
Using realistic face
models and
photometric
modeling
techniques, we
present a visual
feedback loop that
tracks a face—
without any marker
or controlled
lighting—throughout
a video sequence and
precisely recovers the
face position and
orientation. We also
propose animation
techniques to embed
realistic expressions
in our 3D clones.
Such face models
permit automatic
construction of
appearance models.

T
he ability to analyze a human’s facial
expressions in a video sequence and
reproduce them on a synthetic head
model is important for many multime-

dia applications such as model-based coding, virtu-
al actors, human-machine communication,
interactive environments, video telephony, and vir-
tual teleconferencing. The literature features three
general analysis and animation techniques that can
perform this task, depending on how the synthesis
parameters relate to the analysis parameters:

1. Feature-based techniques and animation rules.
These methods build on parametric face

models, animated by a few parameters to
directly control the properties of facial features
like the mouth aperture and curvature or the
rotation of the eyeballs. The analysis strategy
consists of measuring some quantities on the
user’s face such as the size of the mouth area
using blobs, snakes, or dot tracking. Animation
rules then translate the measurements in terms
of animation parameters.1,2 For example, some
algorithms already meet real-time analysis
frame rates, while allowing performers some
degree of freedom in their head position and
orientation.3,4

The first problem with this approach is that

the measurements extracted from the real
images are rather sparse and don’t allow an
accurate animation of the synthetic face model
to reproduce subtle expressions. A second
problem is that whenever a new animation
parameter is integrated into the framework, a
new analysis method must be implemented
with the adequate animation rule on a case-by-
case basis. The last problem is that controlled
lighting, makeup, or markers are needed to
avoid any ambiguity on the measured parame-
ters, which could dramatically affect the face
animation system.

2. Analysis-by-synthesis techniques and wireframe
adaptation.

Instead of using sparse measurements like
dots, edges, or color areas, the dense motion
information—computed on the user’s face—is
interpreted in terms of displacements of the
face model wireframe via an analysis-synthesis
feedback loop. The face model can be either
parametric or muscle-based.5,6

The main advantage of these techniques is
that they provide a single and automatic
framework to integrate all the possible anima-
tion parameters as degrees of freedom during
the nonrigid motion regularization while han-
dling the task of determining the head pose as
global degrees of freedom. They yield precise
animations when a realistic face model inter-
prets the velocity information. However, such
algorithms don’t achieve real-time perfor-
mance because of the iterative feedback loops
that at each time step must linearize the 3D
motion of the wireframe in the 2D image plane
where the optical flow is extracted.

3. View-based techniques and key-frame interpolation.
Like the former algorithms, view-based tech-

niques rely on dense information, taking into
account the distribution of the pixels in the ana-
lyzed images, but avoiding the iterative proce-
dures needed to solve the animation
parameters. The face animation occurs by inter-
polating the wireframe between several prede-
fined configurations (keyframes), representing
some extreme facial expressions. The difficulty
lies in relating the performer’s facial expressions
to the keyframes and finding the right interpo-
lation coefficients from the real image.
Appearance models of the distribution of pixel
intensities around the facial features generally
achieve this solution. These models character-
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ize the facial expressions according to a database
of example pairs of images and animation
weights and are used to train the system.

In Essa et al.5 template-matching algorithms
compute correlation scores with examples found
in a small database. Radial basis function (RBF)
interpolators (a specific class of neural networks)
produce the interpolation coefficients from the
correlation scores. Another example of appear-
ance models comes from Ohya, Ebihara, and
Kurumisawa,7 where the discrete cosine transform
(DCT) coefficients of the analyzed facial features
are transformed into interpolation weights by a
linear matrix, built on a training database using
genetic algorithms. (Some markers are pasted on
the performer’s face to make the DCT coefficients
more significant.)

Although view-based techniques and key-
frame interpolation are quite intuitive and remain
the preferred methods for real-time performance,
they suffer from several difficulties. First, the
appearance models must be carefully designed to
take into account the coupling between the head
pose (the 3D position and orientation of the user’s
face) and the facial expressions. (For instance, if
performers nod their heads downward, their
mouths will be curved in the image plane, and
you could falsely interpret it as a smile.) This is
mainly why these algorithms generally require
performers to stay in a strict frontal view with
respect to the acquisition camera.

