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Abstract

In this paper, we consider applications of perception-
based video quality metrics to improve the performance
of global lighting computations and rendering of anima-
tion sequences. To control the computation of anima-
tion frames we use the Animation Quality Metric (AQM)
which is an extended version of the Visible Difference Pre-
dictor (VDP) developed by Daly. We show two applica-
tions of the AQM: (1) the rendering of high-quality walk-
throughs for static environments and (2) the computation
of global illumination for dynamic environments.

To improve the rendering performance of our walk-
through solution we use a hybrid of the ray tracing and
Image-Based Rendering (IBR) techniques. In our render-
ing solution we derive as many pixels as possible using
inexpensive IBR techniques without affecting the anima-
tion quality. The AQM is used to automatically guide such
a hybrid rendering.

Also, we present a method for efficient global illumi-
nation computation in dynamic environments by taking
advantage of temporal coherence of lighting distribution.
The method is embedded in the framework of stochas-
tic photon tracing and density estimation techniques. The
AQM is used to keep noise inherent in stochastic methods
below the sensitivity level of the human observer. As a re-
sult a perceptually-consistent quality across all animation
frames is obtained. Furthermore, the computation cost is
reduced compared to the traditional approaches operating
solely in the spatial domain.

Keywords: Video quality metrics, global illumination,
realistic rendering, temporal processing

1 Introduction

Rendering of animated sequences proves to be a very com-
putation intensive task. In professional production this in-
volves specialized rendering farms designed specifically
for this purpose. Data revealed by major animation com-
panies show that rendering times for the final antialiased
frames are still counted in tens of minutes or hours [1], so
shortening this time becomes very important. A serious
drawback of traditional approaches to animation render-
ing is that error metrics controlling the quality of frames

(which are computed separately one by one) are too con-
servative, and do not take advantage of various limitations
of the Human Visual System (HVS).

It is well-known in the video community that the hu-
man eye is less sensitive to higher spatial frequencies than
to lower frequencies, and this knowledge was used in de-
signing video equipment [30]. It is also conventional wis-
dom that the requirements imposed on the quality of still
images must be higher than for images used in an animated
sequence. Another intuitive point is that the quality of ren-
dering can usually be relaxed as the velocity of the mov-
ing object (visual pattern) increases. These observations
are confirmed by systematic psychophysical experiments
investigating the sensitivity of the human eye for various
spatiotemporal patterns [12, 34]. This means that all tech-
niques attempting to speed up the rendering of every sin-
gle frame separately cannot account for the eye sensitivity
variations resulting from temporal considerations. Effec-
tively, computational efforts can be easily wasted on pro-
cessing image details which cannot be perceived in the an-
imated sequence. In this context, a global approach involv-
ing both spatial and temporal dimensions appears promis-
ing research direction. In this paper we discuss two exam-
ple solutions in which spatio-temporal considerations are
taken into account to improve the performance of walk-
through animation rendering [21] and global illumination
computation for dynamic environments [22].

In the following section we briefly discuss previous
work on the perception-guided animation solutions and
video quality metrics. Then we present our extensions of
the VDP that are required to develop the AQM which is
suitable to handle animated sequences. In Section 4 we
show the AQM application to improve the performance
of rendering animation walkthrough sequences. In Sec-
tion 5 we present the AQM-based guidance of photon trac-
ing which improves the efficiency of indirect lighting com-
putations for high-quality animation sequences. Also, we
discuss the obtained results using our techniques. Finally,
we conclude the paper and propose some future directions
for this research.

13



2 Previous Work

2.1 Perception-Guided Animation Ren-
dering

The main goal of perception-guided animation rendering
techniques is to save computation without compromising
the resulting animation quality as perceived by the human
observer. In recent years some successful examples of
perception-based rendering of static images have been pre-
sented [8, 2, 25], however, expanding those techniques to
handle the temporal domain remains mostly an open prob-
lem.

