Simulating Cartoon Style Animation

Stephen Chenney Mark Pingel

Rob Iverson Marcin Szymanski

University of Wisconsin at Madison *

Abstract

Traditional hand animation is in many cases superior to simu-
lated motion for conveying information about character and events.
Much of this superiority comes from an animator’s ability to ab-
stract motion and play to human perceptual effects. However, expe-
rienced animators are difficult to come by and the resulting motion
is typically not interactive. On the other hand, procedural models
for generating motion, such as physical simulation, can create mo-
tion on the fly but are poor at stylizing movement. We start to bridge
this gap with a technique that creates cartoon style deformations au-
tomatically while preserving desirable qualities of the object’s ap-
pearance and motion. Our method is focused on squash-and-stretch
deformations based on the velocity and collision parameters of the
object, making it suitable for procedural animation systems. The
user has direct control of the object’s motion through a set of sim-
ple parameters that drive specific features of the motion, such as
the degree of squash and stretch. We demonstrate our approach
with examples from our prototype system.

Keywords: deformation, squash-and-stretch, physical simulation,
stylized animation, stylized rendering

1 Introduction

Animators are expert at conveying information through moving im-
agery, be it the personality of a character, their actions, or the ele-
ments of a story. Procedural animation methods, such as physically-
based simulation, also attempt to convey information, yet are typ-
ically less effective than hand animation. Users have traditionally
faced a choice between the high-quality, high-cost of hand anima-
tion and the lower-quality, interactivity of simulated motion.

The superiority of hand animation for communication is not due
to deficiencies in the procedural models, rather to two key anima-
tion skills:

Abstraction Animators extract the essence of a situation and di-
rect a viewer to it, with exaggeration, timing, anticipation and
a host of other techniques [Lasseter 1987]. These techniques
serve in part to emphasize the key qualities of the situation,
while simultaneously suppressing extraneous details. Proce-
dural methods to date have offered no such flexibility of focus.

*{schenney|pingelm |riverson|marcin} @cs.wisc.edu

Copyright © 2002 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1 (212-869-0481 or e-mail permissions@acm.org.

© 2002 ACM 1-58113-494-0/02/0006 $5.00

133

Playing to Perception Viewers experience animation through
their imperfect human visual systems, which exhibit partic-
ular, and sometimes peculiar, behavior with respect to such
things as spatial and temporal sampling, focus and distraction.
With this in mind, animators deliberately manipulate timing,
deformation and other aspects of motion to ensure that the de-
sired perception results. While perceptual issues have been
addressed in the rendering community, they have barely been
touched on in the simulation community, primarily with mo-
tion blur but also in more recent papers [Barzel et al. 1996;
O’Sullivan and Dingliana 2001].

Incorporating traditional animation techniques into procedural
animation poses an extensive set of problems. Foremost is the prob-
lem of characterization: effective animation conveys not just events
but also emotions and thoughts. Consider the look of dismay on
Wile E. Coyote’s face as he sits suspended in air above a canyon, or
Luxo Jr’s uncertainty as his ball deflates (or is it a her?). Even be-
fore attempting to convey such emotions procedurally, we require a
way to represent them, which is itself a challenging topic. Another
large problem is related to interdependence between rendering style
and animation technique — deformations that are appropriate for 2D
cell animation are not necessarily the best option for 3D animation.

In the face of these difficulties we concentrate on the problem
of adding one animation principle, squash-and-stretch, to a simu-
lation of inanimate, colliding objects. Squash-and-stretch deforms
objects, even rigid ones, as they interact. Hand-animated squash-
and-stretch of a colliding object, as described by Lasseter [1987],
addresses two fundamental aspects of animation: the stretch an-
ticipates the collision, and the squash exaggerates its effects. We
hypothesize that an additional benefit of squash-and-stretch is that
it extends the duration of a collision by replacing a short-lived col-
lision event with a new event that extends over several frames. This
ensures that viewers actually see the contact, rather than just infer-
ring its occurrence. Squash-and-stretch may also convey informa-
tion about the physical properties of objects (their mass, hardness
and so on).