Second, the quality of the training database
limits such a system, since it requires a real user to
mimic the facial expressions of the face model in
front of a camera according to the example syn-
thesis parameters. (Or, the user must manually
find the right interpolation weights on the face
model to reproduce the facial expressions found in
a set of real images.) Ideally, all the sample images
should be in the same referential (the real user
must not move between different samples). The
training database must include all the degrees of
freedom of the face model to sample the variabili-
ty of the face for complex facial expressions (such
as a neutral closed mouth, a neutral open mouth,
a smiling closed mouth, a sad open mouth, and so
on, requiring the user to perform thousands of
facial expressions in the same referential).

Finally, the sample images and the animation
parameters must be carefully related, since each
pair has to correspond to the real and synthetic
facial expressions with the same exact intensity.
That is, users need to precisely control their facial

expressions according to the face model, which
proves more difficult when the face model lacks
realism. Needless to say, meeting all these train-
ing constraints with a real user is impossible.

Visual analysis-synthesis cooperations
Unfortunately, in the literature only a few face

cloning algorithms take advantage of the visual
realism of their face model to track and/or analyze
facial deformations while minimizing the amount
of information processed. In most analysis-syn-
thesis feedback loops, the face model’s geometric
data is explicitly manipulated, linearized in the
image plane, and used to solve iteratively for the
rigid and/or nonrigid face displacements.5,6,8

As we describe in this article, a better approach
to reaching real-time analysis frame rates is to
manipulate pixels instead of 3D primitives and
design the cooperation between analysis and syn-
thesis modules at the image level. In this case, the
burden of the 3D manipulation of the face model
and the 2D conversion is translated to dedicated
graphics hardware, available on most entry-level
workstations and PCs. We call this approach a
visual analysis-synthesis feedback loop.

Researchers have recently investigated analy-
sis-synthesis cooperations using realistic face mod-
eling and graphics hardware. Schödl, Haro, and
Essa9 discussed projecting the first image of a real
user’s face onto a generic face model. Using a
steepest-descent algorithm, they mapped the
derivates of the error function between the ana-
lyzed real image and the synthetic model view to
track the face in subsequent frames. La Cascia,
Isidoro, and Sclaroff10 provided another example
of efficient face tracking. They described project-
ing the initial face image onto a cylinder. Tracking
then occurs by the registration of the face texture
in the cylindrical texture map, which modifies the
cylinder’s position and orientation parameters in
the real image. However, these visual analysis-syn-
thesis cooperations need several iterations before
they converge to a local minimum.

Overview of our work
Here we present our face cloning research in

the Traivi (Traitement des Images Virtuelles, or
processing of virtual images) project,11 which
aims to build a virtual teleconferencing space.
Three-dimensional face models represent people
(see our author photos for an example) and repro-
duce their rigid and nonrigid motion at distant
sites (hence our use of the name telecommuni-
cant clones). Since we aim to provide a high level
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of realism and impose as few constraints as pos-
sible on the users (like markers, makeup, con-
trolled lighting, or restricted motion in front of a
camera), we prefer researching visual analysis-
synthesis techniques. This approach leads to effi-
cient cooperation in the image plane and make
up for the limited constraints that we target.
Currently, our realistic clones are person-
dependent face models built from Cyberware
range data (see http://www.cyberware.com), but
any realistic face model could be integrated in our
algorithms.12

Head pose determination
We first addressed the problem of tracking the

face and determining its 3D rigid motion in our

face cloning system by using an analysis-
synthesis cooperation. We designed a system that
proceeds as follows (Figure 1):

1. Initialization

❚ Users align their heads with their head
model, or alternatively modify the initial
pose parameters to align their face model
with their heads. Although this step
requires some user intervention, it’s per-
formed only at the beginning of the ses-
sion. Automatic initialization procedures
could also be applied, using eigenfeatures13

or frame-fitting.14

❚ When done, the system runs a 3D illumi-
nation compensation algorithm to estimate
the lighting parameters that will reduce the
photometric differences between the syn-
thetic face model and the real head in the
user’s environment. To compensate for the
differences, the system adjusts the intensi-
ties of synthetic lights set at arbitrary loca-
tions in the 3D world (as described and
justified elsewhere15).

2. Main loop

❚ A Kalman filter predicts the head’s 3D posi-
tion and orientation for time t.

❚ The synthetic face model generates an
approximation of the way the real face will
appear in the video frame at time t. This
approximation includes geometric distor-
tions, the scale and shaded lighting due to
the speaker’s pose, and some clues about
the location of the background with respect
to the face’s tracked regions.

❚ Patterns representing contrasted facial fea-
tures (like the eyes, eyebrows, mouth cor-
ners, and nostrils) are extracted from the
synthesized image.

