions firings are instantaneous whilst an action lasts
some time,

- (HLPN only) transitions are elementary actions as one
needs to see an action as an abstraction of a protocol,

- (HHLPN) transition is a syntactical abstraction (i.e. for
a priori medeling only) and there is no clear end to its
firing, while dynamicity is required in the structure of
the net (i.e. refinement during execution) as provided
by our RCPN.

The abstraction concept is well known as an elegant way
that helps to provide: 1) concise modeling: when the model
size is too big to be represented in exhaustive way. This
could be the case when modeling complex interactions be-
tween cognitive agents; 2) easier verification: when the model
used is limited in terms of verification tools. In this case, the
designer should translate the initial model to an equivalent

523

one which preserves the expected properties and provides
suitable tools/techniques for their verification.
A fortiori, as interactions in MAS could be complex, the pro-
tocols to be designed should benefit from abstraction both
from modeling and verification perspectives. Moreover, to
build open protocols, abstraction is also required. The main
goal is to find an acceptable compromise between the con-
cept of protocol - as a well structured exchange between
agents - while giving interacting agents some degree of au-
tonomy and freedom in the protocol execution.

5.2 Our Model for open Protocols
Our model considers a protocol as a collection of actions

which can be performed sequentially or concurrently in some
specific order by a set of agents that work in a distributed
and asynchronous way.
Furthermore, these actions concern communicative acts and
local processing of the underlying contents. The way in
which the agent processes the contents of the message in
conformance to its mental state is not taken into account by
our formalism.
A protocol involves both elementary actions (sending and re-
ceiving performatives, performing atomic actions) and com-
plex actions (i.e., composite communicative acts). Semanti-
cally, there are two types of actions:
• an elementary action, associated with an irreducible task
(processing the content of a primitive communicative act)
and which can be performed without any decomposition,
• an abstract action, the execution of which requires its sub-
stitution (i.e. refinement) by a new sub-protocol which can
be simply composed by another communicative act or a se-
quence or parallel actions (formulated by the operators “;”
and “|” in [8]),
Methods: Intuitively, a method may be viewed as the way
to perform an action. A method requires: a label, a list
of formal parameters to be linked when the method is exe-
cuted, a set of Pre-conditions (i.e. necessary conditions of
the method execution), and a set of Post-conditions (i.e. the
conditions satisfied after the method execution). Note that,
the Pre- and Post-conditions correspond to what may be sat-
isfied, when the variables and the expressions of the Petri
net are bounded. Pre- and Post-Conditions may be com-
pared to the rational effects and feasibility’s pre-conditions
(as in FIPA specification).
Depending on the action definition, a method may be ele-
mentary or abstract according to the action type. An ele-
mentary method calls for a sub-routine in order to execute
the associated elementary action. An abstract method calls
for a sub-protocol corresponding to the refinement of the
associated abstract action.

5.2.1 Example
Let us consider the protocol FIPA-Request applied to the

following situation: An agentX, desires to join several work-
ing groups represented by their responsible (representative
of the groups) A, B, C, etc.. X sends his Request (Action
Send request of admission). The protocol skeleton is given in
figure 13. Each responsible receives the request (Reception
Request) and handles the request (Action Request Handling).
Obviously, each responsible may have a proper method of
handling this request within his group. To take into account
this variety, the handling action is represented through an

RA : Request of admission to a group

R : Response (vote decision)

Y : agent responsible of the group

X : requesting agent

 Elementary transition

 Abstract transition

FIPA-Request Protocol

(Request admission to several groups of agents)

< Y, RA >

< Y, RA >

Reception Request

Request Handling

< Y,R >

< X >

< X >

Send request of admission < Y, RA > < Y, RA >

Reception of response

Send response

of v ote

< Y,R >

< Y,R >

< Y,R >

Circular Voting

Protocol

Broadcast

Voting Protocol

Refinement by agent A

Refinement by agent B

Figure 13: RCPN modeling of vote requesting

abstract transition, the refinement of which could be con-
text dependent, and consequently, the RCPN enables to as-
sociate several refinements with an abstract transition. For
instance, one possible refinement could be the circular vot-
ing protocol given in figure 2. The main protocol imposes
only that each responsible provides an answer to the agent
X.

