
Role Model Designs and Implementations with

Aspect-oriented Programming
Elizabeth A. Kendall

Departments of Computer Science and Computer Systems Engineering

Royal Melbourne Institute of Technology, GPO 30x 2476V, Melbourne, VIC 3001, AUSTRALIA

email: kendall@ rmit.edu.au

ABSTRACT AND OUTLINE
This paper describes research in applications of aspect-oriented
programming (AOP) as captured in the AspectJTM language. In
particular, it compares object-oriented and aspect-oriented designs
and implementations of role models.

Sections 1, 2, and 3 provide background information on role
models, object-oriented role model implementations, and aspect-
oriented programming, respectively. New aspect-oriented
designs for role models are explored in sections 4, 5, and 6.

The base reference for this exploration is the Role Object pattern.
Although useful for role models, this pattern introduces some
problems at the implementation level, namely object
schizophrenia, significant interface maintenance, and no support
for role composition. Our research has resulted in alternative
aspect-oriented designs that alleviate some of these problems.

Section 7 discusses how an agent framework that implements role
models has been partially reengineered with aspects. The
reengineering addressed concerns that are orthogonal or cross cut
both the core and the role behavior. The aspect oriented redesign
significantly reduced code tangling, overall method and module
count, and total lines of code. These results and other
conclusions are presented in section 8.

Keywords
Aspect-oriented Programming, Role Modelling

1. ROLES AND ROLE MODELS
1.1 Background
Roles and role models [1, 8, 16- 19, 23- 24, 25 271 are
abstraction and decomposition mechanisms. Classes stipulate the
capabilities of individual objects, while the notion of a role
focuses on the position and responsibilities of an element within
an overall system or subsystem. A role model identifies an
archetypal structure of elements (objects) and describes it as a
corresponding and reoccurring structure of roles. Role models
capture how objects interact with each other in collaborations;

Permission.to make digital or hard copies of all or part of this work for

Parsonal or classroom use iS granted without fee provided that
CoPieS are not made or distributed for profit or commercial advant

-e9e and that copies bear this notice and the full citation on the first page.
To COPY otherwise. to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fao.
OOPSLA ‘99 11199 Denver, CO, USA

0 1999 ACM l-591 13-23%7/99/0010...$5.00

role models have been proven to be useful during
conceptualization, analysis, and design.

1.2 Example
A sample role model is provided in [26, 271 for the Bureaucracy
pattern. This pattern is often found in software systems [27], but
it also captures the structure of human bureaucracies. In a
bureaucracy, there is a long chain of responsibility, a multilevel
hierarchical organization, and centralized control. The
Bureaucracy role model features five roles: Director, Manager,
Subordinate, Clerk, and CIient. A Director manages the entire
organization. Managers report to the Director, supervising the
activities of their Subordinates. Due to the multiple levels in the
Bureaucracy, intermediate level Managers have other, lower level,
Managers reporting to them as Subordinates. The lowest level
role in the Bureaucracy is a Clerk; these entities perform the
actual work or service for a Client.

‘The role diagram is provided in Figure 1, with notation that
extends [l] and [26]. A rounded box represents a role, and an
arrow depicts a collaboration path between two roles. Role
specialization is indicated by a triangle, and a filled circle means
that more than one entity can play a given role at the same time.
As can be seen in Figure 1, Manager, Subordinate, and Director
all refine the Clerk role. This means that even a Director must
be able to act as a Clerk for certain Clients.

(Client-w

1 Director]

Figure 1: Role Diagram for the Bureaucracy Pattern 1261

During design, the roles in a role model are assigned to objects in
an application; an object plays or carries out the roles that are
assigned to it. In a given Bureaucracy, the same object may play
many roles, such as Manager, Subordinate, and Clerk. An
employee in a Bureaucracy can be a Manager to their own
underlings. However, that same employee can be a Subordinate
to their immediate supervisor, and a Clerk to an outside customer.
The roles played by an object are determined by other objects’
perspectives or views.

353

1.3 Roles as Perspectives
B. Kristensen [16 - 191 provides a conceptual model of an object
and its roles. The object to which a role is allocated is the
intrinsic object; it has intrinsic members (data and methods).
Roles add extrinsic members (data and methods), and they
provide perspectives that can be used by other objects as a
selective way of knowing and accessing the object. In terms of
the Bureaucracy role model in section 1.2, every employee has
some core (intrinsic) behavior. However, depending on the
perspective (a supervisor, an underling, or an outside customer),
each employee can also exhibit extrinsic, non-core behavior.

These concepts are depicted in Figure 2, which uses the notation
found in [161. In Figure 2, Object2 (boss) knows Object1
(worker) according to RoleA (Subordinate). From the view of
Object2, Object1 has three intrinsic members and three extrinsic
members. In Figure 2, the perspective of Object3 (customer)
composes RoleA and RoleB (Provider). That is, from the view of
Object3, Object1 is playing both roles A and B, simultaneously.
This means that Object3 views Object1 to have three intrinsic
members and five extrinsic members. (The Provider role and role
composition are discussed further in section 7.)

intrinsic
members

extrinsic

Figure 2: An Object and its Roles: Intrinsic and Extrinsic
Members [16]

1.4 Role Properties
In addition to the conceptual model depicted in Figure 2,
Kristensen [161 provides properties of roles. These properties are
provided in the following list and form the basis of our research
into role model design and implementation with object-oriented
and aspect-oriented techniques.

Abstracfivit~~: roles can be organized in hierarchies

Aggregation/ Composition: roles can be composed of other
roles, with varying visibility

Dependency: a role can not exist without the object.
According to [16], the methods of the role can be defined in
terms of the methods of the object, but not vice versa.

Dynamicity: a role can be added or removed during the
lifetime of an object. This occurs at the instance level;
different instances of the same class can have roles added or
removed during their lifetime.

Identity: the role and the object have the same identity. The
object and its roles are seen and can be manipulated as one
entity.

Inheritance: a role for a class is also a role for any
subclass, and a super-role is a role for a class if its sub-role is

a role for the class. However, an alternative criteria [l, 81
states that a role should be able to be assigned to any class.

Locality: a role only has meaning in a role model

Multiplicity: several instances of a role may exist for a given
object at one time. An object may play several roles at once,
including multiple instances of the same role.

Visibility: access to the object is restricted by a role. The
visibility of an object can be restricted to the methods of a
role. This may include the intrinsic methods of the object,
but it will exclude the extrinsic methods of other roles.

2. OBJECT-ORIENTED DESIGNS FOR
ROLE MODELS

2.1 The Role Object Pattern
Several approaches have been used for implementing roles in
object-oriented languages [2, 6, 8, 17, 281. In [6], M. Fowler
evaluates the various approaches; the most common is the Role
Object pattern [2]. This pattern provides an individual class for
every role. The roles are organized in a hierarchy, with subclasses
for more specialized role behavior. A core object (an instance of
Core class) contains the roles that it plays as a set of role
instances; roles do not exist on their own. Dynamic role
assignment is supported because the instances that represent the
current roles can be changed at runtime.