❚ An extended differential block-matching
algorithm matches these patterns with the
user’s facial features in the real video
frame.15

❚ The system passes the 2D coordinates to
the Kalman filter, which estimates the cur-
rent head’s 3D position and orientation.
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Figure 1. System overview. The initialization and face tracking loop.



The visual feedback loop’s strength is that it
implicitly takes into account the changes of scale,
geometry, lighting, and background with almost
no overload for the feature-matching algorithm.16

Because the synthesis module performs a 3D illu-
mination compensation scheme, the synthesized
patterns will predict the geometric deformations,
lighting, and background location of the user’s
facial features, making the differential block-
matching stage more robust. The tracking algo-
rithm doesn’t explicitly manipulate 3D primitives,
but it does manipulate 2D synthetic image patch-
es. In addition, compared to other systems,9,10 ours
requires no iterative procedures.

This enhanced analysis-synthesis cooperation
results in a stable face tracking framework without
artificial marks highlighting the facial features, sup-
ports very large rotations out of the image plane (see
Figure 2), and even copes with low-contrast light-
ing due to the 3D illumination modeling (as shown
in the MPEG demo available at http://www
.eurecom.fr/~image/TRAIVI/valente-8points.mpg).
We assessed the tracking algorithm’s accuracy on a
synthetic video sequence, where the parameters to
recover are precisely known (see Valente and
Dugelay17 for more details). The accuracy of the
recovered parameters is about 0.5 percent of the
face size in translation and two degrees in rotation.

Facial expressions
As argued in the introduction, on the one hand,

analysis-synthesis cooperations usually require iter-
ative procedures to estimate the nonrigid motion
of a real face. On the other hand, view-based analy-
sis techniques estimate facial expressions in a sin-
gle step, but are limited by the number and quality
of training keyframes obtained from a real user. We
therefore propose replacing real users during the
training stage of a view-based framework with their
realistic clones to obtain better training conditions
for the system.

Figure 3 shows this
framework. Using a per-
son-dependent clone,
we optimally sample
the visual space of facial
expressions, via an ani-
mation database (a col-
lection of animation
parameters 

v
µ), to pro-

duce a synthetic image
database (a collection of
image samples I). All
degrees of freedom per-

mitted by the synthetic face can precisely, auto-
matically, and systematically be exploited in the
training strategy while taking into account the cou-
pling between several facial animation parameters
(FAPs) modifying the same areas of the face. Some
features, like plain image patches or optical flow,
are extracted from the images to represent the
facial expressions corresponding to the animation
database. Then, we perform a dimensionality
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reduction over those features in order to extract a
limited number of vectors optimally spanning the
variability space. These vectors (called eigenfea-
tures) will let us characterize the facial expression
of the user’s face via a simple correlation mecha-
nism, yielding a compact parameterization 

v
λ vec-

tor.18 At last, a clone-dependent estimator learns
the relationship between the animation parame-
ters and the facial expressions, built from the col-
lections of 

v
λ and 

v
µ vectors. This synthetic training

stage can be viewed as another analysis-synthesis
cooperation, taking place in the image plane only.

After the synthetic clone trains the system, the
analysis procedure extracts the corresponding fea-
tures (plain image patches, optical flow, and so
on), parameterizes them with their eigenfeatures,

and interprets them with the corre-
sponding estimator (see Figure 4).

Synthesis of facial expressions
Most studies of 3D face model

construction in the literature tried to
adapt a more-or-less generic face
model to an individual from pho-
tographs or range data. Constructing
facial animations then becomes
straightforward because they’re built

directly in the generic head model by defining
wireframe deformations. As always, a tradeoff
exists between real-time rendition capabilities and
realism, and the face model may end up being an
oversimplified, unrealistic avatar. Instead of start-
ing from a generic model to make it specific to a
given person, we took the opposite approach,
starting from person-dependent data (range and
texture image) corresponding to a neutral facial
expression and processing it to make it suitable for
a general analysis-synthesis framework. The main
difficulty is that, though highly realistic, our face
model comes unanimated—it’s made of static ver-
tices, attached to a static texture image via static
texture coordinates. Another difficulty is that no
separate primitives exist for the eyeballs—the ini-
tial face model is just a plain surface. Nevertheless,
this section will show how to achieve facial
expressions by applying simple deformations, not
only on the wireframe vertices, but also at the
three different levels (vertices, texture coordinates,
and texture image), implementing well-known or
original animation techniques.