In this paper, we present a simulation system that uses a mixture
of dynamic and kinematic techniques to squash and stretch objects
with geometric deformations. Our goal is to automatically add dy-
namic, cartoon style deformations to interactive models with the
focus on the final appearance of the motion, rather than a phys-
ical model. We expect work such as this to apply to interactive
entertainment systems, such as computer games, where traditional
animation is not easily used and physical models are too slow and
unnecessarily complex. It may also be used in animation interfaces
for novices or as aids to traditional animation.

An example animation from our system is shown in figure 1.
Underlying our system is a simulator that generates ballistic motion
for the center of mass of each object. It also includes an collision
detection mechanism for affinely deformed bodies. On top of this
we control the orientation and deformation of the body using rules
that produce motion in a cartoon style. The rules are arrived at
from stylistic, as opposed to physical, requirements. For instance,
during ballistic motion we always wish to deform the object in the
direction of travel, and during a collision we aim for continuity in
the deformations. These goals come from stylistic decisions, not

Figure 1: A time-lapsed animation of a vertically bouncing ball produced by our system. The ball stretches in free space, squashes during
collisions, and stretches again as it takes off. Our aim is to emulate the squash-and-stretch technique employed by traditional animators. The
parameters (see section 3) for this sequence are: v = 0.5, Smaz = 2.0, Smin = 0.5, kstr = 0.1 and ksq = 1.0.

the requirements of physics.

The greatest strength of our approach is its tight coupling be-
tween user controlled parameters and the appearance of the mo-
tion. For instance, the user has control over how much an object is
stretched, with a single number mapping directly onto the deforma-
tion of the object. This makes it easy for a user to attain the desired
style.

After a review of previous work, we describe our animation sys-
tem in section 3, before concluding with a look at future research
directions.

2 Related Work

Lasseter’s landmark paper [1987] describes the basic principles of
cartoon animation and their relationship to computer graphics. One
of the techniques described is squash-and-stretch, in which an ob-
ject is stretched as it approaches a collision, squashed through the
collision, and then stretched again as it rebounds. Animators work-
ing with existing systems typically achieve squash-and-stretch by
explicitly key-framing the deformation. To date, three general ap-
proaches have been proposed for simulating squash-and-stretch:
physically-based models, implicit surface deformations, and time-
warp methods.

Physically-based modeling has been used to produce cartoon
style deformations, such as those demonstrated by Metaxas and
Terzopoulos [1992]. A later system by Faloutos et al. [1997] adds
interactivity and some control to the system, and succeeds in gener-
ating cartoon style motions for various objects. The system uses a
set of free-form deformation modes that define how the object may
be deformed and how much energy is involved in the deformation.
The object then has masses distributed throughout and a dynamic
simulation is run to animate the motion of the object under the influ-
ence of internal and external forces. The deformation modes can be
designed to allow for squash and stretch, but to create convincing
cartoon motion “artificial” forces must be defined to produce the
stretch, as it has no physical counterpart. The control in this system
is indirect, via parameters such as spring constants and masses, and
it seems non-sensical to use a physical model and then deliberately
subvert it to produce desirable effects.

Implicit surface based methods have also been used to create
stylized motion. Wyvill [1997] describes a method for squash-and-
stretch based on local deformations of implicit surfaces. The ex-
amples presented are collisions of arbitrary implicit surfaces with
a plane. Opalach and Maddock [1994] describe a method for con-
structing a hierarchy of shape defining elements and associated in-
teraction rules that mimic some traditional animation effects, par-
ticularly squash-and-stretch and follow-through. The final appear-
ance of their models appears to be particularly difficult to control,
and they address only internal body interactions. Unlike our ap-
proach, both implicit surface approaches control only the shape of
the object, and ignore other aspects of the motion such as collision
response and control of ballistic flight.

Time-warping methods place different parts of an object at dif-

134

ferent points in time. For instance, the back end of a ball might lag
in time behind the front, meaning it travels less in a given real-time
instant and hence stretches the object. Platinum Pictures Multime-
dia Inc. [2000] have introduced a method for squashing and stretch-
ing objects using this approach. Campbell et al. [2000] describe a
technique that performs time-warping by slicing a 4-dimensional
space-time object in order to produce cartoon-style effects. While
such time-warping techniques yield interesting results, it is not
clear how to modify them to handle collisions between objects in a
cartoon-like manner.