The Role Object design for the Bureaucracy pattern is provided in
Figure 3. The Role Object pattern stipulates that a class be
provided for every role, but there are three major options for the
design of the interface to the role: State pattern [7], Role Object
pattern per M. Fowler [6], and the Decorator pattern [7]. The
Decorator pattern version is in Figure 3; both Role and
AgentCore implement the same interface. An object using an
instance of AgentCore only has knowledge of one object;
however, at runtime, the roles transparently add behavior. In the
figure, the Director role has been omitted; it is a further subclass
of Manager.

2.2 Problems with the Object-oriented Design
The Role Object with the Decorator pattern is proposed by
Kristensen and Osterbye [171 as the best support for role models
in standard object-oriented languages. However, they and other
authors [6], [l l] point out the following major drawbacks:

Object schizophrenia: The agent’s behavior is distributed
over the AgentCore and its roles. The agent is intended to be
one object; but, instead, it is comprised of multiple objects,
each with its own identity. This violates the identity
property in section 1.4, and it can lead to many symptoms,
including broken delegation, broken assumptions, and
dopplegangers [1 1].

Interface bloat or, alternatively, downcasting: The
interface for all roles must be provided in AgentInterface. If
this is not done, objects must be downcast at runtime to
invoke role specific behavior.

Role composilion: The Decorator version of the Role Object
pattern does not support references to different, but
overlapping subsets of decorators. That is, it does not
support the role property of aggregation/ composition
(section 1.4).

354

roles core

I I

Clerk Client
client clerk

request() reW()
sendReply() sendRequest()
setClient() setClerk()

I I

Manager -=> Subordinate

subordinate - manager

request()
myNotify()
sendDoWork()
setSubordinate()

Figure 3: Role Object Design for Bureaucracy Pattern

2.3 Related Designs and Implementations
Gottlob et al [8] present a variation on the Role Object pattern
that is available in Smalltalk. As Smalltalk is a dynamically typed
language, a role hierarchy can be developed that is independent of
the core class’ hierarchy. This approach avoids interface bloat
and downcasting. The Smalltalk design also allows an object to
play any role, and it supports role dynamicity.

VanHilst and Notkin [28] implement and compose roles with
templates in C++. However, templates compose roles at compile
time; this approach is valid in applications where roles are not
dynamically changing at runtime.

3. EXTRA LANGUAGE FEATURES
As stated in section 2.2, object-oriented designs do not adequately
support role models. This has led us to consider extra language
features, such as aspect-oriented programming and subject-
oriented programming.

3.1 Aspect-oriented Programming in AspectJ
Aspects cut across or cross-cut the units of a system’s functional
decomposition (objects). Examples provided in the literature are
synchronization, exception handling, monitoring and auditing,
quality of service, and many others. Research presented in [14,
151 has produced extra language constructs and language
processors (called Aspect Weavers) that can interleave or weave
component and aspect definitions (programs) appropriately to
formulate a unified and executable program. The JavaTM based
AOP language AspectJ (version 0.2) from Xerox PARC has been
used in this research.

In AspectJ, each file of Java source code can contain a class or an
aspect. During the first phase of compilation, aspects are woven
into the class definitions that they cross-cut. When an aspect is
woven into a class, it either introduces behavior in the form of
new methods, or it adds or advises behavior into the signature of a
method that already exists. Advise weaves (also called advise
cross-cuts) alter the members found in a class by adding cross-
cutting code that runs before or after existing methods and
constructors. Catch andfinally constructs are also supported.

In AspectJ, aspects can be static and impact all instances of a
given class; alternatively, aspect instances can be used to
dynamically advise behavior to a given instance of a class.
Introduce weaves are always static, but advise weaves can be
static or can be applied at an instance level. ‘Aspects can have
their own members (data and methods), and aspects can be
abstracted and specialized.

Figure 4 depicts some of the notation and capabilities of aspects.
In Figure 4, a static aspect (shown with brackets) introduces new
members (methods or data) to a class. An aspect instance (shown
with a diamond) advises or modifies members that already exist in
an instance. Therefore, in Figure 4, the class has two of its own
(intrinsic) members. (As in Figure 2, these are shown with
vertical bars.) A new member (extrinsic) is introduced by the
static aspect. The instance has three members (two intrinsic and
one extrinsic), and one of these is advised or modified by the
aspect instance. The advise weave is shown with a white,
rounded bar, and the modification is indicated schematically by
shadowing the relevant member.

Figure 5 translates Figure 4 into AspectJ code. Class Agent has
an intrinsic data member and an intrinsic method Aspect Client

355

introduces a new extrinsic member to class Agent. Aspect Client
also has an advise weave; this can enhance the definition of the
intrinsic and/or the extrinsic members of class Agent. In Figure
5, the advise weave adds to the definition of the extrinsic member
Agent.send().

intrinsic extrinsic
members member

A static aspect can introduce
new members to a class

intrinsic and extrinsic
members

A advise weave

Figure 4: Notation and Capabilities of Aspects

The code at the bottom of Figure 5 is required to instantiate the
Agent class and the Client aspect. The Shopper instance is
attached to the Client aspect through the addOb j ect () method;
after this step, Shopper has the extrinsic behavior implementation
from the advise weave.

class Agent

1 // intrinsic members of the class

protected String name;

public String getName (return name;}
Agent(String n){name = n;]]

aspect Client

{ // introduce extrinsic member to Agent

introduce public void Agent.send ()

{ // do nothing >

// advise weaves can impact intrinsic

// or extrinsic members

advise public void Agent-send 0
{ before

(System.out.println (“sending”) ;)I}

// Java code to instantiate Agent and

// Client and to attach Shopper to the

// aspect

Agent Shopper = new Agent("Shopper");

// Shopper does nothing

Shopper.send();

Client clientAspect = new Client();

clientAspect.addObject(shopper);

// Shopper prints out the words sending
Shopper.send();

Figure 5: AspectJ Implementation of Figure 4

3.2 Role Models and Cross-cutting
Kristensen and Osterbye [17] originally discounted AOP for role
model implementation. However, the view of role models
provided in [1] and in Figure 6 demonstrates that role models are
a form of cross-cutting. Figure 6 has five objects, and they are
involved in three activities or role models: [A],[B], and [Cl. If
the objects are instances of different classes (a role property in
section 1.4), the behavior required to carry out the activities CTOSS-
curs method definitions in five separate classes.

For example, the five objects can be involved in three different
Bureaucracies (three different Bureaucracy role models, [A], [B],
and [Cl). (Alternatively, they can appear in one Bureaucracy [A],
one Supply Chain [B] (section 7), and one Auction [C] (section
8).) Object 1 can be a Manager in Bureaucracy [A], but a
Subordinate in [B], and a Client in [Cl. Object 2 can be a
Subordinate in Bureaucracy [A], but a Client in [B], and a
Manager in [Cl. Additionally, Objects 3 through 5 can play
various roles in the three different role models.

