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Abstract

When used by artists, manual interfaces for painterly rendering can
yield very satisfying abstract transformations of images. Automatic
techniques produce interesting paintings as well, but can only recast
pictures in a different style without performing any abstraction. At
best, information is removed uniformly across the image, without
emphasizing the important content. We describe a new approach for
the creation of painterly renderings that draws on a model of human
perception and is driven by eye-tracking data. This approach can
perform meaningful abstraction using this data, with the minimum
interaction possible: the user need onlylook at the image for sev-
eral seconds. We demonstrate the effectiveness of this interactive
technique and compare it with a fully automatic approach.

Keywords: automatic painting, image simplification, perceptual
model, eye-tracking

1 Introduction

The technical excellence found in all great art can be seen as a ve-
hicle for the subjective interpretation afforded by it. It is this power
that makes the work profound and deeply satisfying. In this respect,
we can single out the work of artists such as Vermeer. See Fig-
ure 1. This picture looks realistic and does actually contain some
precise spatial information, but it diverges substantially from what
you would see in an ordinary photo. The artist adapts texture, light-
ing and detail. As observed by vision scientists (e.g., Zeki [1999]),
the result is an image that directs your attention to its most meaning-
ful places and allows you to understand the structure there without
conscious effort. As the immediate perceptual features of the paint-
ing fade into the famous impression of realism, you can instead fo-
cus on deeper questions about the scene—who is that woman, and
what does that letter say?

This interpretation can be traced largely to theabstractionper-
formed by the artist. The organization of the image is designed to
direct the viewer’s attention to the relevant content and to influence
their perception of it. Artists develop individual styles to achieve
this, which can arise in part due to the versatility of their chosen
media. Nowadays, artists find computers among the possibilities.

Haeberli [1990] described an interactive approach for transform-
ing ordinary images into stylized variations. The transformation,

Figure 1: Johannes Vermeer’s “Girl Reading a Letter at an Open
Window” (1657). The realistic look belies the effort of the artist,
who has organized the image to highlight meaningful information.
For example, the artist creates high contrast in distinguishing the
figure from the background and delineating her face, hair, dress and
hands. In comparison, unimportant objects in the scene—the chair,
the panes of glass, the tabletop, the back wall—lack the same sharp
detail and fine contrasts.

often referred to as painterly rendering, bears similarity to tradi-
tional painting in that it results in an aggregate collection of brush
strokes. Haeberli’s goal was the creation of artistic, stylized and
abstract images by giving the artist precise control over the result.
The user places brush strokes manually, with colors taken from
the source image. The amount of interaction required to produce
a painting could be reduced, for instance, by determining the stroke
direction using the image gradient.

Since then, there has been considerable work on painting sys-
tems working from images along two rather different fronts. First,
comes the introduction of digital analogues of traditional media
such as pen-and-ink [Salisbury et al. 1994] or watercolor [Cur-
tis et al. 1997]. In these systems, as in [Haeberli 1990], the user
retains control. Second, are the automatic methods for placing
strokes [Hertzmann 1998; Litwinowicz 1997; Shiraishi and Yam-
aguchi 2000] in both static and moving imagery. Here, the user can
only select global effects, such as the brush size or shape. Not sur-
prisingly, hand-crafted images are typically more appealing than
automatically generated renderings, as abstraction takes place in
addition to more superficial stylization. To make these images par-
ticularly effective, however, artistic skill is required in addition to
a fair amount of time. With all of this progress, however, there is
no work that bridges between these two methodologies. The reason
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for this is clear: abstraction of image content is not something com-
puters can do as of yet—artistic and organizational decisions must
be made by a person.