Rademacher [1999] alters the geometry of the object based on
the direction from which it is viewed in order to capture another
aspect of traditional animation. Every object has a base state and
several deformed models keyed to specific views. At each frame
these key deformations are interpolated to deform the geometry.
While Rademacher’s technique provides good view-dependent de-
formations, it does not produce animations in real time, requires
extensive work to instrument a new animation sequence, and does
not take into account the interactions between objects.

3

Our simulation model — the equations that control shape and motion
— is driven by the visual style we wish to create. As we describe
our system we will indicate those aspects of visual style that we
are seeking to capture, such as stretch-and-squash behavior. Our
elements of style are based on empirical observations of traditional
hand animated behavior, and personal stylistic choices. We do how-
ever, provide a range of parameters for adjusting the style of the
motion:

Implementing Cartoon Simulation

Gravity, g: Globally defined and influencing the ballistic motion
of objects.

Restitution, : The amount of “energy” lost by an object in a col-
lision (defined on a per-object basis.)

Maximum Stretch, s,,,>: The maximum amount that an object
can be stretched (defined per-object.)

Minimum Squash, s,,:»: The minimum size that an object can be
squashed to during a collision (defined per-object.)

Stretch Rate, ks;,-: The rate at which an object approaches its
maximum stretch as its velocity increases (defined per-
object.)

Squash Rate, k,,: The rate at which an object moves through a
collision (defined per-object.)

All of these parameters map directly onto the appearance, allowing
a user to rapidly define an appropriate style. For example, figures 2
and 3 show cylinders with varying Sma« and Smin parameters. In
motion, one appears stiff while the other appears soft and pliable.

Figure 2: Five frames from a bouncing cylinder animation
showing a cylinder with a relatively small value of 1.5 for Smaz
and a relatively large value of 0.7 for smin. The result is a
cylinder that is perceived as rigid in motion and looks more ap-
pealing than physically simulated rigid-body motion.

Both look more appealing than a completely rigid bouncing cylin-
der.

Our motion model is applicable to moving objects whose only
interactions are through collisions. Due to collision detection re-
strictions, our current implementation only handles convex polyg-
onal models. Our system also assumes that the only collisions will
be between a deformable object and fixed, non-deformable objects,
although we discuss ways to remove this restriction in the future
work section.

Each object in our cartoon physics world operates in one of two
modes:

e A free-space mode, in which motion is generated as if ob-
jects were point masses moving under the influence of gravity,
while shape is driven by velocity.

e A collision mode, in which the motion and shape of objects is
driven by the squash-and-stretch behavior.

The simulation is initialized with the positions and velocities for
each object. We assume that no objects are inter-penetrating. Each
simulation time step then performs the following steps:

1. Update all the objects in free space according to ballistic point
mass equations, and set their deformations and alignment ac-
cording to rules described below. Objects are updated to ei-
ther the next rendering frame time or the next collision time,
whichever occurs first.

2. Compute collision interpolation parameters for any new col-
lisions found. Collision interpolations are based on velocities,
contact conditions and our desired squash-and-stretch behav-
ior. At each step, they serve as guidelines for the deforma-
tion and orientation of the colliding object. Our interpolations
are cheap, simple and eliminate the need for complex physics
solvers.

3. Update all objects involved in collisions, and set their defor-
mations, orientations and positions.

3.1

We use only non-uniform, affine scaling deformations in our sys-
tem. We chose affine deformations because they are the simplest
deformation that can generate stretch and squash effects. Other de-
formation models could be used, particularly Barr’s bending defor-
mations [1984], but different rules would be necessary to drive their
parameters.

The stylistic choices we made in defining our deformations are:

Deformations

e The deformations should be volume preserving.

e Each object has a natural set of deformation axes, including
one principle axis, and scaling should always be done with
respect to these axes. These axes define a deformation co-
ordinate system with the x-axis aligned with the “forward”
direction for the object.