Therefore, roles can dynamically cross-cut several objects. From
this argument, it is obvious that both AOP and role models deal
with cross-cutting behavior.

Figure 6: Role Models Cross-cut Object Models [l]

3.3 Subject-oriented Programming
We considered subject-oriented programming (SOP) as another
option for role model designs. In fact, Kristensen’s description of
roles [16, 17, 191 is closely related to Harrison and Ossher’s
subjects [9]. A subject is defined as a collection of classes or
class fragments that model a domain in a uniqde, subjective way;
subjects address the fact that different entities view the same class
from different perspectives. These perspectives are not filtered
views; some properties and behavior only exist because of the
perspective.

Subject-oriented programming supports many of the key
requirements of role model implementation (section 1.4); in
particular, it provides excellent support for role composition.
However, we decided to employ aspect-oriented programming in
this research for the following reasons:
. In this research, we use many of the SOP capabilities found

in AOP and also attempt to determine if AOP should be
expanded to incorporate more of SOP.

. At this point in time, SOP does not easily support role
dynamicity (dynamic role assignment at the instance level),
but AOP does.

356

. A Java based SOP environment is not currently available,
while a Java based aspect-oriented programming (AOP)
environment (AspectJ) is.

4. OPTIONS FOR ASPECT-ORIENTED
DESIGNS
The role concepts and properties of sections 1.3 and 1.4, and the
discussion in section 3.1, provide a foundation for our aspect-
oriented designs and implementations. First we need to
determine what aspect-oriented designs are appropriate for
representing roles. Five options have been considered, as
depicted in Figure 7.

The notation in Figure 7 is based on that found in Figure 4. A
vertical bar represents a member (data or method). Intrinsic
members are part of the core (class) behavior, while extrinsic
members belong to a role (aspect). However, to simplify the
diagram, Figure 7 does not depict intrinsic members. Advise
weaves are shown by white, rounded bars. The advise weaves
shown in the figure impact members found in the Core Instance;
this is indicated by shadowing the appropriate member.

All five of the options depicted have been investigated, and no
one solution is complete.

- Option Z places behavior at a class, rather than at an instance,
level. This would mean that all instances of a given class play the
same roles, violating role dynamicity (section 1.4).

- Option 2 requires that the Core class’ interface supports the
extrinsic behavior for all of the roles that an instance might play.
This is because only existing members can be modified. Figure 7
depicts three extrinsic members in the Core Instance for Option 2,
but in fact there would be many more.

- Option 3 places the role behavior in an entity that is separate to
the object, and this is not desirable because it violates role identity
(section 1.4) and leads to object schizophrenia.

- Option 4 requires that the Core class provides the interface and
the implementation for the extrinsic behavior in all of the roles
that an instance might play. This option should be revisited when
roles are very similar, with only slight differences between them.
As in Option 2, many members would actually be required in the
class, and only five are depicted in Figure 7.

- Option 5 (Glue Aspects) represents the most extensible
approach. However, it requires three levels of components (core
objects, roles, and aspects), and it becomes complex when there
are many dependencies between core objects and roles.

A hybrid approach to role aspect design is discussed in sections
5.1 and 5.2, and section 5.3 details Giue Aspects. Often an
object plays more than one role at a time. These roles may be
independent (role multiplicity), or they may be aggregated (role
composition). Role multiplicity can be implemented by indexing
roles by the context in which they appear (section 5.2). Role
composition is more complicated and is discussed in section 6.

Option 1: Static aspect introduces extrinsic role
members to a core class.

behavior
by advising (modifying) role members that already
exist in a core instance.

Option 3: Aspect instance contains role members Option 3: Aspect instance contains role members
Ei * se,)ar~;~~~#xi i,,,,.Twoseparate separate from a core instance. Two separate

,mt:+:mc are used.

Option 4: Aspect instance filters out invalid role
members from a core instance with advise weaves.
The core instance contains members for all roles.

Option 5: Role and core are objects. Static
aspect integrates or composes them, using introduce
weaves. This option is called “Glue Aspects”.

Figure 7: Options for Aspect-oriented Design of Role Models (refer to Fig. 2 and 4)

5. ASPECT-ORIENTED DESIGNS FOR
ROLE MODELS

then an aspect instance adds or advises the implementation of
that behavior to instances of the Core class, dynamically and as

aspect instance (option 3) to easiiy support role multiplicity.
needed. Further, role relationships and role context reside in the

5.1 Hybrid Approach
A hybrid approach was suggested by G. Kiczales. Role behavior
is placed in a combination of introduce weaves (option 1) that
are added to the core class and advise weaves (option 2) that are
added to the core instances. That is, a static aspect introduces
the interface for the role specific behavior to the Core class, and

The hybrid approach is detailed further in Figures 8, 9 and 10;
the notation and the concepts are based on those found in
Figures 2,4, 5, and 7.

357

Figure 8 demonstrates that, with the hybrid approach, ali role
specific (extrinsic) behavior is localized in the aspect source
code. In this way, a role aspect can be used to effectively
separate each role concern.

Figure 9 illustrates how a static aspect introduces the interface
for the extrinsic behavior to the class during the first phase (the
weaving phase) of compilation. After compilation, all instances
of the Core class will recognize the interface, but exception
handling can be placed in the introduce weave to address invalid
messages.

The implementation for the role specific behavior is not found in
the class; it resides in the advise weaves. As discussed in section
4.1 and depicted in Figures 4 and 5, these advise weaves are
only activated when an aspect instance is created and when an
instance of the Core class is attached to the aspect.

Figure 10 shows what happens at run time. CoreInst, which is
an instance of the Core class, is attached to AspectA, an aspect
instance. At this point, the advise weaves give Corelnst the
implementation for the extrinsic and role specific behavior. As
in Figure 4, this is shown by shadowing the relevant members.

At runtime, only the role relationships and context remain in the
aspect instance.

To support role dynamicity, CoreInst can be subsequently
removed from AspectA and assigned to another aspect instance,
AspectB. (Static AspectB must provide the appropriate interface
for role B during compilation.)

This approach to role aspects provides excellent support for all
of the role properties of section 1.4. The role aspect restricts
the visibility of the object, but yet the role is dependent on the
object for its existence. Role locality, composition, and
multiplicity can also be easily addressed (see sections 5.2 and 6).

This approach also has the following benefits over the Role
Object pattern:
. Interface maintenance: The class’ own intrinsic interface

is not bloated with every potential role. However, the
extrinsic behavior is also accessible without downcasting.