This paper introduces a new approach for making artistic ren-
derings which takes the first step towards bridging these two tech-
niques. The result will be a system that produces abstract imagery
with several seconds of user interaction (and perhaps no artistic
skill). It starts with amodel of human visual perceptionthat char-
acterizes the organization of an image that the visual system im-
poses on it. In other words, a perceptual model describes what
regions or visual objects we can look at and understand in an im-
age. Meanwhile, a user suppliesintentional content with the in-
terface; it describes what the user wants the output to convey. In
this case, it specifies the importance of particular visual elements in
the image. The intentional structure of an image is described using
eye-tracking data, which shows where people had to look in order
to extract meaningful information from the image. To gather this
data, the user is simply instructed to “look at the image” while an
eye-tracking sensor monitors the user’s gaze for several seconds.

Provided with the perceptual and intentional structure of an im-
age, the system proceeds by placing individual brush strokes, decid-
ing which to include and how they can be transformed as dictated
by the perceptual model and eye-tracking data. Only those picture
elements are included that both attracted the user’s gaze and were
perceivable given the limits of human vision. The resulting image
encourages viewers to concentrate on the content that this particular
user found important without being distracted by irrelevant detail
and background content.

Looking to the future, such a system will improve as human vi-
sion research allows for the formulation of more detailed and accu-
rate models, and computational vision techniques allow for richer
automated analysis of images. For now, such a system might serve
as a valuable tool in eye movement research, by providing a con-
trolled means for adapting imagery based on a perceptual model.

This paper is structured as follows. After a review of the rele-
vant research from the human vision community and on painterly
rendering in Section 2, we describe the use of the perceptual model
and eye-tracking data for painterly rendering in Section 3. Section 4
contains results of using this system on a variety of images.

2 Background

2.1 Visual Acuity

The resolution of the eye is limited by numerous factors, such as
the density of photoreceptors in the retina, the nature of the neural
connections between them, and the contrast of the stimulus. This
resolution also varies across the retina, with the highest density of
photoreceptors being located centrally in the fovea.

Psychophysical experiments to determine the limits of vision,
such as those by Koenderink et al. [1978] or Kelly [1984] mea-
sure detection and discrimination of simple repeating patterns—
sinusoidal gratings. These experiments produced models which de-
scribe the degree of fineness in detail that is perceptible by the hu-
man visual system (as a function of contrast and spatial frequency).
Pattanaik, et al. [1998] uses such a model (along with a model of
visual adaptation) for producing perceptually realistic images of
scenes.

Eccentricity is an angular measurement of distance from the cen-
ter of the visual field. Models describing the decrease in sensitivity
as a function of eccentricity [Koenderink et al. 1978] allow us to
incorporate a notion of spatially varying resolution into our model.
Reddy [2001] uses a model of visual acuity (which describes the
highest spatial frequency that can be resolved at maximum contrast)
for performance-based visualization of 3-D environments. Reddy’s
model also included terms for moving imagery. Given our use of

static imagery, this model reduces to the following:

G = 60.0 cycles/degree

M(e) =
1

1+0.29e+0.000012e3

H(e) = G×M(e) (1)

In this model,G represents the highest perceivable frequency at
maximum contrast. As a function of the eccentricitye (in degrees),
the sensitivity falloff factorM(e) (which is 1 inside the fovea, and
decreases towards 0 with increasinge) scales the frequencyG to
produce the visual acuityH(e), which specifies the highest de-
tectable frequency at a particular eccentricity in cycles per degree.

None of the psychophysical experiments that informed these
models involved the viewing of actual scenes. Very simplified stim-
uli were presented instead (typically, repeating patterns). While
this questions the accuracy of these models for such situations, they
have been used successfully in computational settings [Pattanaik
et al. 1998; Reddy 2001]. Further psychophysical studies are re-
quired to develop better models for these situations.

These limits on sensitivity within the visual field are not seen
as a disadvantage of the human visual system. On the contrary,
it fits hand-in-hand with its ability to integrate information across
changes in viewpoint and movements of the eyes.

2.2 Eye Movements

Several basic facts about how people look at images factor into our
use of recordings of eye movements. For our application, we are
only concerned with eye movements on unchanging imagery, and
the discussion here is limited to this.