Recently, some attempts of using higher level percep-
tual and cognitive elements have been introduced in the
context of animation. Yee et al. [38] propose an interest-
ing application of a visual attention model to improve the
efficiency of indirect lighting computations in the RADI-
ANCE system [33] for dynamic environments. A saliency
map based on the visual attention model developed by Itti
[11] is used to control the caching of secondary lighting in
the RADIANCE system on a per pixel basis. For image
regions less salient, greater errors can be tolerated, and the
indirect lighting can be interpolated for a larger neighbor-
hood which makes caching more efficient at the expense
of blurring details in the lighting distribution. Yee et al.
demonstrated that by considering visual attention signifi-
cant rendering speedup can be achieved. However, vari-
ability in the selection of the region of interests (ROI) for
different observers, or even for the same observer from
session to session, can lead to some degradation of the an-
imation quality in regions that were not considered as im-
portant attractors of the visual attention. Yee et al. report
that such degradations of quality could be perceived when
the same animation sequence was viewed more than once
by the same observer. In our research, we are aiming at ap-
plications that require high quality animations which will
possibly be viewed many times by a large number of ob-
servers. For this reason, we decided not to include visual
attention models into our framework.

2.2 Video Quality Metrics

Assessment of video quality in terms of artifacts visible to
the human observer is becoming very important in various
applications dealing with digital video encoding, transmis-
sion, and compression techniques. Subjective video qual-
ity measurement usually is costly and time-consuming,
and requires many human viewers to obtain statistically
meaningful results [29]. In recent years, a number of auto-
matic video quality metrics, based on the computational
models of human vision, has been proposed. Some of
these metrics were designed for video [30, 37], and are
often specifically tuned [39] for the assessment of perceiv-
ability of typical distortions arising in lossy video com-
pression such as blocking artifacts, blurring, color shifts,
and fragmentation. Also, some well-established still im-

age quality metrics were extended into the time domain
[15, 35, 29].

In this study, we deal exclusively with synthetic images,
and we are looking for a metric well tuned to our appli-
cation requirements, even at the expense of some loss of
its generality. We found that such a metric is the VDP, a
static image quality metric proposed by Daly [3], which
we extend to handle animated sequences. In the following
section we describe in detail our extensions of the VDP
into the temporal domain.

3 Animation Quality Metric

Before we move on to the description of the VDP cus-
tomizations (Section 3.3), we recall basic facts on the spa-
tiotemporal Contrast Sensitivity Function (CSF) which is
an important component of virtually all advanced video
quality metrics. We show that in our application it is far
more convenient to use the spatiovelocity CSF, which is
a dual representation of the commonly used spatiotem-
poral CSF (Section 3.1). Also, we present our algorithm
for efficient computation of the velocity of patterns mov-
ing across the image plane in animated sequences (Sec-
tion 3.2).

3.1 Spatiovelocity CSF Model

Spatiotemporal sensitivity to contrast, which varies with
the spatial and temporal frequencies is an important char-
acteristic of the HVS. The sensitivity is characterized by
the so called spatiotemporal CSF, which defines the de-
tection threshold for a stimulus as a function of its spa-
tial and temporal frequencies. The spatiotemporal CSF is
widely used in multiple applications dealing with motion
imagery. One of the most commonly used analytical ap-
proximations of the spatiotemporal CSF are the formulas
derived experimentally by Kelly [12]. Instead of exper-
imenting with flickering spatial patterns, Kelly measured
contrast sensitivity at several fixed velocities for traveling
waves of various spatial frequencies. Kelly used the well-
known relationship of equivalence between the visual pat-
terns flickering with temporal frequency � , and the cor-
responding steady patterns moving along the image plane
with velocity �� such that [34]:

� � ���� � ���� � �� � �� (1)

where �� and �� denote the horizontal and vertical compo-
nents of the velocity vector ��, which is defined in the im-
age plane ��, and �� and �� are the corresponding compo-
nents of the spatial frequency ��. Kelly found that the con-
stant velocity CSF curves have a very regular shape at any
velocity greater than about 0.1 degree/second. This made
it easy to fit an analytical approximation to the contrast
sensitivity data derived by Kelly in the psychophysical ex-
periment. As a result, Kelly obtained the spatiovelocity
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CSF, which he was able to convert into the spatiotemporal
CSF using equation (1).