5.3 Recursive Colored Petri Nets (RCPN)
This section presents both syntactical aspects and the se-

mantics of RCPN.

5.3.1 Syntax of RCPN
A recursive CPN is defined as follows: RCPN = (CPN,Ω,Υ)

where CPN is a colored Petri net (
P

, P, T, C, G, F, M0) as
defined in [10].
The set of transitions T is typed as follows:
� A transition of T can be either elementary or abstract,
the sets of them are respectively denoted by Telem and Tabs

(with T = Telem

U
Tabs where

U
denotes the disjoint union).

� Ω is a labeling function which associates to each abstract
transition an initial marking according to the parameters of
the transition.
� Υ is an effective semi-linear set of final markings (can be
specified with any usual syntax notation).

5.3.2 Semantics of RCPN
An operational semantics of RCPN is given in terms of

states and change of states. A state of a RCPN is a tree
where each node is labeled by a marked RCPN and an arc
corresponds to the abstract transition and the colored token
by which the transition has been fired.
The intuitive interpretation of a state is the following:

- The root of the tree corresponds to an initial protocol,

- Each edge represents a firing of abstract transition accord-
ing to a color where the extremity of the edge denotes
the unfolded net,

- This structure represents the concurrent behavior of a
RCPN generating thus a tree “of abstract transition
calls” relatively to each token of the domain.

524

Extended marking
An extended marking “tr” of an RCPN notedN = (

P
, P, T, C, G, F,

M0,Ω,Υ) is a labeled tree tr = (S, M, E, A) where:
- S is the set of nodes where each node s represents a RCPN,
- M is a marking function from S → Bag(C(p)) (the mark-
ing of RCPN),
- E ⊆ S × S is the set of edges,
- A is a function from E −→ ∪(t, c), where t ∈ Tabs and
c ∈ C(t). An edge is labeled by an abstract transition and
a token element of the domain of the transition (labeling
of the edges both by the abstract transition and the token
having permitted its firing).
A marked RCPN (N, tr0) is a RCPN N associated to an
initial extended marking tr0. This initial extended marking
is usually a tree reduced to a unique node.
We note by s0(tr) the root of the extended marking tr. An
empty tree is denoted by ⊥. All colored marking m can be
seen like extended marking, denoted by �m�, consisting in
only one node in the tree.
For a node s of an extended marking, we note by Pred(s) its
predecessors in the tree (defined only if s is different from
the root) and by succ(s) the set of its direct and indirect
successors including s (∀s ∈ S, Succ(s) = s′ ∈ S|(s, s′) ∈ E∗

where E∗ denotes the reflexive and transitive closure of E).
An elementary step of a RCPN may be either the firing of a
transition or the closing of a sub-tree (also called a cut and
noted by τ).
The finite markings defined for a RCPN correspond to cuts
of steps (τ) of its extended marking.
As reasoning on the extended marking tree we give there-
after the firing rules of RCPN.

The firing rules
A transition t is fireable for a color c from a node s of an ex-
tended marking tr (noted by tr

t,c,s−→) iff ∀p ∈ P : M(s)(p) ≥
F (p, t)〈c〉 and a cut of a step is fireable from a node s (noted

by tr
τ,c,s−→) iff M(s) ∈ Υ.

The firing of an elementary step t from a node s of an ex-
tended marking tr = (S, M, E, A) leads to the extended

marking tr′ = (S′, M ′, E′, A′) (noted by tr
τ,c,s−→ tr′) de-

pending on the type of t.