• People can examine only a small part of an image at one
time, and so understand images by scanning them using dis-
crete, rapid movements of their eyes, calledsaccades. While
saccades can be initiated voluntarily, they typically proceed
in a goal-directed fashion. The motions are performed with
remarkable precision and efficiency—the eyes seldom per-
form wasted motions, and typically land near the best place
to gather the desired visual information. Decisions on where
to look next seem to draw heavily upon extra-foveal informa-
tion (lower resolution information from outside the fovea).

• Saccades are punctuated by stabilizing motions calledfixa-
tions, which allow the eye to dwell on a particular stationary
object. The overwhelming majority of visual processing takes
place during fixations. Under normal circumstances, the at-
tention of the viewer is at the fixation location, for at least the
bulk of its duration.

• In each individual glance, people lookat something—the eyes
do not wander randomly. Mackworth and Morandi [1967]
showed there is good agreement between informative loca-
tions of a display and fixation locations. More recent stud-
ies by Henderson and Hollingworth [1998] have shown that
semantic informativeness(i.e., the meaning of an image re-
gion) strongly influences fixation positions compared to vi-
sual informativeness (i.e., structural information, such as an
intensity discontinuity). Of course, locations that are deemed
informative depends on the task and gaze positions change
accordingly [Yarbus 1967].

• In most tasks, the time spent fixating on a particular loca-
tion or object indicates that processing on that object is taking
place [Just and Carpenter 1976]. More specifically, fixation
duration provides a rough estimate on how much processing
is expended in understanding that portion of the image. Ex-
ploratory fixations tend to be brief.
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(a) (b) (c) (d)

Figure 2: (a) Commercial eye-trackers can be placed just underneath a computer display to monitor where the user looks on the screen. (b)
A still-life photograph which is presented to a user. (c) Eye movement data for this image. Each circle represents the point of regard at a
particular moment in time; eye gaze position is marked 60 times per second for a total duration of 5 seconds. (d) The fixations positions are
extracted from this data, where the diameter of the circle indicates fixation duration (the scale in the lower left indicates 1 second).

Many other types of movements are possible, such as those involved
in smooth pursuit; but it is the saccades and fixations that play the
largest role in gathering information from across a static image.

Much of what is known about eye movements comes from the
use ofeye-trackers, which are sensors designed to record the move-
ments of the eyes. Although eye-trackers have used similar prin-
ciples for the last thirty years, recent advancements have made
them smaller, less invasive and inexpensive. When used for human-
computer interaction [Duchowski 2000; Duchowski and Vertegaal
2000; Jacob 1993; Sibert and Jacob 2000; Vertegaal 1999], eye-
trackers can be mounted directly on the user’s head to allow for
unencumbered viewing of a scene, or can be placed less invasively
in the work environment. Figure 2(a) shows our ISCAN ETL-500
eye-tracker (with an RK-464 pan/tilt camera) as we have placed
it, just below the computer monitor. In current applications, eye-
trackers are used as a “cursor” to select objects on the screen or in a
virtual environment [Sibert and Jacob 2000], to provide attentional
information to enable image or scene simplification [Duchowski
2000], or to provide indirect evidence about the attention of a user
[Vertegaal 1999] in teleconferencing. While using eye-trackers as a
voluntary selection mechanism is not a typical manner of looking,
evaluation of such systems indicates they are still quite beneficial
[Sibert and Jacob 2000].

After a brief calibration period (built into commercial systems),
eye-trackers are ready to gather observations of a viewer’s point
of regard. Upon viewing the image of a still-life in Figure 2(b)
for five seconds, a subject’s eye movements were tracked (at 60
Hz). The resulting eye movement pattern shown is displayed in
(c). Through analysis of this raw data (which is relatively noisy),
fixation locations (and their corresponding durations) are detected
using a simple velocity threshold [Duchowski and Vertegaal 2000].
Fixations from viewing this image are shown in Figure 2(d) as cir-
cles centered at the fixation location; the diameter of the circles is
proportional to the duration.

