
Computer Aided Inbetweening

Alexander Kort

Fraunhofer Institute for Applied Information Technology

Abstract

The production of inbetweens is a tedious task for animators and
a complicated one for algorithms. In this paper, an algorithm for
computer aided inbetweening and its integration in a pen-based
graphical user interface are presented.
The algorithm is layer-based, assuming an invariant layering order.
It is applicable to animations in a style similar to paper cut out, in
which the drawings on the cut-out pieces are inbetweened as well.
The content of each key drawing is analysed and classified into
strokes, chains of strokes and relations that hold among them. Rules
decide what parts of different drawings may be matched. These
rules specify allowed changes between relations in key drawings.
A cost function based approach determines the correct matching of
strokes. Generated animation paths between corresponding strokes
determine the resulting inbetweens.
To hold for possible mismatchings and to allow for artistic control
over the results, the inbetweening algorithm is embedded in a free
form graphic user interface. Thus artists are enabled to focus on the
part of the inbetweening task computers are not able to solve.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis—Object Recognition; I.2.10
[Artificial Intelligence]: Vision and Scene Understanding—Shape;

Keywords: keyframe animation, inbetweening

1 Introduction and Overview

Like in other fields of animation, the use of computers has entered
the world of 2D cartoons animation production, but still mostly un-
changed since the days of Snow White [Thomas and Johnston 1981]
is the division between key drawings and inbetweens.

Drawing the inbetween frames is time-consuming and tedious.
Automation of these steps would allow the artist to concentrate on
the more creative work of drawing the key images. So each artist
could become a key drawing animator and leave the boring work of
drawing the inbetweens to the machine.

But inbetweens are not just interpolations between key drawings.
When drawing the inbetweens, the inbetweener utilises

� her background knowledge of the physical rules of the world,

� her expert knowledge when to bend or ignore these rules and

� her idea what emotions should be evoked by the animation.

For these reasons, automatic inbetweening will probably remain an
unreachable goal, at least for the near future.

The approach shown here does not aim at automatic, but at com-
puter assisted inbetweening. Embedding an inbetweening algo-
rithm into a graphical user interface enables fluent corrections of
the results.

The proposed algorithm is not applicable to all kind of cel anima-
tions. It’s restricted to those animations in which the cel content’s
layering order is invariant. This includes animations in a “cut-out”-
style. It transcedes cut-out because contents of cut out pieces can
change between different key cels, thus changing in the inbetweens
as well. These changes are not limited to affine transformations.
The “cutting out” of pieces and the correspondence detection be-
tween them is solved by the algorithm without user interaction re-
quired.

The chosen approach is based upon the following assumptions :

1. each drawing is made of stroke chains, structures consisting
of one or more connected strokes. A stroke “is a single path
specified by the movement of a pen” [Igarashi 1999].
Stroke chains model the merging of connected strokes as well
as the closing of unintended and recognition of occlusion-
induced gaps. Occluded lines may appear in key drawings,
but not necessary in both. Modelling this allows interrupted
stroke chains to be recognized as such and processed accord-
ingly in further matching steps.

2. a stroke chain in one key drawing may have a corresponding
stroke chain in another key drawing. It does not need to have
one.

3. the transition between stroke chains is modeled by animation
paths. These animation paths indicate both the correspon-
dence between stroke chains in key drawings and the spatial
interpolations between them.

The proposed algorithm works upon vectorized strokes. It will ad-
dress the tasks of

� Identifying stroke chains in given key drawings. The vector-
ized strokes in the key drawings are analysed and grouped to
stroke chains based upon adjunctions and occlusions.

� Detecting the correspondences between stroke chains in key
drawings, including point correspondence. The stroke chains
in each drawing are analysed and classified into specific re-
lations like inclusion, adjacency and layering. A rule based
algorithm operates on these relations, detecting the allowed
matchings between stroke chains in different drawings. These
rules model changes between the different drawings.
For allowed matchings, a cost function rates the animation
paths. The cost function is based upon translation, curvature
and bending. Animation paths are optimized with regard to
this cost function.

� Generating the inbetweens, based on the resulting animation
paths. The layering relations obtained in previous steps help
to handle cases of occlusions.

125125125

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1 (212-869-0481 or e-mail p rmissions@acm.orge .
© 2002 ACM 1-58113-494-0/02/0006 $5.00

Figure 1: On the left and right are the key images. The stroke chain
(highlighted on the left) and the detection of the layering order be-
tween nose and face contour allowed generating the inbetween in
the middle.