• t is an elementary transition (t ∈ Telem).
The thread associated to s fires such a transition with
a color c as for a CPN. The structure of the tree is
unchanged. Only the current marking of s is updated.
� S′ = S
� ∀s′ ∈ S \ {s}, M ′(s′) = M(s′)
� ∀p ∈ P, M ′(s)(p) = M(s)(p)− F (p, t)〈c〉+ F (t, p)〈c〉
� E′ = E
� ∀e ∈ E, A′(e) = A(e)

• t is an abstract transition (t ∈ Tabs).
The thread associated to s consumes the input tokens
of t. It generates a new thread s′ with initial marking
the starting marking of t. Let us note that the identi-
fier s′ is a fresh identifier absent in S.
� S′ = S ∪ {s′}
� ∀s′′ ∈ S \ {s}, M ′(s′′) = M(s′′)
� ∀p ∈ P, M ′(s)(p) = M(s)(p)− F (p, t)〈c〉
� M ′(s′) = Ω(t)
� E′ = E ∪ {(s, s′)}
� ∀e ∈ E, A′(e) = A(e)

� A′((s, s′)) = (t, c)

• t is a cut step (t ∈ τ).
If the thread is associated with the root of the tree and
that one of final markings is reached, the reduction
leads to the empty tree. In the other case, the sub-
tree rooted at this thread is pruned and the output
tokens of the abstract transition which gave birth to
the thread are added to the marking of its father.
� S′ = S \ Succ(s)
� ∀s′ ∈ S′ \ {pred(s)},M ′(s′) = M(s′)
� ∀p ∈ P, M ′(pred(s))(p) = M(pred(s))(p)+F (p, t)〈c〉)
� E′ = E ∩ (S′ × S′)
� ∀e ∈ E′, A′(e) = A(e)

5.3.3 Some analysis issues
The analysis and the verification of an RCPN could be

based on two methods. The first one is indirect i.e., it re-
lies on the translation of the RCPN into CPN model: the
unfolding RCPN substitutes each abstract transition by the
protocols which refine it and connect them to the upstream
places. Then, the resulting CPN is modified by creating non-
deterministic functions on the choice of one of the refining
sub-protocols (for instance, the refinement may corresponds
to a local decision of the agent). Hence, we can apply the
usual CPN techniques for analysis and validation.
The second method is said direct, because it defines how to
build the reachability graph directly from an RCPN Pro-
tocol thanks to the firing rules of RCPN transitions (if it
is permitted by the net size). Then we can directly iden-
tify many useful properties, since we will have an explicit
state-space view of the protocol.

6. CONCLUSION AND FUTURE WORK
This paper proposes a generic approach for the protocol

engineering in the case of complex interactions and open pro-
tocols. A formal translation of interaction protocols from
AUML Protocol Diagrams into CPN is proposed enabling
their formal analysis and validation. The study of the dy-
namic of interactions is also described through the execution
phase. Our approach also proposes the RCPN formalism
which offers the following main advantages:
- The formalism is domain and language independent and
supports complex protocols with different levels of abstrac-
tion.
- It permits protocol reuse allowing agents to adapt the in-
teracting process, in the case of similar situations according,
to the execution context (library of abstract protocols could
be the basic building blocks of the new protocols).
- The qualitative and quantitative analysis of protocols by
means of large number of formal analysis methods to prove
properties (the CPNs can be submitted to automated anal-
ysis by Petri net analysis tools, such as Design/CPN [11].
- The protocol size remains controllable during the specifica-
tion phase and its complexity is tractable for the validation
step.
Our future work intends to exploit the analysis results of the
interactions to learn interaction protocols.

525

7. REFERENCES
[1] R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and

Y. Peng. Modeling agent conversations with colored
Petri nets. In proc. of the 3rd International
Conference on Autonomous Agents (Agents’99),
Workshop on Agent Conversation Policies, Seattle,
Washington, May 1999.

[2] M. d’Inverno, D. Kinny, and M. Luck. Interaction
protocols in Agentis. In Proc. of International
Conference on Multi Agent Systems (ICMAS’98),
1998.

[3] A. El-Fallah-Seghrouchni and S. Haddad. A recursive
model for distributed planning. In proc. of the 2nd

International Conference on Multi-Agent Systems,
Kyoto, Japon, 1996.