To emphasize that our animation methods are
valid in 3D, the next figures will display two
points of view of the same model with different
facial expressions. That is, they can be displayed
under any point of view as required by a virtual
teleconferencing system. For future comparisons,
Figure 5 gives the initial face model in a neutral
facial expression.

Mesh animations. Key-frame animation (or
mesh morphing) consists of interpolating the
positions of the mesh vertices between extreme
facial expressions. It particularly suits real-time
and performance animation because it only
involves linear combinations between predefined
vertex positions. Key-frame animation also
smoothly deforms a surface as complex and pli-
able as the human face. It generally produces less
undesirable effects (like bulging, creasing, and
tearing) than facial animation created with bones

38

IE
EE

 M
ul

ti
M

ed
ia

Estimator

Visual features extraction

- Plain images
- Normalized images
- Gradient images
- Optical flow

Eigenfeatures
Image

Expression
parameterization

v v
µλ

Figure 4. Analysis of an unknown expression.

Figure 5. Katia’s original face model.

Figure 6. Displacements of mesh vertices. The eye on the right is

closed, the left one is half-closed, and the mouth is squeezed.



or lattices. We implemented this technique in our
face models to animate the eyelids and the mouth
(Figure 6).

Texture coordinate displacements. Not all
animations require deforming the face model’s
shape. For instance, lifting an eyebrow corre-
sponds to the underlying muscles sliding up onto
the skull. We mimicked this operation by extend-
ing the principle of key-frame mesh interpolation
to texture coordinates to make the texture image
slide over the wireframe.

Figure 7 shows that this technique can imple-
ment the motion of the eyebrows correctly. It sim-
ulates the extension of the skin just below the
right eyebrow by pulling up the eye’s makeup
while keeping the head shape unaltered. Such an
effect would be impossible to achieve by mesh
morphing alone.

Texture animations by texture displace-
ments. We alter the cylindrical texture mapped
onto the mesh vertices at rendition time to pro-
duce further animations. In most face models, the
gaze is controlled by the rotation of eyeballs
appearing through holes created for the eyes in
the wireframe. Instead of adding new primitives
for each eye, we created holes in the texture
image (via the transparency channel). Two sepa-
rate textures behind the main one can be dis-
placed to alter the model’s gaze direction (Figure
8). Because of the alpha channel, the shape of the
eye contours remains unchanged and covers the
moving texture portions. We’re also using this
technique to implement the model’s teeth or
tongue by overlapping several texture portions on
a plane just behind the model’s lips. This solution
has the advantage of being more realistic than
generic primitives accounting for the teeth of an
individual person.

Texture animations by texture blending.
Besides moving some texture portions, it’s possi-
ble to blend several textures together to produce
a new one. For example, you can fade wrinkles
into the model texture at a low cost in terms of
real-time animation, instead of hard-coding
them in heavy spline-based meshes, as seen in
Figure 9.

Realistic animations. Each defined model
alteration is controlled by a single parameter µi, a
FAP (conforming to the guidelines of the Moving
Pictures Expert Group’s MPEG-4 standard).19 The
choice of the animation method depends on the
type of FAP implemented, whether the overall
shape of the face model must be modified (mesh
morphing) or only its skin has to be displaced
(texture animations).

Combining n parameters (that is, n indepen-
dent mesh or texture modifications) in a single
vector 

v
µ = (µ1,…,µn)T, the face model is then capa-

ble of complex facial expressions. Although con-
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Figure 7. Displacements of texture coordinates. The eyebrow on

the left is down, the eyebrow on the right is up.

Figure 8. Texture-shifting in the texture plane: (a) Neutral

position of the eyes in the cylindrical texture, (b) right shift of the

eyes, and (c) result after 3D mapping.

(a) (b)

(c)

Figure 9. Expression wrinkles and furrows by texture blending.



structing the deformations remains highly person-
dependent, facial expressions are controlled by the
v
µ vector, which is completely transparent for the
analysis and synthesis frameworks (Figure 10).

If the 
v
µ vector relates to the same FAPs across

different face models—even though each FAP is
implemented in a strict person-dependent man-
ner—it will be possible to analyze the facial expres-
sions of performers using their own model (like in
Figure 1) and clone-dependent estimator, and
reproduce them onto another 3D model. A video
sequence shows a stream of complex facial expres-
sions (

v
µ vectors) on one of our clones at http://

www.eurecom.fr/~image/TRAIVI/animation.mpg.