135

Figure 3: Five frames from a bouncing cylinder animation
showing a cylinder with a relatively large value of 2.0 for Smax
and a relatively small value of 0.2 for Smin. This cylinder ap-
pear to be made of a softer material than that in figure 2.

We find these choices generate pleasing motions for a range of ob-
jects, but other options clearly exist.

The deformation is controlled by a single parameter, s, which is
the scaling coefficient along the principle axis. We scale the other
dimensions equally according to our volume preserving require-
ment, resulting in the following scaling matrix which is applied in
the deformation coordinate system:

s 0 0
0 1/s 0)
0 0 \/1/s

The parameter s is controlled by the simulator, as we will now de-
scribe.

3.2 Motion and Deformation in Free Space

The motion of objects in free-space is derived from the following
stylistic choices:

e Objects should move with roughly ballistic trajectories, with
the user retaining control of gravity.

e Objects should stretch according to their velocity: the stretch
should be applied in the direction of travel and by an amount
that increases with higher velocity.

The second stylistic choice, combined with our deformation ap-
proach, has a significant stylistic implication: objects must always
stay aligned with their direction of travel, and so cannot rotate un-
der the normal rules of rigid-body motion. We could relax this re-
quirement by either stretching in directions not aligned with the
direction of travel, or applying stretches without regard to the in-
ternal symmetries of the object. Each alternative would result in a
different look for the animation. Finally, acceleration appears to be
a desirable way to drive stretch. However, for ballistic motion the
acceleration is constant, whereas stretch should not be constant for
a bouncing ball.

To implement these design decisions, we update an object’s
shape and position by translating it according to Newtonian equa-
tions for a point mass, rotating it to align its principle deformation
axis with its direction of travel, and deforming it according to our
deformation model. The deformation parameter, s, is set according
to the following equation:

_ kstrHV”smaz + 1
Fer[V][+ 1

where Smaz and kst are user defined parameters (section 3), and
v is the object’s velocity vector. This equation gives s = 1 (no
stretch) for zero velocity, and in the limit approaches s = Smaax
(user defined maximum stretch) for infinite velocity. Both the max-
imum and the rate at which the stretch approaches the maximum is
controlled by the user. Figure 1 shows a time-lapse sequence of a

ball bouncing vertically, illustrating the growth in stretch with in-
creasing velocity for a ball dropped from a height of 10m under the
influence of earth gravity with smqee = 2 and ks = 0.1.

Our requirement that the object stay aligned with its direction of
travel would introduce an instantaneous flip in the object’s orienta-
tion when it reaches the top of a vertical bounce. We avoid this by
detecting any sharp reversals in the object’s velocity and flipping its
“forward” direction.

3.3 Collision Detection

Our system must detect collisions between moving, deformed ob-
jects. We describe a solution to this problem for interactions be-
tween convex polygonal models. This convexity constraint arises
only from our collision detection technique.

In order to accurately detect collisions for our convex polygonal
models, we use a modified version of VClip [Mirtich 1998]. VClip
reports the closest features of two objects by tracking those features
over time. We modify VClip to perform all computations in the
global coordinate space and do lazy transformation of Voronoi re-
gions and other features. The modified VClip method is fast, robust
and accurate, in keeping with our goal of interactive frame rates.

We need to isolate the exact time of the collision in order to keep
with our goal of non-penetration during collisions. Therefore, when
two objects are determined to be colliding, we perform a binary
search on the time parameter to find the exact time of the colli-
sion, as described by Moore and Wilhelms [1988]. At the collision
time, the collision interpolation parameters are computed (see sec-
tion 3.4) and the objects cease moving ballistically.

3.4

Our primary goal in designing a collision deformation scheme is to
create a motion that is smooth and looks “good”, but not necessarily
realistic. For example, if a bouncing ball does not deform as it hits
the ground, or if the ball is only touching the ground for an instant, it
is perceived as jarring. This perception remains even though many
types of balls (pool balls for example) would in real life exhibit such
jarring motion. We summarize our requirements with the following
rules:

Interpolation for Collision Deformations

e The object should squash during the collision by an amount
that depends on how hard it hits and the user defined squash
parameters.

e The deformation should vary smoothly through the collision,
and should be continuous through the transition between bal-
listic and colliding motion.

e The object should appear to “stick” through the collision,
rather than slide.