In gathering this data, the viewer is simply instructed to “look
at the image”. This encourages spontaneous looking [Kahneman
1973], whereby the viewer’s gaze tends to fall upon the most in-
formative or important parts of the image [Yarbus 1967]. The al-
ternative of asking the user to “look at the parts of this image you
find important” would set up a task for the user, and task-relevant
looking [Kahneman 1973] is more complex and difficult.

2.3 Painterly Rendering

The interactive painting system presented by Haeberli [1990] en-
abled the production of images formed from collections of brush
strokes. The placement of these brush strokes was entirely spec-
ified by the user. Automatic methods for orienting brush strokes,

including using the image gradient or a secondary image were pro-
vided.

Fully automatic methods for producing painterly images have
also been presented [Hertzmann 1998; Litwinowicz 1997; Shiraishi
and Yamaguchi 2000]. Automation was achieved in [Litwinowicz
1997] by covering the canvas with a jittered grid of strokes, painted
in random order. While strokes were still oriented using the im-
age gradient, they are also cut short to prevent them from cross-
ing edges in the image, resulting in a more coherent image with
crisper edges. Other edge-preserving approaches have been inves-
tigated, including the use of curved strokes [Hertzmann 1998] or
the approximation of the local structure of the image [Shiraishi and
Yamaguchi 2000]. A locally orderless image representation [Koen-
derink and van Doorn 1999], which preserves histograms of pixel
values within small regions of interest, provides some explanation
for why painterly approaches are effective, in addition to being an-
other way of producing a stylized display.

In some systems, brushes over a range of sizes are combined
to capture image structures at the various scales [Hertzmann 1998;
Shiraishi and Yamaguchi 2000]. This allows for the omission of
fine detail in the image that does not noticeably change the paint-
ing. This approach uniformly removes detail of a particular scale
across the entire image if it is not very different from its surround-
ings (in the same way lossy image compression works). Of course,
when used at coarser scales and higher tolerances, this same ap-
proach can be used to simplify an entire painting. A similar effect
was achieved using relaxation in [Haeberli 1990]. Note, however,
that this approach omits strokes based on frequency and intensity
difference alone, and not on content, and only produces reasonable
results in images with a single subject, and no distracting content.
The next section describes our painterly rendering approach which
uses eye-tracking data to select and emphasize structures in the im-
age that the user found important.

3 Painting using a Perceptual Model

Our implementation of a painterly rendering system combines as-
pects from several existing approaches [Haeberli 1990; Litwinow-
icz 1997; Hertzmann 1998]. The paintings consist of a collection of
curved strokes, defined on a jittered grid for a chosen set of image
scales, and painted in random order. Strokes are painted using a
single color and drawn from a palette with varying thickness.

The significant contribution of our work comes from its novel
use of a perceptual model that is modulated with eye-tracking data.
In a data-driven fashion, we transform the image bypruning in or-
der to select just those perceptual elements that people looked at
extensively, using an existing model of people’s visual sensitivity
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that was described in Section 2.1.

3.1 Eye-tracking Data

The selected image is presented for viewing by the user—this is
our user interface. During this viewing period, an eye-tracker is
passively taking measurements which indicate where on the screen
the user is looking at any particular time. Section 2.2 describes how
this is parsed into a set ofn fixations:

{
f i = (xi ,yi ,ti) | i ∈ [1..n]

}
(2)

where(xi ,yi) are the image coordinates (in pixel units) describing
the location of the fixation, andti is the duration of this fixation
(in seconds). (Fixations that are outside the image are simply dis-
carded.) Again, Figure 2(d) contains an example of such a data set.

3.2 The Perceptual Model

How can we use eye-tracking data to infer which parts of the im-
age the user found interesting? Research in psychology suggests
this data is a fairly direct means to determine this [Henderson
and Hollingworth 1998; Just and Carpenter 1976; Mackworth and
Morandi 1967; Yarbus 1967]. Still, care must be taken in mak-
ing inferences about the user’s interest from fixations. A model of
visual acuity alone does not reflect the fact that longer fixations in-
dicate more interest, or that very brief fixations could be due to the
presence of distinctive image features with irrelevant content [Just
and Carpenter 1976]. Finally, even though it was possible within
the limits of vision for the viewer to perceive a particular image
feature, this does not mean it was consciously noticed or attended.