This algorithm is embedded in an interactive free form drawing en-
vironment. The artist can draw strokes, which are vectorized im-
mediately. Key drawings can be selected in various ways. After
calculating inbetweens, the artist can correct animation paths man-
ually and specify the desired timing. In one or more iterative steps
of inbetweening and corrections the artist is assisted in producing
images fulfilling her aesthetic criterias.

2 Related Work

Burtnyk and Wein [1976] introduced interactive skeleton tech-
niques for enhancing motion dynamics in key frame animations.
Stick figure representations of key frame components are animated
manually, and the inbetweens are interpolated. Correspondence is
established based upon the drawing order.
Catmull [1978] presented an analysis of computer-supported ani-
mation and the expected problems. Six different solution categories
were presented, all related to the problem of information loss when
going from 3D to 2D. According to this analysis, the method pre-
sented here is a combination of infering missing information, using
the help of animators and restricting the class of animations that
may be drawn.

An overview about the principles of animation in computer
graphics is given by Lasseter [1987]. Some of the principles cov-
ered there like “squash-and-stretch” prevent an easy transfer of suc-
cessful similarity detection methods from other application fields.

In a cartoon world, the geometry of a character depicted may
depend on the camera’s position. Artistic criterias are important,
not geometric identity. This complicates further any use of esti-
mated 3D models for 2D Inbetweening. Rademacher [1999] pro-
posed a solution for viewer-dependent geometry for characters al-
ready modeled in three dimensions.

Durand [Durand 1991] listed the requirements for a computer-
ized 2D animation system.

J.D. Fekete et al. [1995] presented an approach to the whole
vectorized drawing process. He also covered the advantages and
disadvantages of automatic inbetweening. The advantages are re-
duction of the number of hand-based-inbetweens and the possibility
for procedural rendering, like texture mapping on inbetweened re-
gions.

One disadvantage mentioned is that the automation changes the
nature of inbetweening and limits it complexity. It would restrict
the animation to fairly standard drawings. The approach presented
here aims at recognizing changes that cannot be interpolated due to
lack of knowledge. So the parts of drawings which are automatic
inbetweenable are detected and interpolated, those which are not
are left out for the artist to add.

He further states that tuning the inbetweens urges the animator
to acquire “skills from [...] a computer graphist who can precisely
manipulate Bezier curve handles”. This is addressed by embedding

the inbetween algorithm into a free from stroke environment, hiding
things like Bezier control points from the animators view.

One part of the method proposed here is the blending of stroke
chains, once their correspondence is established. Work on shape-
blending was done by Sederberg and Greenwood [1992], who pro-
posed a solution to the vertex correspondence problem between
two-dimensional polygonal shapes. An approach to the vertex path
problem was shown by Sederberg et al in [Sederberg et al. 1993].

D. Cohen-Or et al [1998] introduced a method for 3D distance-
field metamorphosis, which was also applied on two-dimensional
shapes. They relied on anchor points provided by an animator.

The proposed algorithm uses animation paths for spatial interpo-
lation between the shape of the objects, animation paths are covered
in [Gomes and Darsa 1999].

Madeira, Stork and Groß[1996] describe a region-based ap-
proach for automatic coloring. It is based on similarity between
regions. Like in the method proposed here, they use heuristics
based upon relations (e.g. inclusion) to guide the region match-
ing. But their approach - which is extended in [Madeira 1999] -
requires identity of relations, while this approach tries to model al-
lowed changes between relations in key frames.

Xie [1995] followed a different approach, building intermediate
images to generate inbetweens for animations. The inbetweens pro-
duced this way were restricted to results of affine transformations.

A field closely related to automatic inbetweening is automatic
colouring. Automatic colouring algorithms can exploit that the im-
ages involved are less distinct than key drawings in inbetweening.
Seah and Feng [2000] proposed a method based upon using both
distance vector estimation and segmentation of images in regions.

Part of the work presented here is the user interface. I have cho-
sen a freeform user interface, both with respect to the strokes drawn
and the possible user-definition of timings and animation paths.
Igarashi [1999] covered freeform user interfaces in depth. Follow-
ing this approach, the user interface could be called supportive. In
these “the user interacts with the target material directly without
using GUI widgets” [Igarashi 2000], with the drawings on differ-
ent sheets and the animation paths drawn between them as target
material.