The object must also rotate during the collision, to align its defor-
mation axis with the outgoing direction of travel. We also switch
the forward direction of the object, so a vertically bouncing object
does not flip as it collides, but rather appears to roll.

‘We must control the position, orientation and deformation of an
object through a collision. We do this with interpolation schemes
that drive the deformation and rotation of the object. These, com-
bined with the non-sliding constraint, also imply the translation of
the object. The parameters for the interpolations are computed at
the start of a collision. At that time the system has available the
current velocity, vin, the current deformation factor, s;,, and the
collision normal, n.

A collision alters the velocity of the object by reflecting it about
the collision normal and multiplying its normal component by the
user defined restitution coefficient: Vout = Vinl — TVin||- During

136

Smid

Figure 4: The interpolation function used to control deforma-
tion during a collision consists of two sinusoidal pieces: one
controlling the squash as the object compresses and the other
controlling its outgoing stretch.

the course of the collision the velocity is ignored. All the translation
of the object happens as a result of the interpolations.

We choose to use sinusoidal interpolation functions to control
the deformation. This choice was motivated by a desire to appear
spring-like, although we do not use mass or spring constants to de-
rive the deformation. Figure 4 illustrates the interpolation function
and marks some key points. At the start of the collision, s = s
and the local time parameter is ¢ = 0. At the point of maximal
squash for this collision, s = S;,iq and t = t,:q. When the colli-
sion completes, s = Sout and t = tout.

The maximum squash for this collision, S,,;q, is computed based
on the ratio of s;, to the maximum stretch, S.nq. With the formula

Sin

Smid = 1 — (1 - Smin)
Smazx

This will give the user defined maximum possible squash when the
incoming stretch is at its maximum, and less squash with decreasing
incoming stretch.

For the squash phase of the collision, we use an interpolation
function of the form

$ = Sin — (Sin — Smid) Sinwint

The parameter w is chosen to achieve a smooth transition from bal-
listic motion to collision squash. Consider the point on the object
furthest from the collision point, which we assume to be at a dis-
tance [, computed as the maximum extent of the object in the prin-
ciple deformation direction. As it collides, the top point is mov-
ing with speed approximately ||vin|| (ignoring the motion of the
point due to the deformation changing.) As the collision takes over,
the point will be moving with speed fl%. Equating these speeds
places a constraint on the derivative of the interpolation function,
from which we can derive

[[vin |

Win = ———————
o l (Sin - smid)

To complete the incoming squash computations, we calculate
tmid = ﬁ We find that the continuity constraint is sometimes
stronger than necessary, and users would rather directly control the
collision timing. To this end we provide a user controlled parame-
ter, ksq which changes the computation of w and hence t,,,iq4:

Ksqllvin |
l(sm —

Higher values for k;, result in faster, sharper looking collisions,
suggesting a light-weight colliding object. Smaller values give

Win = Smid)

Figure 5: A few frames, overlaid, of a collision in which a
cylinder strikes a plane at an angle. The cylinder is stretched at
the initial contact, and orientated along its direction of travel.
As the collision proceeds, it simultaneously squashes and rotates
about the contact point, before stretching out again and taking
off. This sequence also illustrates the alignment of the cylinder
as it follows its ballistic trajectory. The frames in this composite
were not sampled at uniform time intervals. The ballistic motion
[frames are less densely sampled.

longer collision times making an object appear heavier, or in ex-
treme cases giving the sense that time is slowed during the collision
(which also conveys a sense of mass.)
The outgoing stretch parameters are computed in a similar man-
ner, using
S = Sout — (Sout — Smid) COS Woutt

During the course of a collision, the object is rotated to move
from its initial alignment with the incoming velocity to its final
alignment with the outgoing velocity. We use linear interpolation
for rotation, broken into two stages such that the object rotates
through half the required angle while squashing, and the other half
while stretching.