This section describes how this model of visual sensitivity is
used for converting the eye-tracking data into a form that can be
related to the image. Beyond this, simple adjustments are made to
account for fixation duration and limits of attention. More research
in human vision is needed here, and this model can be improved
accordingly when more is known.

Visual acuity, as described by the model from Section 2.1, de-
scribes the highest perceptible frequencyH(e) as a function of the
eccentricity anglee, which is measured from the center of the eye.
To relate this to a particular pointp in the image, the Euclidean
distancedi(p) (in pixel units) is measured from this point to a
particular fixation location(xi ,yi), as in Figure 3(a). From here,
simple trigonometry and calibration of the eye-tracking setup (to
determine the screen size, resolution, and distance to the viewer)
is used to convert distancesdi(p) into angular eccentricitiesei(p)
[Duchowski and Vertegaal 2000].

p

(xi , yi)

di 
(p)

fixation

ei 
(p)

display

ti

ai

tmaxtmin

amax

0

1

(a) (b)

Figure 3: (a) Distance computations for computing eccentricities
with respect to a particular fixation when placing a brush atp. (b)
A simple attention model defined as a piecewise-linear function for
determining the scaling factorai for fixation f i based on its duration
ti . Very brief fixations (belowtmin) are ignored, with a ramping up
(at tmax) to a maximum level ofamax.

The perceived frequency atp is computed as the maximum of
the frequenciesH(ei(p)) considered over all fixationsf i . A simple
model of attention and processing is included to account for fixation
duration. A frequency scaling factorai ∈ [0,amax] (which depends
on the durationti) discounts brief fixations as shown in Figure 3(b).
The figure also shows how durations belowtmin are ignored, with
the fixation’s influence increasing linearly untiltmax (we usetmin =
1
6 s andtmax = 1

3 s). This discounts brief fixations that are likely to
be caused by visually distinctive features that are not semantically
relevant.

Capping the maximum value ofai for all fixations toamax∈ (0,1]
is used to scale back the acuity model to match the size of the
smallest brush used, keeping therelative detail constant. Sec-
tion 3.4 describes our method of choosingamax in terms of the brush
size. Given this, the highest perceivable frequency at the locationp
within the image is given by:

fmax(p) = max
i

[
ai ×H

(
ei(p)

)]
(3)

This model can be used directly to produce an abstract image by
blurring the input with a Gaussian filter whose radius varies over
the image (and corresponds to (3)), or by rendering a locally or-
derless image [Koenderink and van Doorn 1999] with a similarly
varying aperture size. In this respect, this model effectively pro-
vides an “importance map” for the input image. The next section
describes how this model is used to make decisions that affect the
organization of the painting.

3.3 Applying the Model

Painterly renderings are simply collections of brush strokes. Ap-
plying the perceptual model to a painting simply prunes away those
strokes that the user probably did not see. The previous section de-
scribes how this model defines a limit on the spatial frequency of
information visible to the user. The decision to include a stroke in
the painting is made by associating a frequency with each stroke,
and determining if this frequency is less than the limit imposed by
the model and data.

We follow [Hertzmann 1998], where curved strokes are applied
in a coarse-to-fine fashion; coarser strokes draw their color from
blurrier versions of the original image, and are correspondingly
thicker. Given a brush diameterD, we can determine the relative
spatial frequency of a stroke using this brush in a direction perpen-
dicular to the stroke. A stroke of widthD corresponds to one half of
a cycle of the sine gratings used in contrast sensitivity experiments,
which corresponds to a frequency off = 1/2D [Reddy 1997].