3 The Model

3.1 Stroke chains

A drawing consists of strokes. A stroke is an uninterrupted path of
possible varying width. Strokes can form the outline of regions, can
be thin elements like hair or can represent special cases of “degen-
erated” regions like a closed mouth in a face. Sometimes lines or
borders are partially occluded by other regions and thus split into
different strokes. Since these occlusions may not be repeated in the
other key drawing, the inbetweening algorithm must consider this
case.

A stroke chain is modeled as chain of one or more strokes. These
strokes are functions

s :
�
0 ����� 1 ��� ℜ3

The first two dimensions are the x and y values on the drawing
canvas. Following [Madeira et al. 1996], the third dimension is the
width. Strokes si, si � 1 in a chain are connected (si � 1 �
	 si � 1 � 0 �).

All elements belong to one of the following two classes :
� cubic bezier curves, which are drawn by the artist and vec-

torized using [Schneider 1988] or are generated in a previous
inbetweening step. They are visible.

� line segments, which are invisible. They connect strokes
which are presumed to be part of a common shape’s outline,
but are interrupted by an occluding shape. (cf. figure 1).

126

Figure 2: On the left side is an example for correspondence ani-
mation paths. Shown are two animation paths T1 and T2 between
stroke chains S1 and S2.

Stroke chains of connected visible and invisible strokes are the
building blocks both for the matching algorithm and the generation
of inbetweens.

3.2 Animation paths

Animation paths Ai :
�
0 ����� 1 � � ℜ2 model the correspondence of

stroke chains.
A mapping function m :

�
0 ����� 1 � � �

0 ����� 1 � specifies the correspon-
dence of points on these chains. So the path from S1 � s � on the
stroke chain S1 ends at point S2 � m � s ��� on stroke chain S2. To-
gether Ai and m define the location of the morphed points on the
inbetweens.

Let t �
�
0 ��� � 1 � be the time and s �

�
0 ����� 1 � be the scalar value of

the point on the first stroke to be morphed. Then the corresponding
interpolated point is given by

I � s � t � 	 � 1 � t � S1 � s ��� tS2 � m � s ����� � 1 � s � Ai � t ��� sAi � 1 � t �
� � 1 � s � � 1 � t � Ai � 0 ��� � 1 � s � tAi � 1 �
� � 1 � t � sAi � 1 � 0 ��� stAi � 1 � 1 �

This is based upon the Coons transformation (cf. [Gomes and Darsa
1999]). It is applied on two stroke chains S1 and S2 with neighbor-
ing animation paths Ai and Ai � 1 (see figure 2).

4 The user interface

4.1 The Workflow

All functionality is available via the graphical user interface de-
picted in figure 3. The user can draw upon the drawing area, as-
sisted by an “onion skinning” feature. Cel levels can be loaded and

Figure 3: The user interface in which the inbetweening algorithm
is embedded. On the right side are the cels thumbnails.

saved. Cels are displayed on a thumbnail display. The GUI offers
further functionality for moving, copying, deleting and grouping of
stroke chains.

The user can launch the inbetweening algorithm by selecting two
key drawings on the thumbnail display. The inbetweens are then
generated and displayed. The artist may not be satisfied with the
results for the following reasons :

� The wrong stroke chains are matched to each other

� The point correspondence is wrong, though the stroke chain
correspondence is right.

� Point correspondence is good, but the proposed animation
path is not the one the artist wants

� The timing on the otherwise good animation path is wrong

In all these cases, the results can be removed and/or overridden.
This is done via animation paths.

The user can remove animation paths. He can also draw new
animation paths between stroke chains. These new animation paths
may contradict existing point correspondence (e.g. by crossing with
existing paths between the same involved stroke chains). In this
case the older animation path is removed. The new path may even
contradict existing stroke correspondences. Then all other paths
which start or end at one of the involved stroke chains are removed.

After removing or rendering an animation path, new inbetweens
are generated. If the last animation path between two stroke chains
was removed, the interpolation of these stroke chains disappears
from the inbetweens.

After each change, it is possible to restart the matching algo-
rithm. Then the algorithm keeps the existing assignments and tries
to match only the strokes still unassigned in the key frames. It is
possible to start with drawing a correspondence animation path be-
fore the first inbetweening. So matching and interactive correction
can alternate quickly in the workflow.