Having set the collision parameters at the impact occurs, at each
subsequent simulation time-step the interpolation scheme is evalu-
ated to set the deformation for the object. The object is then rotated
about the contact point according to the interpolated rotation. This
combination of motions will generally result in the colliding ob-
jects inter-penetrating or losing contact. We resolve this by moving
the object in the collision normal direction to re-establish contact
without penetration. As a result of these manipulations the ob-
ject appears to rotate about its contact point while simultaneously
squashing and stretch. Figure 5 depicts a few snapshots of a cylin-
der colliding at an angle.

Up to this point we have made two implicit assumptions. The
first is that the object does not come to rest as a result of its colli-
sion. We would like to manage this case as objects with r < 1 will
always come to rest. Secondly, our collision interpolation schemes
are computed at the start of the collision. We have not addressed
our handling of cases in which an object is involved in a second
collision before completing the first. The two collision case is very
common for objects bouncing in enclosed spaces — there must be
corners where the object can hit two bounding surfaces at the same
time. In the following two sections we discuss these cases.

3.5 Coming to Rest

Objects that collide with low normal velocity are brought to rest by
the simulator. In most cases, this simply sets the outgoing velocity
to be zero, and the outgoing orientation to be aligned with the col-
lision normal. A flag is also set to indicate that the object should no
longer be considered moving. The interpolation schemes described
above are then computed as usual and reasonable behavior results.

137

Under some circumstances an object can collide with a surface
while moving slowly away from it. This happens at low velocities
as the object is rotated and stretched according to its ballistic mo-
tion rules. In such situations we stabilize the object with retrograde
rotation such that it appears to fall back along its path, rather than
flip over.

3.6 Simultaneous Collisions

Simultaneous collisions frequently occur when an object collides in
a corner. It is difficult to come up with a consistent style rule for
defining the object’s behavior in such cases. For instance, if a ball
comes into a 90° corner at a 45° angle, it should probably squeeze
in and be reflected back along its path (figure 6). But what if the
collision is glancing, or the object does not hit both faces simulta-
neously? Traditional hand animators have the option of avoiding
such cases, but as the designers of an interactive simulator we must
handle any cases that arise. We use a rule that works well with our
approach, but is not as visually pleasing as we would like.

7 7

Figure 6: Two examples of a corner collision, when the ball
contacts multiple surfaces during its deformation. In the left
case, the ball should probably be reflected backward, while in
the situation on the right it is less clear what a traditional ani-
mator would do.

Our approach serializes collisions. When the simulator detects
a collision involving an object already involved in a primary col-
lision, it adds the second contact surface to a queue of pending
contacts. As the object squashes and rotates, if it penetrates the
second contact surface it is pushed back in a direction tangential
to the primary collision surface, thus ensuring no inter-penetration
occurs with either contact. When the primary collision completes,
the pending contact takes over and new interpolation parameters are
computed. This produces reasonable motion, as shown in figure 7.
Under some circumstances the pending collision may become un-
necessary as the object moves away from the second face, in which
case it is subsequently ignored.

3.7 Applications

To test our motion model, we implemented it in the form of a sim-
ulation library that can be used by applications to produce cartoon
style motion. One application is a demonstration environment, used
to produce the figures in this paper. We have also implemented a
simple game with the library. Similar to Breakout, users control a
paddle to guide a bouncing ball around a play-field. The aim is to
collide with and eliminate blocks. This illustrates the use of user
controlled objects, a non-trivial environment and the ability to add
and delete objects on the fly. Most importantly, it demonstrates the
robustness of our motion model in the face of practical problems.

4 Conclusion

We have presented a mixed dynamic and kinematic model for sim-
ulating cartoon style squash-and-stretch motions in real time. The
greatest advantage of our approach is its clear user controls that
map directly onto properties of the motion, allowing the easy spec-
ification of particular styles. For instance, we can readily define

Figure 7: A sequence showing a corner collision, running left
to right and top to bottom. The ball initially hits the floor, and
begins its collision interpolation. After it hits the right wall, in
the top center frame, the ball is pushed back away from the wall
while it completes its initial collision. The initial collision with
the floor completes in the center frame, at which point it begins
processing the second collision with the wall. The ghost images
are intended to represent the motion of the ball, and are not
present in the animated sequence.

parameters that make an object appear light and rigid, or soft and
heavy. This enhances the expressive power of procedural simula-
tions.