. Object schizophrenia: Most of the role specific behavior
resides in the object; only role relationships and role
context reside in the aspect.

extrinsic (role) behavior
intrinsic

.
- -

(class)
-

behavior
role interface in
introduce weave

I
role behavior implementation
in advise weave

Figure 8: Intrinsic and Extrinsic Members in Source Code

intrinsic
(class) k

behavior f ’ 1
extrinsic (role) behavior

role interface from role behavior implementation

introduce weave in advise weave

Figure 9: Intrinsic and Extrinsic Members after Compilation - Hybrid Approach

extrinsic (role) behavior

intrinsic
(class) interface and implementation

Figure 10: Intrinsic and Extrinsic Members at Runtime - Hybrid Approach

358

5.2 AspectJ Implementation of the Hybrid
Approach
The example is an aspect-oriented implementation for the
Bureaucracy role model. The role classes and methods in the
Role Object implementation (Figure 3) are mapped to
corresponding aspects and weaves, as depicted in Figures 11 and
12. The AgentInterface class is no longer needed, and the
AgentCore class (renamed Agent) only holds intrinsic behavior
because the interface and the extrinsic behavior will be built up
incrementally with the aspects.

In Figure 11, each aspect holds the introduce and advise weaves
that are appropriate to the given role. For example, the Client
aspect has the interface (introduce weave) and the
implementation (advise weave) for making a request (method
sendRequest () in Figure 3) and receiving a reply (method
reply (1). The Clerk holds the complementary behavior; it
responds to a request and sends a reply.

The Client aspect holds the clerk role relationship, while the
Clerk aspect holds the client role relationship. Tbe aspects are
specialized according to the inheritance relationships in Figure
3. The Manager and Subordinate aspects add behavior to the
Clerk role; they also override or redefine methods. In particular,

Role

h-J

a Manager redefines request () so that it can send work to a
subordinate. A Subordinate, in turn, redefines reply() so it
can notify its manager of progress.

Sample code is provided in Figure 12 in four parts. In many
ways, it represents an expanded version of the short example
given in Figure 4.

Figure 12, Part A encodes the aspect Client that introduces and
advises two extrinsic capabilities to class Agent:
sendReques t () and reply () . The interface is in the
introduce weaves; the role specific behavior implementation is
in the advise weaves.

Figure 12, Part B shows that the aspect Clerk introduces and
advises two complementary capabilities: request () and
sendReply (1.

Manager (Figure 12, Part C) extends Clerk, so it already has the
introduce and advise weaves from Part B. It also introduces and
adds its own extrinsic “managerial” behavior that delegates a
request to a subordinate (new definition of request ()), and
receives notification of progress.

In Parts A through C, role relationships are stored in the aspects
themselves. This means that getPlayer messages are
required to access the agents from the roles.

I Ro!e 1
0

(Clerk]=[Client]

4

I I
C Manager Subordinate

I

Figure 11: Bureaucracy RoIe Aspects in Hybrid Approach

FIGURE 12 Part A. Role Asoect Client
aspect Client extends Role
I protected Clerk server; // role relationships in aspect

public void setClerk(Clerk a)(server = a; }
// introduce default (empty) behavior to class Agent
introduce public void Agent.sendRequest() {}
introduce public void Agent.reply() (}
// advise weaves for aspect instances that will be attached to
// an instance of class Agent
advise public void Agent.sendRequest()
{ before

{ System.out.println(name f " sending request as Client");
(server.getPlayer()) .request();
return; // required to avoid additive weaves during aspect extension 1 ?

advise public void Agent.reply()
1 before

{ System.out.println(name + '1 received reply as Client");
return; // required to avoid additive weaves during aspect extension 1 1)

359

FIGURE 12 Part B. Role Aspect Clerk (Basic Server)

aspect Clerk extends Role
(protected Client client; // role relationships are in the aspect

public void setClient(Client a) t client = a;}
// introduce interface for extrinsic behavior to class Agent
introduce public void Agent.request() (}
introduce protected void Agent.sendReply() (}
// advise weaves for an aspect instance
advise public void Agent.request()
(before

{ System.out.println(' Clerk/ Server processing request");

sendReply ;
return; // required to avoid additive weaves during aspect extension I 1

advise protected void Agent.sendReply()
I before

{ System.out.println("Clerk/ Server sending reply");
// this gets the client stored at the aspect
(client.getPlayer()).reply();
return: I 11

FIGURE 12 Part C. Role Asoect Manacler

aspect Manager extends Clerk
{ protected Subordinate subordinate: // role relationship

public void setSubordinate(Subordinate a) { subordinate = a;)
// introduce weaves for static aspect
introduce public void Agent.myNotify() Cl
introduce protect void Agent.sendDoWork() {)
// advise weaves for aspect instance
advise public void Agent.myNotify()
{ before

{ System.out.println("Manager receiving notification");
return; 1 1

advise public void Agent.request()
{ before

(System.out.println('Manager receiving request");
sendDoWork();
return; 1)

advise protected void Agent.sendDoWork()
{ before

{ System.out.println("Manager sending do work");
(subordinate.getPlayer()).doWork();
return; 1 11

360

FIGURE 12 Part D: Plavina the Roles

// Agent objects are added to the three aspects

// clientRole, managerRole, and subordinate roles are Client,

// Manager, and Subordinate aspect instances

// Shopper, Boss, and Worker are instances of class Agent
// addObject()adds an object instance to an aspect instance so the
// advise weaves take effect
clientRole.addObject(Shopper);
managerRole.addObject(Boss);
subordinateRole.addObject(Worker) ;
// role relationships are between aspects
clientRole.setClerk(managerRole);
managerRole.setClient(clientRole);
managerRole.setSubordinate(subordinateRole);
subordinateRole.setClient(clientRole);
subordinateRole.setManager(managerRole);
// nothing happens because a Worker can not send a request
Worker.sendRequest();
// client messages manager, who messages subordinate,
// who does the work, replies to the client, and notifies its manager
Shopper.sendRequest();

Figure 12: Sample Code for Hybrid Approach

Figure 12, Part D, and Figure 13 show what happens when Agent
objects play roles. Three agents have been instantiated and
assigned roles: Shopper, Boss, and Worker. In Figure 12, Part D,
Shopper is placed in a Client aspect instance, Boss is a Manager,
and Worker is a Subordinate. As shown in Figure 13, this means
that Shopper plays the role of Client; Boss plays the role of
Manager; and Worker is the Subordinate. Role relationships are
shown in Figure 13 and implemented in Figure 12, Part D. Boss
is a Clerk to the Shopper, but a Manager to the Worker. Shopper
is the Boss’ Client, and the Boss is the Shopper’s Clerk. As the
Boss delegates all tasks, Shopper is also the Worker’s Client.

Figure 13: Role Assignments in the Application

In the actual implementation, role aspect creation and assignment
is done by the Agent that is to play the role. This is because of
role dependency; a role can not exist without an object (section
1.4). The actual implementation follows the use of Creator
objects described in [2].