4.2 Timing

Timing defines at what time a part of the drawing is at a certain
place on the cel. Since according to [Whitaker and Halas 1981]
timing is “the part of the animation which gives meaning to the
movement”, the artist can change the timing interactive. The pro-
posed default timing is a “slow-in-slow-out”.
In the graphical user interface, handles orthogonal to the animation
path (cf. figure 4) are used to display the timing aspects. They
are centered at the corresponding point of the inbetweened stroke.
By grabbing a handle, the user can move the corresponding stroke
across the animation path. It is also possible to choose between af-
fecting all the handles or just the one selected. All changes in the
inbetweens are immediately rerendered and displayed.

5 The matching algorithm

The matching approach is based on

� analysing the key drawings with respect to their constituents
(the stroke chains) and the relations they are involved in

� a set of rules, regulating which stroke in one drawing can be
matched to which stroke(s) in the other drawing

� a cost function measuring the quality of a pairwise matching
of stroke chains.

127

Figure 4: Changing the timing. On the left is the initial configuration with slow-in-slow-out movement. In the middle one handle was used to
change the inbetweened ball. At the right is a sequence where all inbetweens are dragged together with the grabbed handle.

� a scheme to find the best allowed assignments between stroke
chains in different drawings. The goal is to minimize the total
sum of the cost of the stroke chain matchings. Therefore an
optimization algorithm is used

The inbetweened stroke chains are generated using the best assign-
ments.

5.1 Grouping the stroke chains

In both key drawings, stroke chains are built automatically. Select-
ing a drawing as key drawing starts a grouping algorithm on it. It
follows the following heuristics

� don’t join strokes at ends which have a longer distance than
given maximum distance

� if three or more strokes join at an end within the maximum
distance, merge those who have the least change in angle di-
rection

� if two strokes end at the same stroke once, and each does so
at a t-junction, join them with a line segment.

� if one stroke has with both his start and end t-junctions adja-
cencies to the same other stroke, close it with a line segment.

An efficient problem method for resolving ambiguities in grouping
is not within the scope of this paper. In experiments a set of differ-
ent possible groupings was generated by taking both a joined and
a not-joined version into account and further extend both of them.
The matching algorithm was applied to each element of this set of
groupings. The best result was chosen.

5.2 Building a stroke chain graph

Generating a matching algorithm based on curve similarity alone
is a difficult approach in the domain of cartoon animation. Curves
change between frames, and these changes have a meaning. But
while curve similarity alone is not sufficient, assuming equal topol-
ogy of the stroke chains for matching is too restrictive. Changes in
relations between stroke chains may happen, so relying on equiv-
alence of relationships in different key frames would prohibit a lot
of the dynamics appreciated in animation.

This algorithm follows the approach of choosing between ac-
ceptable and unacceptable changes in relations. So relationships
may change between different drawings. This enlarges the class
of possible inbetweenings compared to the affine [Xie 1995] or
the topological identical [Madeira 1999]. By defining the allowed
changes between relations, it is possible to describe the possible
transitions between key drawings. So the first step is to iden-
tify what relations hold, the second step is classifying the allowed
changes.

Therefore, a stroke chain graph

G � S 	�� s1 ��� � � � sn � � U1 ����� � � Ul � B1 � ��� Bm �
is built for each key drawing. The vertices of the graph are the
stroke chains � s1 � � � � � sn � , the edges are unary Ui � S and binary
Bi � S2 relations between them.

Some relations (endsAt � a � b � , closed � a � , startEndInside � a � b � ,
included � a � b � , isolatedEnd � a � and isolatedStart � a �) are based
upon properties of the stroke chains.

They are found by testing for inclusion of stroke chains and adja-
cency tests at stroke chains’ start and end. Inclusion tests are done
with fast intersection tests of cubic splines with horizontal lines.

Other relations are defined by user interactions, in this case
grouping stroke chains together shareGroup � a � b � .

Finally relations are also derived from other relations :

contour � a ��� � 	 b � S included � a � b �
isolated � a ��� isolatedEnd � a ��
 isolatedStart � a �

dangling � a ��� isolatedStart � a ��� isolatedEnd � a �
above � a � b ��� endsAt � b � a ��
� dangling � b �

leaving � a � b ��� startEndInside � a � b ��
 above � a � b �

5.3 Determining possible assignments

Each key drawing is described by a stroke chain graph. Allowed
assignments between stroke chains of different stroke chain graphs
are determined using a set of rules. Each rule describes a forbidden
assignment between stroke chains.