We use the spatiovelocity CSF model provided by Daly
[4], who extended Kelly’s model to accommodate for
the requirements of current CRT display devices (char-
acterized by the maximum luminance levels of about
100 ���	�), and obtained the following formula:


�� ��
 �� � ������ � ���� �	
�
���

�
��������������

�

�
���
��������� � ��

����
� (2)

where � � ���� is the spatial frequency in cycles per de-
gree, � � ���� is the retinal velocity in degrees per second,
and �� � ����, �� � ����, �� � ��� are coefficients intro-
duced by Daly. In [4, 21] a more extended discussion on
estimates of the retinal velocity is available, which takes
into account the eye natural drift, smooth pursuit, and sac-
cadic movements. Figure 1 depicts the spatiovelocity CSF
model specified in equation (2).
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Figure 1: Spatiovelocity Contrast Sensitivity Function.

Although the spatiotemporal CSF is used by widely
known video quality metrics, we chose to include the spa-
tiovelocity CSF into our animation quality metric. Our
design decision was encouraged by the observation that
it is not clear whether the vision channels are better de-
scribed as spatiotemporal (e.g., Hess and Snowden [10],
and many other results in psychophysics) or spatioveloc-
ity (e.g., Movshon et al. [20], and many other results espe-
cially in physiology). Also, accounting for the eye move-
ments is more straightforward for a spatiovelocity CSF
than for a spatiotemporal CSF [4]. Finally, the widely used
spatiotemporal CSF was in fact derived from Kelly’s spa-
tiovelocity CSF, which was measured for moving stimuli
(traveling waves). However, the main reason behind our
choice of the spatiovelocity CSF is that in our application
we deal with synthetic animation sequences for which it
is relatively easy to derive the velocity of moving spatial
patterns across the image plane. In the following section
we discuss this problem in detail.

3.2 Estimating Velocity of Moving Im-
age Patterns

The 3D warping technique [18] which is traditionally used
in the IBR applications has another interesting application.
The 3D warping relies on the reprojection of every pixel in
the reference image to its new location in the desired im-
age (Figure 2). The 3D warping requires the depth (range)
data that are registered with every image to properly solve
occlusions which arise when the camera translational mo-
tion is involved. Acquiring such data with high precision is
trivial for synthetic animation sequences, while it might be
quite difficult task for video sequences representing real-
world scenes. As a result of the 3D warping of a selected
frame to the previous (following) frame in the camera an-
imation sequence, the displacement vector between posi-
tions of the corresponding pixels which represent the same
scene detail can be derived (refer to Figure 2). Because
the time span between the subsequent animation frames
is known (e.g., in the PAL composite video standard 25
frames per second are displayed), it is easy to compute the
velocity vector based on the corresponding displacement
vector. A vector field of pixel velocities defined for every
image in the animation sequence is called the Pixel Flow
(PF) which is the well-known notion in the digital video
and computer vision communities [28]. Thus, for walk-
through animation sequences that deal exclusively with
changes of camera parameters a PF of good accuracy can
be derived using the computationally efficient 3D warping
technique1.

In the more general case of scene animation involving
moving objects, the PF can be computed based on the
scripts describing motion of characters, changes of their
shape, and so on [27]. In this research, for the sake of ef-
ficiency reasons, we assume that the motion of animated
objects is fully compensated by the smooth pursuit eye
motion, which leads to the high sensitivity of the eye for
such objects. This assumption is justified by the fact that
moving objects are one of the most important attractors of
the visual attention [23, 11], which means that efficiency
of the eye tracking for such objects is very high. Thus, the
computation of the PF for moving objects is not required,
and the significant cost of such a computation [38] can be
avoided.

3.3 Animation Quality Metric Algorithm

As the framework of our animation quality metric (AQM)
we decided to expand the VDP [3]. The predictor was ex-
tensively tested through psychophysical experiments [5],
and its integrity was shown for various contrast and visual
masking models [7]. Furthermore, we found that the re-

1For the natural image sequences (video) sufficient spatial image gra-
dients must exist to detect pixel displacements, in which case so called
optical flow can be computed [28]. The optical flow computation is usu-
ally far less accurate and more costly than the PF computation for syn-
thetic sequences.
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frame frame+1frame-1

Figure 2: Displacement vectors for a pixel of the current
frame in respect to the previous (frame-1) and following
(frame+1) frames in an animation sequence. All marked
pixels depict the same scene detail.

sponses of this predictor in graphics applications are very
robust [17], and its architecture was suitable for an incor-
poration of the spatiovelocity CSF.