[4] A. El-Fallah-Seghrouchni, S. Haddad, and H. Mazouzi.
A formal study of interactions in multi-agent systems.
In Proc. of the 14th International Conference on
Computers and Their Applications (ISCA CATA-99),
ISBN: 1-880843-27-7, Cancun, Mexico, pages
240–245, April 1999.

[5] A. El-Fallah-Seghrouchni, S. Haddad, and H. Mazouzi.
Protocol engineering for multi-agent interaction. F.J.
Garijo, M. Boman (eds.), Proc. of Modelling
Autonomous Agents in a Multi-Agent World
(MAAMAW’99). LNAI, vol. 1647, Springer Verlag.,
1999.

[6] J. Esparza, S. Romer, and W. Volger. An
improvement of mcmillan’s unfolding algorithm. In
Proc. of the 2nd International Workshop on Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS’96), Springer Verlag, Passau,
Germany, 1055 of LNCS:87–106, March 1996.

[7] J. Fidge. Timestamps in message passing systems that
preserve the partial order ring. In Proc. 11th

Australian Computer Science Conference, pages
55–66, february 1988.

[8] FIPA. Foundation for intelligent physical agents.
FIPA 97 Specification. Part 2, Agent Communication
Language, http://www.fipa.org, 1997.

[9] S. Haddad and D. Poitrenaud. Theoretical aspects of
recursive Petri nets. In Proc. 20th International
Conference on Applications and Theory of Petri nets,
Williamsburg, VA, USA, 1639 of Lecture Notes in
Computer Science:228–147, 1999.

[10] K. Jensen. Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use, volume 1.
Springer-Verlag, Basic Concepts of Monographs in
Theoretical Computer Science, 1992.

[11] K. Jensen. Design/cpn, version 4.0.
http://www.daimi.au.dk/designCPN/, University of
Aarhus, Denmark,, 1999.

[12] K. Jensen and G. Rozenberg. High Level Petri Nets,
Theory and Applications. Springer-Verlag, 1991.

[13] P. King and R. Pooley. Using UML to derive
stochastic petri net models. In Proc. of the 5th UK
Performance Engineering Workshop (UKPEW ’99),
pages 45–56, 1999.

[14] J. Koning, G. Francois, and Y. Demazeau.
Formalization and pre-validation for interaction
protocols in multi agent systems. In 13th European
Conference on Artificial Intelligence, Brighton, 1998,
1998.

[15] J. Koning, M. P. Huget, J. Wei, and X. Wang.
Extended modeling languages for interaction protocol
design. In Proc. of Agent-Oriented Software
Engineering (AOSE’2001), Montreal, Canada, pages
93–100, 2001.

[16] KQML. Specification of the kqml
agent-communication language. Technical report,
DARPA Knowledge Sharing Initiative External
Interfaces Working Group,
http://www.cs.umbc.edu/agents/kse/kqml/, 1993.

[17] K. McMillan. On-the-fly verification with stubborn
sets. In Proc. of Computer Aided Verification,
Springer Verlag, Montreal, 663 of LNCS:164–175,
June 1992.

[18] M. Niellsen, G. Plotkin, and G. Winskel. Petri nets,
event structures and domains. Theoretical Computer
Science, 13(1):85–108, 1980.

[19] J. Odell, H. V. D. Parunak, and B. Bauer. Extending
UML for agents. In Proc. of Agent-Oriented
Information Systems (AOIS) Workshop at AAAI,
2000.

[20] J. Odell, H. V. D. Parunak, and B. Bauer.
Representing agent interaction protocols in UML. In
Proc. of the 1st International Workshop on Agent
Oriented Software Engineering (AOSE), Paolo
Ciancarini and Michael Wooldridge eds., Berlin, pages
121–140, 2001.

[21] V. Parunak. Visualizing agent conversations: Using
enhanced Dooley graphs for agent design and analysis.
In Proc. of International Conference on Multi Agent
Systems (ICMAS’96), AAAI press., pages 275–282,
1996.

[22] R. G. Pettit and H. Gomaa. Validation of dynamic
behavior in UML using colored Petri nets. In Proc. of
UML’2000, 2000.

526