The stroke chains are outlines of three-dimensional volumes.
Rules determine the possible correspondences between the outlines
of these volumes. Every rule introduced forbids a set of possible
transitions. Some rules forbid transitions that are covering unlikely
special cases (like an open contour becoming a closed contour),
while the others are motivated by lack of three-dimensional infor-
mation neccessary for the generation of satisfactory inbetweens.

Given two stroke chain graphs G1 and G2, the rules used de-
scribe forbidden assignments involving either two stroke chains
a � G1 � x

� G2 or four stroke chains a � b � G1 and x � y � G2. They
forbid assignments

� from a to x : � a � x �
� from a to x and b to y at the same time : � a � x � b � y �

The following rules are applied : Do not

� invert the layering order 1

above � a � b ��
 above � x � y ���� � a � y � b � x �
1In general, without 3D-information it will be futile to generate an ac-

ceptable inbetween of this

128

Figure 5: On the left and right are the two key drawings. In the middle are three inbetweenings.

� invert the inclusion order

included � a � b ��
 included � x � y � � � a � y � b � x �
� match open contour stroke chains to closed stroke chains

 closed � a ��
 contour � a ��
 closed � x � �� � a � x �
� match open dangling stroke chains to closed stroke chains

 closed � a ��
 dangling � a ��
 closed � x � � � a � x �
� match closed contour stroke chains to open stroke chains

closed � a �
 contour � a ��
� closed � x � �� � a � x �
� match isolated stroke chains to stroke chains being adjacent

with both ends to another stroke

isolated � a ��
� closed � a ��
� closed � x �
 isolatedEnd � x ��
� isolatedStart � x � � � a � x �

� invert leaving relationships

leaving � a � b ��
 leaving � x � y � � � a � y � b � x �
� leave a user-defined group

shareGroup � a � b �
� shareGroup � x � y � � � a � y � b � x �

These are rules forbidding specific mappings between two strokes.
So if there is no mapping available for a specific stroke, it remains
as an unassigned stroke in the matching.

Some experiments were done on relations based on geometric
order relations like WestO f or NorthO f . These were measured
relative to the coordinate system defined by the major axis of the
including stroke chain (or the canvas coordinate system) and its or-
thogonal. But due to squash-and-stretch [Lasseter 1987], the esti-
mation of the coordinate system was too unreliable.

5.4 Finding the best animation paths

Configurations model the animation paths between two stroke
chains (see 5.4.1). The quality of single configurations is measured
with a cost function (see 5.4.2). To find the lowest-cost match-
ing, different configurations are initialised (see 5.4.3) and optimized
(see 5.4.4). The best configuration is chosen as the result describing
the best possible matching between these two stroke chains.

5.4.1 The Configuration

Each stroke chain has a set of potential matching positions. These
sets

A 	 � α1 � � � αn � αi
� �

0 ����� 1 �
B 	 � β1 ��� � βn � βi

� �
0 � ��� 1 �

are used as position markers on the stroke chains in the two key
drawings. Position αi on one stroke corresponds to position βi on
the other stroke.

Both sets are monotone. The drawing direction of stroke chains
can not assumed to be the same. The correct direction is de-
termined using the cost function. So while A is assumed to be
monotonously increasing (

�
i : αi � αi � 1), B can be either de- or

increasing (
�

i : βi � βi � 1 or
�

i : βi � βi � 1).
If closed stroke chains are involved, the starting points are not im-
mediately evident. While β1 	 0
 βn 	 1 resp. β1 	 1
 βn 	 0
still holds, the offset α1

� �
0 ����� 1 � determines the relative shift of

the stroke chains. In these case the monotonicity assumption can
be violated for one pair (! jα j � α j � 1). As in determination of the
drawing direction, an evaluation of the cost function with different
offsets determines the correct one.

The mapping is modeled as

m � t � 	 βi �
t � αi

αi � 1 � αi
� βi � 1 � βi �

with i chosen so that t ��� αi � αi � 1 � holds.
The algorithm for finding the animation paths between stroke

chains models the animation paths between the corresponding
points αi and βi as quadratic splines. Therefore, n controlpoints�
ci
� ℜ2 are introduced. With stroke chains

�
SA and

�
SB the animation

paths are

Ai � u � 	 � 1 � u � 2 �SA � αi � � 2 � 1 � u � u
�
ci � u2

�
SB � βi �

A configuration for the animation paths between two stroke chains
is modeled as

X 	 � � αi �
�
ci � βi �	� 1
 i
 n �

5.4.2 Cost function

To choose the best assignment, a cost function is used. It should
measure the goodness of a configuration for animation paths be-
tween two stroke chains.