Figure 3 illustrates the processing flow of the AQM.
Two comparison animation sequences are provided as in-
put. For every pair of input frames the probability map
���� of perceiving the differences between these frames
is generated as output. ���� provides for all pixels the
probability values, which are calibrated in such a way that
1 Just Noticeable Differences (JND) unit [15, 3] corre-
sponds to a 75% probability that an observer can perceive
the difference between the corresponding image regions.
While ���� provides local information on the differ-
ences, for some applications it is more convenient to use
just a single value which measures the differences glob-
ally. We assumed that the percentage of pixels in ����

with the predicted differences over the 1 JND unit is a good
measure of such global differences.

In the AQM computation each input frame undergoes
the identical initial processing. At first, the original pixel
intensities are compressed by the amplitude non-linearity
and normalized to the luminance levels of the CRT dis-
play. Then the resulting images are converted into the fre-
quency domain, and decomposition into spatial and orien-
tation channels is performed using the Cortex transform
which was developed by Daly [3] for the VDP. Then, the
individual channels are transformed back to the spatial
domain, and contrast in every channel is computed (the
global contrast definition [7] with respect to the mean lu-
minance value of the whole image was assumed).

In the next stage, the spatiovelocity CSF is computed
according to the model of Kelly. The contrast sensitivity
values are calculated using equation (2) for the center fre-
quency � of each frequency band of the Cortex transform.
The visual pattern velocity is estimated based on the aver-
age PF magnitude between the currently considered frame,
and the previous and following frames (refer to Figure 2).
As we discussed in Section 3.2, the PF can be estimated
rapidly using the 3D warping technique, which requires
access to the range data of the current frame and the cam-
era parameters for all three involved frames. This means
that the access to well localized data in the animation se-
quence is required. Since the visual pattern is maximally
blurred in the direction of retinal motion, and spatial acuity

is retained in the direction orthogonal to the retinal motion
direction [6], we project the retinal velocity vector onto the
direction of the filter band orientation. The contrast sen-
sitivity values are used to normalize the contrasts in every
spatial frequency-orientation channel into the JND units.
Next the visual masking is modeled using the threshold
elevation approach [7]. The final stage is error pooling
across all channels.
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Figure 3: Animation Quality Metric. The spatiovelocity
CSF requires the velocity value for every pixel, which is
acquired from the PF. The PF is computed for the previous
and following frames along the animation path in respect
to the input frame� (or frame�� which should closely corre-
spond to frame�).

The AQM is well suited to computer graphics applica-
tions, and can be used to determine when a lower image
quality will be not perceived for a given frame, and its lo-
cal regions. In the following section we discuss the AQM
application to guide rendering in high-quality walkthrough
animation.

4 Static Environments -
Walkthrough Animation

For animation techniques relying on keyframing the ren-
dering costs depend heavily upon the efficiency of inbe-
tween frame computation because the inbetween frames
usually significantly outnumber the keyframes. We use
IBR techniques [18, 16] to derive the inbetween frames.
Our goal is to maximize the number of pixels computed
using the IBR approach without deteriorating the anima-
tion quality as perceived by the human observer.

The quality of pixels derived using IBR techniques is
usually lower than ray-traced pixels, e.g., in the regions
of derived frames which are expanded in respect to the
reference frames. The HVS sensitivity is especially high
for such quality degradations when the PF values are low.
We replace IBR-derived pixels in such regions with ray-
traced pixels. The replacement is performed when the PF
velocity is below a specified threshold value, which we
estimated in subjective and objective (using the AQM) ex-
periments [21]. In typical animations, usually only a few
percent of the pixels are replaced, unless the camera mo-
tion is very slow. Those pixels are usually grouped around
a so called focus of expansion [28] which represents the
position in the image corresponding to the point towards
which the camera is moving.
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Since specular effects are usually of high contrast and
they attract the viewers attention when looking at a video
sequence [24], special care is taken to process them prop-
erly. Existing IBR methods require costly preprocessing
to obtain specular effects of good quality [13, 9, 19, 14].
For example, a huge number of pre-calculated images is
needed to obtain crisp mirror reflections. Because of these
problems we decided to use ray tracing for pixels depict-
ing objects with strong specular properties. We use our
AQM to decide for which objects with glossy reflectance
or transparent properties such computations are required.