On)y Shopper can act as a Cfient; when a Worker tries to make a
request (Figure 12, Part D), nothing happens. The interface
exists, but the behavior is not implemented. In a real application,

exception handling would be pIaced in the introduce weaves.
When the Shopper makes a request (the last line in Figure 12), the
Boss acts as a Manager, and the Worker does the actual work, in
the role of Subordinate.

If an Agent can play multiple roles in different contexts, the code
in Figure 12 needs to be modified. First, every message between
agents must pass a context parameter. Second, a role aspect must
store a context. In this case, an advise weave executes only if the
role is relevant in the given context, as shown in Figure 14. This
is the simplest way to support role multiplicity with the hybrid
approach; however, alternatives have to be considered to
minimize object schizophrenia.

aspect Role
{ // Role Relationship pattern

protected String context;
Role(String c) { context = c;)....)

aspect Clerk extends Role
t . . .

advise public void Agent.request(String c)
1 before

{ if(context.equals(c))
{ System.out.println("Clerk/Server

processing request");
sendReply(
return ;)) 1 1

Figure 14: Hybrid Approach Revised for Role Multiplicity

5.3 Option 5: Glue Aspects that Integrate
Core and Role Objects
The hybrid approach requires that role aspects specify what type
of object is going to play a given role, because the current version
(0.2) of AspectJ does not support aspect parameterization. This
reduces role reusability and contradicts the criteria (section 1.4)

361

that a role can be played by any object. In option 5 (Glue
Aspects), roles are represented by objects, and aspects integrate a
Core object to the role(s) that it plays. This is a style of
programming proposed in [141; in this style of programming, all
the pieces of state and behavior are captured by regular objects.
The aspects glue the pieces together.

The Glue Aspects design for the Bureaucracy role model is shown
in Figure 15. There are three categories of components: Core,
Glue Aspects, and Roles. The role hierarchy is the same as that
found in Figures 3 and the left side of Figure 11, except that the
Role class does not have a core attribute and the Agent class
does not have a roles attribute. The Role classes have no data
or behavior that pertains to the Core object, and the Agent class
has no data or behavior that pertains to the Role objects. All
integration or “glue” is achieved by the aspects.

In Figure 15, all of the aspects are static aspects; they introduce
behavior to the Agent and Role classes. The RofeAspect
introduces the data and behavior that establishes the core and
role relationships between the Agent and Role classes. The
other four aspects introduce new public methods to the Agent
class.

The methods in the introduce weaves found in aspects
ClientAspect, ClerkAspect, ManagerAspect, and
SubordinateAspect are specific to the relevant roles (Client, Clerk,
Manager, and Subordinate, respectively). In each case, the
message or behavior is delegated to the role. This means that, for
example, the method Agent. request () that is introduced in
the aspect ClerkAspect only contains the following line of code:

role.request();

Core “Glue” Aspects

With glue aspects, the approach to dynamic role assignment is the
same as that found in the Role Object pattern; the role instances
can be varied at runtime and dynamic binding can be employed.
This means that if the role data member of an Agent holds a
reference to an instance of class Clerk, the definition for
role. request () will be taken from the Clerk class.
However, if the role data member instead holds a reference to an
instance of class Manager, the definition will come from the
Manager class.

The design shown in Figure 15 has many variations; the
RoleAspect can introduce the entire interface and delegate the
behavior, eliminating the need for the other aspects.

The benefits and drawbacks of the glue aspect design are the
following:

. Independent Core and Role hierarchies: Any Core object
can play a given Role if the appropriate Glue Aspect is
provided. This is the major advantage of this design.

. Znterface maintenance: The role specific interfaces are
introduced to the Core objects in a modular fashion. This is
also true in the hybrid approach.

l Object schizophrenia: The Role and Core objects are
independent, so the Glue Aspects have to encode and
manage all integration. The hybrid approach is superior in
this area, and glue aspects should only be employed when
there are only minimal dependencies between Role and Core
objects.

. Additional level of components: The major drawback of this
design is that it requires three levels of components

ClientAspect -

Agent.sendRequest()
Agent.reply() _

‘\

f

ClerkAspect

JC Agent.request()

ManagerAspect
II

Agent.myNotify () c Agent.doWork() J
\ J

I Role I Roles
I I

Manager
subordinate

request()
myNotify()
sendDoWork()
setSubordinate(1

Figure 15: Option 5 (Glue Aspect) Design for the Bureaucracy Role Model

362

6. Role Composition
6.1 Explanation and Illustration
Role multiplicity means that a Core object plays various
independent roles in different contexts. However, a Core object
can also play more than one role in the same context. In this case,
different roles need to be composed (Figure 2). The semantics of
role composition have to be carefully established. Overlap and
dependencies can occur if objects are playing a combination of
roles in a composed role model, and the roles have extrinsic
behavior that is not independent.

For example, the Bureaucracy role model can be composed with
the Supply Chain [131. The Supply Chain role model captures
the structure of organizational supply chains, such as that found in
supermarkets, telecommunications, and manufacturing. If a
Supply Chain has only two elements there are four roles:
Customer, User, Provider, and Operator. The Customer makes
the original request to the Provider, and they negotiate regarding
terms. Once agreement has been reached, the User role takes
over from the Customer, and it interacts with the Operator role.
The Operator produces the supplies and passes them back to the
User; the User pays the Operator.

I Client

Figure 16: Supply Chain Roles

If the Supply Chain were implemented separately, seven roles
would be required, as shown in Figure 16. Customer and User
refine Client, and Provider and Operator refine Server (Clerk).
Role composition is depicted in Figure 17, where the Bureaucracy
and Supply Chain role models are merged. Here, there are two
subjects; Bureaucracy addresses accountability, while the Supply
Chain role model represents another, separate concern.

Two role models are composed when they both hold in a given
context. A simple example was depicted in Figure 2; according
to Object3 (customer), Object1 (worker) is playing both role A
(Subordinate) and role B (Provider). This example is expanded
upon in Figure 18. Figure 18 uses the same notation as Figure 13,
and this notation is based on that found in [l]. Role models that
are relevant in the given context are depicted in the top half of the
figure, and both the Bureaucracy and the Supply Chain role
models appear in Figure 18. Role assignments are shown in the
bottom of Figure 18. ShopperAgent is a Client and a Customer;
BossAgent is a Manager and a Provider, and WorkerAgent is a
Subordinate and a Provider.

When more than one role model is relevant, conflicts and/ or
overlaps are going to occur if the roles involve the same methods
and/ or data members (the same extrinsic behavior). There are
several possible ways that the roles should be composed,
including the following:

Role Merge: two roles correspond and should be merged
with no duplicate behavior.

Role Override: one role overrides another. A Manager-
Provider should delegate any work. This means that the
Manager role should override the Provider role.

Role Add: two or more roles should be added together. A
Subordinate-Provider should act as a Subordinate and a
Provider.