The chosen cost function 2 takes into account
2This paper focuses on the rules governing the dynamics of inbetween-

ing. Any cost function measuring the goodness of fit between two stroke
chains can be used with the method presented here. Further work will be
done on more elaborated cost functions.

129

Figure 6: A successful inbetweening with the key drawings at the left and right.

� the translation, relative to the enclosing stroke chain’s or can-
vas’ centroid

� the local curvature

� the distance between neighboring points

These variables are sampled in a regular interval both on the key
stroke chains and on an intermediate interpolated stroke chain. This
stroke chain is generated using the given configuration. Nonmono-
tonicity across time is punished both for curvature and distance be-
tween neighboring sampled points. The total cost is realised as a
weighted sum of these influences. The weights are chosen so that
the translation is the most important contributor, with the other vari-
ables being equally weighted.

5.4.3 Initial configuration

Initial animation paths are generated. The αi and βi are chosen
initially based upon the stroke chains curvatures extremas. For each
extrema on one of the two stroke, an � αi �

�
ci � βi � is added to the

configuration. If there is an extrema on the first stroke, αi marks its
position, and βi is the position mapped on the second stroke. The
inverse holds for an extrema βi on the second stroke. There is no
matching between the extremas yet, mapping of extremas to each
other occurs during the later optimization step.

Configurations are generated both for B monotonously decreas-
ing and increasing. In case of closed stroke chains involved, several
of these configuration are created with different offsets for αi. This
takes into account the possible relative shift.

5.4.4 Optimizing the configurations

All initial configurations are improved using the metropolis algo-
rithm [Press et al. 1988]. All parameters in the configuration are
changeable. Considering the relative small size of the configura-
tions, this is fast enough for interactive behaviour. The lowest cost
configuration is selected as the matching result.

The number of involved animation paths is reduced afterwards.
If one animation path is a combination of its two neighbors , it is
removed as redundant.

5.5 Finding the best matching between stroke
chain graphs

The best overall matching is found by building up an assignment
tree between the stroke chains � a1 ����� � � am � and � b1 � ����� � bn � of the
stroke chain graphs G1 and G2. In this tree, every node corresponds
to

� a matching between two stroke chains ai � b j

� an unassigned matching ai � 0 or

� a surplus matching 0 � b j �
The nodes are attributed with the cost of the matching. In each path
from a leaf to the root node, each stroke can appear only once. No
forbidden mappings are allowed in any path from leaf to root node.
Nonassignment of stroke chains is punished with high costs, but it
is explored whenever possible. So even when a match would be
possible, the variant with the involved stroke being unassigned is
tested as well.

The complete tree can theoretically become huge. To avoid
building up complete trees, pruning techniques are used. The
algorithms expands the most promising node first. It also uses
cost look-a-head, integrating knowledge about upcoming forbidden
mappings.
Finally one or more complete paths in this tree remain that involve
all stroke chains in the two key drawings. The path with the least
cost is the chosen matching.

5.6 Generating the inbetweenings

Stroke chains are rendered using the definition of I � s � t � (see 3.2).
The value of t is determined by the timing of the inbetween. With
fixed t, coordinate and width values are sampled for monotonous
increasing s. The same algorithm used for vectorizing the drawn
strokes [Schneider 1988] is used on these sampled points, resulting
in vectorized inbetweened strokes.

Part of the stroke chain graph are the above relationships deter-
mining the layering order. If intersections exist in the inbetweens,
they are used to determine the correct occlusions. So only the visi-
ble parts of the inbetweened stroke chains are rendered.

5.7 Summary of the algorithm

The matching algorithm proceeds as follows

1. analyse the key frames and group their content into stroke
chain graphs

2. determine forbidden mappings for each key frame

3. build an assignment tree for the allowed mappings only, cal-
culating the cost for each mapping

4. select the best path in the assignment tree

5. generate the inbetweens

6 Results

To test both the algorithm and its embedding into a graphical user
interface, an experimental prototype in Java was developed. This
software is used together with the Wacom-PL series of active ma-
trix displays. It runs as a stand-alone Java application as well as

130

Figure 7: An example where the algorithms reaches its limits. Correspondences are detected correctly, but an interpolation of the ear is not
within the strict two-dimensional scope of the algorithm and therefore omitted.

in conjunction with a drawing software realised by Digital Video,
Rome.