Consider the placement of a stroke with frequencyf at the im-
age locationp. The stroke is included in the painting if the visual
information carried by it would have been perceptible to the user:
if f < fmax(p) (measured at the start of the stroke). The resulting
image contains only those strokes that convey the information as
specified by the model.

3.4 Stroke Styles

The color used to paint the stroke can be adjusted to achieve vari-
ous effects by altering the contrast or saturation of the stroke color
[Haeberli 1990]. The perceptual model provides a means of making
these adjustments based on image content. For instance, lowering
the contrast in unviewed regions makes them less noticeable; rais-
ing it emphasizes objects. Color contrast is still not well understood
[Regan 2000]; adjusting the contrast and saturation in this way is
quite reasonable.

Define the functionu(p) ranging from 0 (where the user did not
look atp) to 1 (where the user fixatedp for a sufficiently long period

78



of time):

u(p) =
fmax(p)
amaxG

(4)

Style transformations such as those described in [Haeberli 1990]
are extended to incorporate fixations usingu as follows:

• Contrast enhancement: Important edges are emphasized by
high-pass filtering the image based onu, and extrapolating
from a blurred version of the image atp out beyond the origi-
nal pixel value. The amount of extrapolation changes linearly
with u(p), beingcmin whenu = 0 andcmax whenu = 1 (an
extrapolation amount of 1 produces no change).cmin andcmax
are global style parameters for controlling the type of contrast
change. For example, choosing[cmin,cmax] to be[0,2] raises
contrast where the user looked, and lowers contrast where
they didn’t. (Default:[cmin,cmax] = [0,2].)

• Saturation enhancement: Colors can also be enhanced; colors
are intensified in important regions and de-saturated in back-
ground areas. The transformation proceeds the same as with
contrast, now specified using[smin,smax], and extrapolating
between the original pixel value and its corresponding lumi-
nance value. As an example, choosing[smin,smax] to be[0,1]
makes the unattended portions of the image more grey. (De-
fault: [smin,smax] = [0,1.2].)

There are also a number of parameters used in forming the
curved strokes (not all of which use the perceptual model):

• Brush size: Brush strokes of varying widths are used to cover
the image starting at sizebmin, incrementing bybdiff , with bn
evenly spaced brushes in total. (Default:bmin = 5, bdiff = 3,
bn = 8.)

The brush size is used to determineamax, the scaling factor for
the acuity model. We can set this value to place the frequency
amaxG just above the frequency that corresponds to the small-
est brush, so that the central quarter of the fovea is covered by
these strokes (this yieldsamax = 1

12 for bmin = 5).

• Stroke length: lmin and lmax are the minimum and maximum
stroke length. (Default:lmin = 1, lmax = 15.)

• Early stroke termination: The value ofscolor is a threshold
value used to determine if a stroke should be terminated based
on the Euclidean distance between the color at each end of
the stroke (as it is constructed). This is a simple alterna-
tive to source image comparison [Hertzmann 1998]. (Default:
scolor = 0.05.)

• Stroke path determination: Stroke construction in [Hertzmann
1998] proceeded by following gradient contours. Noise in
uniform regions that can produce spaghetti-like strokes can be
ignored using a gradient magnitude thresholdsgrad. If the gra-
dient magnitude at a particular image location is below this
threshold, the stroke will simply proceed straight ahead, in-
stead of following the gradient contour. Should a stroke com-
mence in a uniform region of the image, it is assigned a default
orientationsorient. (Default:sgrad= 0.012,sorient = 10.)

4 Results

An interaction with our system proceeds as follows. An image is
selected for transformation, and is displayed on the screen in the
presence of an eye-tracker. We have experimented with two differ-
ent tasks where the user is instructed to:

1. “Look at the image for five seconds.”.

2. “Look at the image; press a button when you are finished.”