Reproduction of facial expressions: From 
v
λ to 

v
µ

Once the training databases of visual measure-
ments 

v
λ and animation vectors 

v
µ have been gen-

erated using a person-dependent clone, we build
an estimator to learn the relationship 

v
λ→

v
µ.

Estimators. We investigated two types of esti-
mators:

1. a linear one, modeling the mapping as a linear
matrix L such as 

v
µ = L

v
λ, and

2. an RBF network, synthesizing the mapping in
terms of simpler functions centered around
the N training examples 

v
λ such as

where ci are the respective weights of the basis
functions λT

v
λi. Each input of the network cor-

responds to the correlation between the ana-
lyzed image (modeled by 

v
λ) and a training

example (
v
λi).

The RBF formulation has an interesting prop-
erty in terms of further complexity reduction. To
avoid handling all the training samples (typically
a few thousand) in the network, we apply anoth-
er principal component analysis on the training
vectors 

v
λ to extract a limited number of “center”

vectors (a few hundred). Elsewhere,20 we showed
that in theory, the performance of the network
remains the same for basis functions based on
scalar products.

Early experiments. To evaluate the perfor-
mance of our view-based analysis algorithm and
how it can extrapolate the training to new facial
expressions, we conducted some preliminary
experiments on synthetic data. We provided the
system with images of facial expressions corre-

    

v v
µ λ λ=

=
∑ ci

T

i

N

i

0
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To view the demos mentioned in this article,
visit MultiMedia’s Web site at http://computer.org/
multimedia/mu2000/u1toc.htm and click on the
following links:

Visual analysis-synthesis cooperations permit an
efficient face tracking algorithm without any mark-
ers pasted on the user’s face and without any con-
straints or assumptions on the analyzed view such as
the scene lighting, the camera’s internal and external
parameters, and the face’s motion: http://comput-
er.org/multimedia/mu2000/extras/u1034x1.mpg

Simple model deformations (mesh animations,
texture coordinate displacements, and texture ani-

mations) can be blended together to produce
complex, realistic, and person-dependent facial
expressions on our clones: http://computer.org/
multimedia/mu2000/extras/u1034x2.mpg

Early experiments (without any stabilization post-
processings) concerning the analysis of real facial
expressions and their reproduction on the corre-
sponding clone: http://computer.org/multimedia/
mu2000/extras/u1034x3.mpg

For more information contact Jean-Luc Dugelay
at Jean-Luc.Dugelay@eurecom.fr. For future
updates of the Traivi project, visit http://www
.eurecom.fr/~image.

Web Extras



sponding to a set of 
v
µ vectors not included in the

training databases. We found that both estima-
tors give similar results. Our framework is
presently able to recover the animation parame-
ters with a 10-percent accuracy between the orig-
inal 

v
µ vectors and the estimated ones from 

v
λ

measurements.20

One predictable issue about our framework is
how the training, performed on synthetic images
in uniform lighting, can be transposed to real
images with unknown lighting. We tested differ-
ent preprocessings to find lighting-independent
features such as normalized or gradient images,
or even optical flow fields. In our evaluation,20 a
basic optical flow algorithm21 provides fairly good
visual features to analyze real facial expressions
(see Figure 11) from a synthetic training database.
The apparent motion field isn’t computed
between successive frames, but between the ini-
tial face image (representing a neutral expression)
and the analyzed one. This results in some diffi-
culties in terms of optical flow stability, as you
can see in the video sequence at http://www
.eurecom.fr /~ image/TRAIVI/sv-analyse -
reelle.mpg. However, our optical flow implemen-
tation could be improved greatly or other image
features (like images in a normalized color space)
could straightforwardly be integrated in the
architecture.

Conclusion
Our development of visual analysis-synthesis

cooperations relied on pixels as opposed to 3D
vertices manipulations. We avoided iterative pro-
cedures and took advantage of hardware acceler-
ations whenever possible. Following this
paradigm, it’s possible to efficiently track a face in
a video sequence and accurately estimate its rigid
motion from a single camera, if you use a realistic
face model of the person to be tracked.

Our current goals include refining our optical
flow algorithm to extract the nonrigid motion
characterizing the facial expressions of a real user.
We also plan to integrate the possible coupling
between the pose of the face and its facial expres-
sions in the cloning system. Our 

v
λ measurements

are general enough to incorporate the user’s posi-
tion and orientation parameters as additional vec-
tor components. By training the system to “see”
the relationship between the global pose and the
appearance of facial expressions, the estimator
translating the observed 

v
λ vectors into animation

parameters 
v
µ could automatically take into

account the coupling. MM
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