Evaluation took place by the user partners in the PAPERLESS
project, SBP (Rome), Varga (London) and Neptuno (Barcelona).
An early prototype was shown to the public at the MIFA 2001.
During evaluation, about 50 pairs of keyframes, most of low im-
age complexity, were generated and inbetweened.

The graphical user interface was evaluated as useful and inno-
vative, both from the user partners and the visitors at MIFA. Users
appreciated not having to care about defining object hierarchies and
changing control points. Stroke matching was also mostly accepted,
though in complex images speed problems might prohibit a true
interactive workflow. The quality of some resulting inbetweened
strokes leaves room for improvements.

The character in figure 5 was generated with correct assignments
between the stroke chains. The body contour needed some manual
adjustment (one animation path added and one removed). Looking
at the hidden leg and the shoe (esp. in the last inbetween) shows
suboptimal shape-blending. Nonetheless, the correct layering order
was established, allowing for automatic determination of the hidden
lines of leg and shoe.

Part of this problems are eased by the interactive environment
allowing for fast correction or rejection of the dissatisfying parts. In
figure 8 all matchings were correct, but the matching between the
body contours went wrong. One animation path overriding (shown
in figure 9) suffices to get the results visible in figure 6. The layering
order between ear and face contour allowed correct inbetweening.
The application of the rule “do not match isolated stroke chain to
adjacent stroke chain” prevented matching the wrinkle around the
mouth in the first key frame to the open mouth in the second key
frame.

Figure 8: Two inbetweens with correct matchings of stroke chains,
but wrong mapping between the stroke chains forming the face’s
boundary. Key frames are the same as in figure 6

Figure 9: Overriding a wrong assignment with one animation path

7 Conclusion and further work

The approach presented here is an environment enabling the artist
to change seamlessly between interactive editing and inbetween-
ing. The integration of hidden lines allows for inbetweening of
more dynamic scenes. The use of flexible rules allows e.g. changes
in topology and makes inbetweening possible for a larger class of
images than before.

Due to the reasons sketched before, inbetweening algorithms
will probably never be perfect. Embedding them into a free form
graphical user interface allows the artist to call them when they are
needed and to use, change or reject the results.

Still there are many ways to improve and extend the work done
so far.

To improve the quality of the interpolated strokes in 2D, we may
extend the cost function with additional criterias. For comparison
an established algorithm like [Sederberg and Greenwood 1992],
[Sederberg et al. 1993] or [Cohen-Or et al. 1998] can be integrated.

We observed that professional users draw loose or duplicate
strokes. We would like to extend our approach to encompass these
“loose and sketchy” [Curtis 1998] key drawings, maybe even keep-
ing this style in the resulting inbetweens.

So far only two key drawings are involved in one matching. Ex-
tending the algorithm to more key drawings would allow the trans-
fer of information about forbidden mappings among sets of key
frames. This would further narrow the number of allowed map-
pings.

Probably the most interesting task is the integration of three-
dimensional knowledge in the matching and inbetweening process.
So far animations are restricted to a layered two-dimensional world
with a strict order. Estimating a complete 3D model would al-
low using three-dimensional keyframe interpolation methods like

131

[Nebel 1999] . But this estimation would possibly even for simple
characters – due to changes in pose, shape (squash-and-stretch) and
viewer-dependent geometry [Rademacher 1999] – require a pro-
hibitive high number of drawings as input.

But even if a complete three-dimensional reconstruction is not
feasible, a three-dimensional shape could be approximated (like
in [Williams 1991]). Combining this approximated shapes from
several key frames, possibly including information from “virtual”
modelsheets, could be used in rules working in a 3D-world and for
animation paths modeled as projections of 3D movements. This
would enlarge the class of possible inbetweenable animations, e.g.
allowing a complete inbetwening of figure 7.

8 Acknowledgements

This work was done in the context of the European Union Project
PAPERLESS - Tools for Paperless animation (IST-12329). I thank
my colleagues and partners for valuable ideas and feedback. I’d
especially like to thank the user partners for introducing me into
the world of animation.