There are many desirable extensions to our system. Foremost,
we would like to enable multiple moving, deforming objects. It is
relatively clear how to perform squash-and-stretch on two moving
objects. All the key ingredients for our interpolation scheme are
present in such a case, including a collision normal and a natural
model for the change in velocity. The difficulty comes in the sec-
ondary effects of multiple moving objects, such as handling simul-
taneous collisions between two moving objects and a static object.
Other extensions include special handling of small-angle bounces
and incorporation of concave objects. Producing reasonable results
in a more generalized setting requires more flexibility than our in-
terpolation schemes currently allow. A different approach may be
required to handle systems of many moving cartoon style objects.

A broader issue is the incorporation of other traditional ani-
mation principles into simulated motion. To date, almost all re-
searchers have concentrated on aspects of shape, and ignored the
broader question of global motion. For instance, anticipation and
follow-through require changes to trajectories and timing, some-
thing that our system does not address. We see stylized motion,
rather than shape, as the most important area for future work.

References

BARR, A. H. 1984. Global and local deformations of solid prim-
itives. In Computer Graphics (Proceedings of SIGGRAPH 84),
ACM SIGGRAPH, 21-30.

BARZEL, R., HUGHES, J. F., AND WoOOD, D. N. 1996. Plausible
motion simulation for computer graphics animation. In Com-
puter Animation and Simulation ’96, Eurographics, 184-197.
Proceedings of the Eurographics Workshop in Poitiers, France,
August 31-September 1, 1996.

CAMPBELL, N., DALTON, C., AND MULLER, H. 2000. 4d
swathing to automatically inject character into animations. In
SIGGRAPH 2000 Conference Abstracts and Applications, ACM
SIGGRAPH, 174. Technical sketch.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
1997. Dynamic free-form deformations for animation synthesis.
1EEE Transactions on Visualization and Computer Graphics 3,
3 (July - September), 201-214.

138

Figure 8: A strobe sequence from a simple game implemented
with our cartoon simulator. Similar to Breakout, the user con-
trols a paddle to guide the ball that eliminates blocks upon con-
tact.

GOOCH, A., GOOCH, B., SHIRLEY, P., AND COHEN, E. 1998. A
non-photorealistic lighting model for automatic technical illus-
tration. In Computer Graphics, Proceedings of SIGGRAPH 98,
ACM SIGGRAPH, 447-452.

LASSETER, J. 1987. Principles of traditional animation applied
to 3D computer animation. In Computer Graphics: SSIGGRAPH
’87 Conference Proceedings, ACM SIGGRAPH, 35-44.

METAXAS, D., AND TERZOPOULOS, D. 1992. Dynamic deforma-
tion of solid primitives with constraints. In Computer Graphics:
Proceedings of SIGGRAPH 92, ACM SIGGRAPH, 309-312.

MIRTICH, B. 1998. V-clip: Fast and robust polyhedral collision
detection. ACM Transactions on Graphics 17, 3, 177-208.

MOORE, M., AND WILHELMS, J. 1988. Collision detection
and response for computer animation. In Computer Graphics,
vol. 22(4), ACM SIGGRAPH, 289-298.

OPALACH, A., AND MADDOCK, S. 1994. Disney effects using im-
plicit surfaces. In Proceedings of the Fifth Eurographics Work-
shop on Animation and Simulation, Eurographics.

O’SULLIVAN, C., AND DINGLIANA, J. 2001. Collisions and per-
ceptions. ACM Transactions on Graphics 20, 3 (July), 151-168.

PLATINUM PICTURES MULTIMEDIA INC., 2000. Motion pack
plug-in. Computer program.

RADEMACHER, P. 1999. View-dependent geometry. In Computer
Graphics: Proceedings of SIGGRAPH 99, ACM SIGGRAPH,
439-446.

WYVILL, B. 1997. Animation and special effects. In Introduction
to Implicit Surfaces, J. Bloomenthal, Ed. Morgan Kaufmann,
ch. 8, 242-269.