The image is then displayed. The user can also adjust parameters to
achieve different effects. In almost all cases, the only parameter that
is worth changing is the minimum brush sizebmin (which limits the
overall detail in the painting). For the following examples, we have
primarily selected “non-artistic” images to demonstrate the abstrac-
tion performed by using eye-tracking data1. Artistic photographs
(or stock photographs) often contain a single subject, with much of
the content transformation already performed by the photographer.
Unless specified, parameter values are the defaults.

Figure 4: A painterly rendering using eye-tracking data (Task 1).

A typical abstracted painting is displayed in Figure 4 which uses
the image from Figure 2(b) and fixations in Figure 2(d)—notice
how the detail present in the rendering corresponds to the locations
the user viewed. Figure 5 shows another typical transformation.

Two sets of results are presented in Figure 6; the observed fix-
ations for each are displayed to the left of the resulting painting.
Notice how the detail present in the image is reflected by the fix-
ations. The first set of fixations in (a) were gathered with task 1
described above. The second set in (c) used task 2; the user viewed
the image for 22 seconds.

The examples in Figure 7 compare use of the perceptual model
and eye-tracking data to a fully automatic approach. A fully auto-
matic approach can also be modulated by changing the brush size,
as seen in (c) and (d). However, the detail is affected uniformly
over the entire image, making the resulting paintings much less or-
ganized with regard to content. Using the data in (b), the abstracted
transformation in (e) shows a nice balance of content—it has a clear
subject. The automated paintings in (c) and (d) do not—they either
include too much or too little detail in different parts of the paint-
ing. The painting produced with a coarser brush in (f) contains less
detail, but still has the meaningful abstraction that is present in (e).

5 Discussion

We have presented a new technique for producing abstracted
painterly renderings from eye-tracking data. Very brief interac-
tions are required to gather this data, yet they can produce quite
pleasing results. The use of a perceptual model, coupled with the
goal-directed nature of eye movements makes this possible.

1All images and eye-tracking data are available at:
http://www.cs.rutgers.edu/~decarlo/abstract.html
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(a) (b)

Figure 5: An example transformation of photograph in (a) to painting in (b). (Task 2). (Photo courtesyhttp://philip.greenspun.com)

(a) (b)

(c) (d)

Figure 6: Fixations and results depend on the user’s task. Transforming (a) to (b) uses task 1 data, while (c) to (d) uses task 2 data.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Comparison using the photograph in (a) with and without the eye-tracking data in (b). Without data, (c) too much detail is left in
using a finer brushbmin = 5, while (d) too much is taken out using a coarse brushbmin = 10. Using fixation data, (e) background subjects
have much less detail, making the desired subject of the rendering obvious; uses finer brushbmin = 5. Using a coarser brushbmin = 7.5 (f)
maintains the relative level of detail between foreground and background. (Task 1).
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Figure 8: Adjacent detail can be inappropriately emphasized in the
background, such as in the shutters located behind the main subject.

Further research for this framework is required, as right now,
the results do not exhibit the level of artistry as seen in hand crafted
painterly renderings—this gap can certainly be narrowed. Research
in computational vision can be used to analyze the images, perhaps
to separate out objects from background. Unwanted background
detail can be included that is nearby important foreground objects,
such as the shutters behind the subject’s head in Figure 8—such
an approach might alleviate this problem. Better models of human
perception are required as well; our system will accommodate them
as they become available. Certain artifacts are visible in the output
as well. Perhaps most noticeable is the tendency for the images
to appear blurry where large strokes are placed; this is caused by
sampling the colors from a blurry image. While this can be allevi-
ated using anisotropic smoothing [Perona and Malik 1990], it then
requires a more sophisticated algorithm for cleanly placing strokes
along sharp edges.

Our technique is also applicable to other domains where ab-
straction is desired, such as the non-photorealistic rendering of 3D
models with a managed level of detail. The painterly processing
of video streams represents a particular challenge, as it’s not clear
how the interaction should proceed: only one fixation location for
each image frame is possible, given only a single viewing. Track-
ing of previously viewed objects over time, coupled with fixation
data gathered from multiple viewings of the video might produce
reasonable and temporally consistent abstracted video.
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