References

BURTNYK, N., AND WEIN, M. 1976. Interactive skeleton tech-
niques for enhancing motion dynamics in key frame animation.
Communications of the ACM 19, 10, 564–569.

CATMULL, E. 1978. The problems of computer-assisted animation.
In Computer Graphics (Proceedings of ACM SIGGRAPH 78),
12(3), ACM, 348–353.

COHEN-OR, D., LEVIN, D., AND SOLOMOVICI, A. 1998. Three-
dimensional distance field metamorphosis. ACM Transactions
on Graphics 17, 2, 116–141.

CURTIS, C. 1998. Loose and sketchy animation. In ACM SIG-
GRAPH 98 Conference Abstracts and Applications, ACM Press /
ACM SIGGRAPH, New York, E. Fiume, Ed., Computer Graph-
ics Proceedings, Annual Conference Series, ACM, 317.

DURAND, C. X. 1991. The “toon” project : Requirements for a
computerized 2d animation system. Computers & graphics 15,
2, 285–293.

FEKETE, J. D., BIZOUARN, E., COURNAIRE, E., GALAS, T.,
AND TAILLEFER, F. 1995. Tictactoon: A paperless system
for professional 2d animation. In Proceedings of ACM SIG-
GRAPH 95, ACM Press / ACM SIGGRAPH, New York, E. Fi-
ume, Ed., Computer Graphics Proceedings, Annual Conference
Series, ACM, 79–90.

GOMES, J., AND DARSA, L. 1999. Warping and morphing of
graphical objects. Morgan Kaufmann Publishers, Inc., San Fran-
cisco.

IGARASHI, T. 1999. Freeform User Interfaces for Graphical Com-
puting. PhD thesis, University of Tokyo.

IGARASHI, T. 2000. Supportive interfaces for creative visual think-
ing. In Collective Creativity Workshop. May 7-8, Nara (Japan).

LASSETER, J. 1987. Principles of traditional animation applied to
3d computer animation. In Computer Graphics (Proceedings of
ACM SIGGRAPH 87), 21(4), ACM, 35–44.

MADEIRA, J., STORK, A., AND GROSS, M. H. 1996. An ap-
proach to computer-supported cartooning. The Visual Computer
12, 1–17.

MADEIRA, J. 1999. A new region matching-based approach
to computer-assisted cartooning. PhD thesis, TU Darmstadt,
Aachen.

NEBEL, J.-C. 1999. Keyframe animation of articulated figures
using autocollision-free interpolation. In 17th Eurographics UK
Conference’99. April 13-15, Cambridge, UK.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1988. Numerical Recipes in C, second ed.
Cambridge University Press, Cambridge.

RADEMACHER, P. 1999. View-dependent geometry. In Proceed-
ings of ACM SIGGRAPH 99, ACM Press / ACM SIGGRAPH,
New York, E. Fiume, Ed., Computer Graphics Proceedings, An-
nual Conference Series, ACM, 439–446.

SCHNEIDER, P. J. 1988. Phoenix : An interactive curve design
system based on the automatic fitting of hand-sketched curves.
Master’s thesis, University of Washington.

SEAH, H. S., AND FENG, T. 2000. Computer-assisted coloring by
matching line drawings. The Visual Computer 16, 269–304.

SEDERBERG, T. W., AND GREENWOOD, E. 1992. A physically
based approach to 2d shape blending. In Computer Graphics
(Proceedings of ACM SIGGRAPH 87), 21(4), ACM, 25–34.

SEDERBERG, T. W., PEISHENG, G., AND GUOJIN, W. 1993. 2d-
shape blending : an intrinsic solution to the vertex path prob-
lem. In Proceedings of ACM SIGGRAPH 93, ACM Press / ACM
SIGGRAPH, New York, E. Fiume, Ed., Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, 15–18.

THOMAS, F., AND JOHNSTON, O. 1981. Disney animation : the
illusion of life. Abbeville Press, New York.

WHITAKER, H., AND HALAS, J. 1981. Timing for animation.
Focal Press, Oxford.

WILLIAMS, L. 1991. Shading in two dimensions. In Graphics
Interface ’91, Morgan-Kaufman Publishers, Canadian Human-
Computer Communications Society, 143–151.

XIE, M. 1995. Feature matching and affine transformation for 2d
cel animation. The Visual Computer 12, 419–428.

132