Figure 17: 1 Role Composition

363

Relevant Role Models

Figure 18: Role Model Composition: Both Role Models are Relevant in the Context

6.2 Hybrid Approach to Role Composition
The role composition in Figures 17 and 18 was implemented
utilizing the hybrid approach discussed in sections 5.1 and 5.2.
As in sections 5.1 and 5.2, each role introduces and advises its
own role specific behavior to the Agent class and Agent instances.

We integrated the Bureaucracy and Supply Chain aspect
implementations together by weaving (compiling) the twelve
aspects (Figure 17) with the Agent class. To effect this
composition in a way that preserved the semantics of the
Bureaucracy and Supply Chain role models, we needed to be able
to accomplish the following:

. merge the multiple definitions of Role, Client, and Server
found in Figure 17

. override the behavior of a Provider with the behavior of a
Manager in instances that play both roles in the same
context. This is because the Manager role overrides all other
roles by delegating tasks to its Subordinates.

. add the behavior of a Provider to the behavior of a
Subordinate in instances that play both roles in the same
context

However, we found that the AspectJ compiler did not support
merge and override mechanisms during weaving. Additive
weaves were supported with some restrictions. Therefore, two
types of manual adjustments had to be made to bring about the
desired results in the code produced by the compiler.

First, AspectJ does not allow duplicate introduce weaves.
Therefore, the Role, Client, and Server aspects had to be merged
manually.

Second, the precedence of overlapping advise weaves in AspectJ
is undefined when the aspects are not related through extension.
This means that, with the current version of AspectJ (0.2), we can
not predict what the AspectJ compiler will yield from source code

when two (or more) advise weaves (in unrelated aspects) impact
the same member. We still wanted to attempt role composition
with AspectJ, SO we used trial and error with the order of the
aspect and class files in the maketile until an override effect
(Manager overrides Provider) could be produced. This would of
course not be practical in a real role model application, as
discussed in section 8.

Trial and error would not have been necessary if Manager
extended Provider. However, as can be seen in Figure 17,
Manager and Provider both extend Server, but Manager is not a
refinement or extension of Provider. The key difference between
a Provider and a Server is that a Provider negotiates with a
Customer before providing services. Provider extends Server
with behavior that pertains to negotiation. Meanwhile, Manager
extends Server with behavior to delegate a task to a Subordinate.
A Manager does not negotiate with a Client, so Manager does not
extend Provider.

If multiple inheritance is allowed, it would be possible to perform
role composition with a role hierarchy so that a new role can
descend from Manager and Provider. However, AspectJ and
Java do not allow multiple inheritance. Therefore, it is not
practical to expect that two roles that impact the same extrinsic
behavior will always be related by an inheritance or specialization
relationship. As such, we have concluded that aspect override
without extension is required for role composition. TlliS

conclusion is discussed further in section 8..

Once the resulting nine aspects (twelve originally and three
eliminated during merging) and the Agent class were
appropriately woven, execution was straightforward. The three
agents were instantiated. ShopperAgent was placed in Customer
and Client aspects: BossAgent was placed in Manager and
Provider aspects; and, WorkerAgent was placed in Subordinate
and Provider aspects. Role relationships were then set up
between the aspects.

Figure 19: Aspect Attachments for Role Composition in Figure 18

364

The role assignments and role relationships are the ones effect; Worker and Boss see each other only through a Manager-
depicted in Figure 18. A simplified view of the aspect Subordinate relationship. The result printed out during
attachments is provided in Figure 19; all intrinsic and extrinsic execution is shown in Figure 20; in the printout, the agents give

Figure 20: Sample Output from Role Composition with Hybrid Approach

starting point, and it was reengineered
techniques.

6.3 Role Composition with Glue Aspects
In the glue aspect design, roles are represented by conventional
classes and objects, so role composition must be accomplished in
the glue aspects. This provides flexibility. If an agent plays
more than one role in a given context, the glue aspect can
introduce or advise behavior that does any of the following: i)
iterates through all of the roles, ii) allows the behavior of one
kind of role to override all other roles, iii) merges the behavior of
certain roles, or iv) other variations.

However, the code is hard to design and implement because the
Role and Core classes are independent and links are only
available through the glue aspects. If role methods overlap and/
or conflict with each other during role composition, this in effect
causes new dependencies between Role and Core objects. This
is because the roles themselves are still independent; the
dependencies arise because the roles are composed in a Core
object. As stated in section 5.3, the glue aspect approach is useful
only when there are minimal dependencies between Role and
Core objects. Therefore, the hybrid design in section 6.2 is
superior for role composition.

This role model application involved five role models: Supply
Chain, Negotiate for Services, Contract Net, Iterated Contract
Net, and Auction. The latter four role models expand on the
Supply Chain role model of section 6 in the area of negotiation.
In particular, the Customer and Provider roles interact with each
other in more detailed, aggregated role models. This occurs
because the Customers and Providers enter into lengthy
negotiations with each other regarding supplies, delivery
schedule, and price. Further, competitors (other Providers) may
be involved in the negotiations.

The original design featured an AgentCore class, a NegotiateRole
superclass, and 24 subclasses for the individual roles. These
classes contained 115 methods.

7.2 Code Tangling

7. AOP and Code Tangling in Role Model
Applications

The role objects and the role transitions were not considered in
this study, as this research was complementary to that discussed in
sections 4 through 6. Beyond the behavior of the role models, the
115 original methods were seen to involve six concerns. Each
concern can be thought of as a Separation of Concern (SOC).
They are listed below in Figure 21a with the number of methods
invoived.

7.1 Original Object-oriented Design
Another investigation of aspect-oriented programming involved
determining the extent that AOP can be used to reduce code
tangling in role model applications. Here, an existing object-

Some of the code tangling is depicted in Figure 21b. The
numbers on the figure correspond to the number for the separation
of concern in Figure 21a. Only ten subclasses and a subset of the

oriented design based on the Role Object pattern was used as the
methods are shown in Figure 2~lb.

I

members have been omitted. The figure depicts the override their name and role.

ShopperAgent sending request as Client
BossAgent receiving request as Manager
BossAgent sending do work as Manager
WorkerAgent doing work as Subordinate
WorkerAgent received request as Subordinate
WorkerAgent sending negotiate as Provider
ShopperAgent negotiate as Customer
ShopperAgent sending complete negotiation as Customer
WorkerAgent complete negotiation as Provider
WorkerAgent sending contract as Provider
ShopperAgent got contract as Customer
ShopperAgent sending accept contract as Customer
WorkerAgent accept contract as Provider
WorkerAgent sending notification as Subordinate
BossAgent receiving notification as Manager

with aspect-oriented

SOC 1. Interagent communication. Sending messages to another agent. 17 methods.
SOC 2. Exception handling. Incorrect messages or sequences. 44 methods
SOC 3. Failed conversations. A conversation has ended due to failure. 12 methods
SOC 4. Successful conversations. A conversation has ended. 4 methods
SOC 5. Negotiation strategies. Behavior involved in competitive bidding. 8 methods.
SOC 6. Iterative protocols. Auctions and iterated contract nets. 6 methods.

Figure 21a: Six Concerns in the Original Object-Oriented Design

365

1 Negotia$oIe 1

I I I I

Pmposal-Manager B gzsyj; 3 u
we)

Figure 21b: Indication of the Code Tangling found in the Original Design

7.3 Object-oriented Techniques
Object-oriented techniques can alleviate some of the code
tangling; behavior can be promoted to a superclass or delegated to
a component. Promoted behavior decreases cohesion. Delegated
behavior adds additional components, and it can lead to object
schizophrenia. Further, interface maintenance is complicated
unless the contained object and its interface are publicly
accessible.

Two of the concerns were promoted to the NegotiateRole
superclass: SOC 3 (Failed Conversations) and SOC 4 (Successful
Conversations). These two types of behavior were encoded in
two new methods within the NegotiateRole superclass. This was
acceptable because all failed and successful negotiation protocols
can be concluded in the same way.

Interagent communication was addressed via delegation. In the
simplest design, the interagent communication was delegated by
the role object back to the Agent. This normally would require
that the interface for sending messages be duplicated in the Agent
object, adding 17 methods to the overall design. (They were
protected methods of the NegotiateRole class in the original
design.) However, the Java JDK reflection package was used to
provide general purpose transmission or sending. With reflection,
only one new method had to be added for transmission and one
for reception. However, additional runtime overheads were
incurred.

7.4 Aspect-oriented Techniques for Exception
Handling
Exception handling is an important concern for this application as
invalid transmissions and receptions have to be caught.
However, exception handling often leads to redundant and tangled
code, because exceptions usually have to be thrown locally, at the
methods where the errors occur. The behavior can not be
promoted to a superclass, and it is not beneficial to delegate the
behavior to another component.

The superclass NegotiateRole defines the default behavior for all
28 messages in the protocols, throwing an exception if the
message is invalid. Each method that sends a message to another
agent (SOC 1 - 17 methods) also incorporates exception handling.

The exception handling is redundant, but, as already stated, it can
not be delegated or promoted. AOP is therefore appropriate, as
shown in Figures 22 and 23. Static aspects are employed because
the behavior is required for all instances of the NegotiateRole
subclasses. Aspect Invalid State Message (Figure 22) introduces
the interface and the behavior to the NegotiateRole class to throw
the correct exception. Wildcard notation can not be used in
introduce weaves, so each method has to be listed. Aspect
SendCatcher (Figure 23) uses static advise weaves with the catch
construct to add behavior to existing methods in some of the
subclasses of NegotiateRole.

aspect InvalidStateMessage
(introduce public void NegotiateRole.agree(), . . .

// all methods listed in an introduce weave
1 { throw new InvalidStateMessage("Invalid Message");} }

Figure 22: Aspect Invalid State Message

aspect SendCatcher
{advise * Idle-Client.send-request(*),

* Idle-Query-Client.send-query(*), .._
// wildcard notation can be used
{static catch (InvalidStateMessage e)

(System.out.println("Invalid State Message 11 + "\n");}
static catch- (NoSuchMethodException e) (j))

Figure 23: Aspect Send Catcher

366

7.5 Aspect-oriented Programming for Other
Concerns
Separation of concern 5 involves different strategies for
competitive bidding. For example, an agent may be negotiating
for services with a monopoly; on the basis of a fixed price
contract; or in a joint venture. Separation of concern 6 involves
restarting or resetting a protocol that is iterative. For example, an
auction protocol is carried out repeatedly, but the bidding does
not start from scratch. A contract net can also be iterated.

These two concerns are classic ‘mix-ins”. They can not be
promoted to the superclass because all of the possibilities will
occur. Because only single inheritance is allowed in Java, they
would lead to duplicate and redundant hierarchies. That is, two
subclasses would be required for each state in the contract net
protocol: one for the non-iterative and one for the iterative
version.

Additionally, delegation is not an attractive option because it just
adds components and indirection. As in the case of interagent
communication, interfaces would have to be duplicated. That is,
the interface for each of the eight methods that deal with
negotiation strategies would have to be duplicated in the strategy
components.

Figure 24 depicts the aspect-oriented solution. Aspect instances
are utilized, and an aspect instance is required for each
negotiation strategy. In the figure, aspect instances are shown for
fixed price contract, monopoly, and joint venture. With aspect
instances, strategies are only added when needed; each of these
aspects adds or advises behavior to the required methods. Seven
of these methods are shown on the figures, along with a strand
that connects them to the Fixed Price Contract aspect instance.

Figure 24: Negotiation Strategy Aspects

7.6 Code Tangling Summary
The use of AOP in this role model application reduced the
overall module (class and method) and lines of code (LOC). In
exception handling, the Invalid State Message aspect with one
introduce weave (listing all relevant methods) replaced the 28
methods, reducing the module count by 26. The Send Catcher
aspect replaced 51 (17 * 3) lines of code with five, saving 46
LOC. The Iterative protocol aspect replaced six methods with
one aspect and one weave. Lastly, the Negotiation Strategies
aspect reduced the code for strategies from 40 * 3 (8 methods *
5 SLOC * 3 strategies) to 21 (7 * 3). These results are
summarized in Figure 25.

Aspect

Invalid State Message

Method
Reduction

- 26

‘LOC Reduction
(source)

I Send Catcher I I ” 46 I
1 Iterative Protocol I -4 I I

Negotiation Strategies - 99

Total AOP - 30 - 145

Figure 25: Impact of Aspect-oriented Programming on the
Application

367

8. Conclusions
This paper has presented our research in applications of aspect-
oriented programming as captured in the AspectJ programming
language; we have also documented our efforts in aspect-
oriented design. We utilized the subject-oriented programming
(SOP) features of AOP to produce new designs and
implementations for role models. We then provided results
regarding the impact of AOP on code tangling in object-oriented
role model implementations.

Although our findings are preliminary, it appears that AOP is a
promising approach to

reducing object schizophrenia and interface maintenance in
role model designs

supporting dynamic role assignment at an instance level

providing flexible integration of object hierarchies. This is
based on our experience with the Glue Aspect approach
(section 5.3).

modelling, representing, and integrating inidividual
concerns

reducing module count and lines of source code for cross-
cutting behavior

We were also able to implement role composition with AOP.
However, AspectJ did not adequately support role merge or role
override. We had to manually merge roles. We also had to
utilize trial and error to give the desired results in role override.
This is because the order of precedence in aspect weaving is
undefined in AspectJ when two unrelated aspects overlap,
impacting the same method. (As discussed in section 4.2,
unrelated means that the aspects are not related through
specialization or extension.) It is therefore our recommendation
that AspectJ support the composition rules that are found in
subject-oriented programming [20]. These composition rules
include facilities for merging, overriding, and adding subjects.

As we discussed in section 3.3, role models and SOP have many
of the same conceptual foundations [161. Further, B.
Kristensen [l9] has documented research on the close
relationships between subject and role composition. Therefore,
our conclusion is in agreement with results presented elsewhere.

Many other questions remain, including AspectJ constructs for
various aspect-oriented designs and implementations, and
interfaces between aspects and objects. The proposed new
aspect-oriented designs for role models also need to be further
evaluated so that object schizophrenia is minimized.

Additional work is also required in appropriate metrics for
comparisons between aspect-oriented and object-oriented
designs and implementations. Lines of code and module count
(section 7.6) are only two limited metrics.

9. Acknowledgements
The author wishes to thank E. Andersen, G. Kiczales, C. Lopes,
H. Ossher, and D. Riehle for their valuable contributions to this
research. A large part of this research was carried out while the
author was employed as a Senior Research Fellow in Intelligent
Business Systems Research at BT Research Labs in England.

References
111

PI

[31

[41

151

[61

[71

181

[91

Andersen, E. (Egil), Conceptual ModelZing of Objects: A
Role Modelling Approach, PhD Thesis, University of
Oslo, 1997.

Baumer, D., D. Riehle, W. Siberski, M. Wolf, “Role
Object,” Proceedings of the 4th Annual Conference on the
Pattern Languages of Programs, Monticello, Illinois, USA,
September 2-5, 1997.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, M.
Stal, Pattern- Oriented Software Architecture: A System of
Patterns, Wiley, 1996

Dickinson, I., “Agent Standards”, Agent Technology
Group, 1997. http://drogo.cselt.stet.it/tipa.

Dyson, P., B. Anderson, “State Patterns,” in Pattern
Languages of Program Design 3, R. Martin, D. Riehle, F.
Buschmann, Ed., Addison Wesley, 1998.

Fowler, M., “Dealing with Roles,” Proceedings of the 4th
Annual Conference on the Pattern Languages of
Programs, Monticello, Illinois, USA, September 2-5, 1997.

Gamma, E.R., R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley, 1994.

Gottlob, G., Schrefl, M., and Rock, B., “Extending Object-
oriented Systems with Roles,” ACM Trans on Info. Sys.,
Vol. 14, No. 3, July, 1996, pp. 268 - 296.

Harrison, W., H. Osher, “Subject- Oriented Programming
(a critique of pure objects),” in Proceedings of the
Conference on Object-oriented Programming: Systems,
Languages, and Applications, Washington, D. C.
September, 1993. pp. 411 - 428.

[lo] Helm, R., I. M. Holland, D. Gangopadhyay, “Contracts:
Specifying Behavioral Compositions in Object-oriented
Systems,” Object-oriented Programming, Systems and
Lanugages, ECOOP/ OOPSLA ‘90 Proceedings, October,
1990, pp. 169 - 180.

[l 1] IBM Research: Subject- oriented Programming Group,
“Subject-oriented Programming and Design Patterns,”
http://www.ibm.research/sop

[12] Kaplan, M., Harold Ossher, William Harrison, Vincent
Kruskal, Subject-Oriented Design and the Watson Subject
Compiler, Position paper for OOPSLA’96 Subjectivity
Workshop, October, 1996

[13] Kendall, E. A., “Agent Roles and Role Models: New
Abstractions for Multiagent System Analysis and Design,”
International Workshop on intelligent Agents in
Information and Process Management, Germany,
September, 1998

[I41 Kiczales, G., C. Lopes, “Aspect-oriented Programming
w/AspectJTM, ” Tutorial and Primer, Xerox PARC,
www.parc.xerox.comfspliprojectslaop/

[151 Kiczales, G., J. Larnping, A. Mendhekar, C. Maeda, C.
Lopes, J. - M. Loingtier, and J. Irwin, “Aspect-oriented
Programming,” Proc. of the European Conference on
Object- Oriented Programming (ECOOP), Finland,
Springer- Verlag LNCS 1241, June, 1997.

368

[16] Kristensen, B. B., “Object-oriented ModeHing with Roles”,
OOlS’95, Proceedings of the 2nd International Conference
on Object-oriented Information Systems, Dublin, Ireland,
1996.

[17] Kristensen, B. B., Osterbye, K., “Roles: Conceptual
Abstraction Theory and Practical Language Issues”, Special
issue of Theory and Practice of Object Systems (TAPOS)
on Subjectivio in Object-oriented Systems, 1996.

[18] Kristensen, B. B., D. C. M. May. “Activities: Abstractions
for Collective Behavior”. Proceedings of the European
Conference on Object-oriented Programming
(ECOOP96), Linz, Austria, 1996.

[19] Kristensen, B. B., “Subject Composition by Roles”, Proc.
of the 4th Intl. Conf. on Object-oriented Information
Systems, Brisbane, Australia, 1997.

[20] Ossher, H., Matthew Kaplan, William Harrison, Alexander
Katz and Vincent Kruskal, “Subject- Oriented Composition
Rules,” Proceedings of 1995 Conference on Object-
oriented Programming Systems, Languages, and
Applications, October 1995

[21] Ossher, H., M. Kaplan, A. Katz, W. Harrison, V. Kruskal,
“Specifying Subject- Oriented Composition, ” Theory and
Practice of Object Systems (TAPOS), Vol2, No 3, 1996.

[22] Rational Software, “UML Documentation: Behavioral
Elements Package: Collaboration Overview,”
http:/lwww.rational.com/umvresources/docmentatio~sema
ntics/semant9a.jtmpl

[23] Reenskaug, T., Wold, P., Lehne, 0. A., Working with
Objects, The OOram Software Engineering Method,
Manning Publications Co, Greenwich, 1996.

[24] Reenskaug, T., “Role Modelling Enters the Main Stream,”
Object EXPERT, January, 1997.

[25] Riehle, D., T. Gross, “Role Model Based Framework
Design and Integration,” OOPSLA’98, Proceedings of the
1998 Conference on Object-oriented Programming
Systems, Languages and Applications, ACM .Press, 1998.

[26] Riehle, D., “Composite Design Patterns”, OOPSLA ‘97,
Proceedings of the 1997 Conference on Object-oriented
Programming Systems, Languages and Applications, ACM
Press, Page 218-228, 1997. http://www.riehle.org.

[27] Riehle, D., “Bureaucracy”, in Pattern Languages of
Program Design 3, R. Martin, D. Riehle, F. Buschmann
(Ed.), Addison Wesley, 1998, pp. 163 - 185.

[28] VanHilst, M., D. Notkin, “Using Role Components to
Implement Collaboration- Based Designs,” OOPSLA’96,
Proceedings of the 1996 Conference on Object-oriented
Programming Systems, Languages, and Applications, ACM
Press, 1996, pp. 359 - 369.

369