Pixels representing objects in the inbetween frames
which are not visible in the keyframes cannot be properly
derived using the IBR techniques, and we apply ray trac-
ing to fill the resulting holes in frames. An appropriate
selection of keyframes is an important factor in reducing
the number of pixels which must be ray traced.

In this work for the sake of simplicity we assume that
initially the keyframes are placed sparsely and uniformly
along the animation path which is known in advance. Then
adaptive keyframe selection is performed, which is guided
by the AQM predictions. We provide a detailed descrip-
tion of this solution in the following section. Then, we
discuss the performance of our approach for a case study
walkthrough animation.

4.1 Adaptive Refinement of Keyframe
Placement

At first the initial keyframe placement is decided by choos-
ing the constant length of � � � frames for all animation
segments �. Then every � is processed separately apply-
ing the following recursive procedure:

1. Generate the first frame �� and the last frame �� in �
using ray tracing. The keyframes that are shared by
two neighboring segments are computed only once.

2. Apply 3D warping to keyframes �� and �� to de-
rive two instances ������� and �������� of an inbetween
frame �����.

3. Use the AQM to compute the probability map ����

with perceivable differences between ������� and
��������.

4. Mask out from ���� all pixels that must be ray
traced because of the IBR deficiencies (discussed in
Section 4). The following order for masking out pix-
els is taken:

(a) Mask out from ���� pixels with low PF values
(in [21] we discuss experimental derivation of
the PF threshold value used for such masking).

(b) Mask out from ���� pixels depicting objects
with strong specular properties (i.e., mirrors,
transparent and glossy objects). The item buffer
[36] of frame ������ is used to identify pixels

representing objects with such properties. Only
those specular objects are masked out for which
the differences between ������� and �������� as re-
ported in ���� can be readily perceived by the
human observer. In Section 4.2 we provide de-
tails on setting the thresholds of the AQM re-
sponse, which are used by us to discriminate
between the perceivable and imperceivable dif-
ferences.

(c) Mask out from ���� holes composed of pixels
that could not be derived from keyframes �� and
�� using 3D warping.

5. If masked-out ���� shows the differences between
������� and �������� for a bigger percentage of pixels
than the assumed threshold value:

(a) Split � at frame ������ into two subsegments ��
(��
 � � � 
 ������) and
�� (������
 � � � 
 �� ).

(b) Process recursively �� and ��, starting this pro-
cedure from the beginning for each of them.

Else

(a) Composite ������� and �������� with correct pro-
cessing of object occlusions [16, 26] to derive
������.

(b) Ray trace all pixels which were masked out
in the step 4 of this procedure, and composite
these pixels with ������.

(c) Repeat the two latter steps for all remaining in-
between frames,
i.e., ��
 � � � 
 �������� and ������	�
 � � � 
 ����

in �.

To avoid image quality degradation resulting from mul-
tiple resamplings, the fully ray-traced reference frames ��
and �� are always warped in step 5c to derive all inbe-
tween frames in �. Pixels to be ray traced, i.e., pixels
with low PF values, pixels depicting specular objects with
visible differences (such objects are selected once for the
whole � in step 4b), and pixels with holes resulting from
the IBR processing must be identified for every inbetween
frame separately.
We evaluate the AQM response only for frame ������. We
assume that derivation of ������ applying the IBR tech-
niques is the most error-prone in the whole segment � be-
cause its arclength distance along the animation path to
either the �� or �� frames is the longest one. This assump-
tion is a trade off between the time spent for rendering and
for the control of its quality (we discuss the AQM costs
in Section 5.2), but in practice, it holds well for typical
animation paths.

Figure 4 summarizes the computation and compositing
of an inbetween frame. We used a dotted line to mark
those processing stages that are performed only once for
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segment �. All other processing stages are repeated for all
inbetween frames.

As a final step, we apply a spatiotemporal an-
tialiasing technique, which utilizes the PF to perform
motion-compensated filtering (refer to [21] for more
details). On the Web page located under the URL:
http://www.mpi-sb.mpg.de/resources/aqm,
we provide the walkthrough animation sequences which
result from our techniques of adaptive keyframe selection
guided by the AQM predictions.

4.2 A Case Study Walkthrough Anima-
tion

In this work we choose as a case study a walk-
through animation for the ATRIUM scene scene
shown in Figure 5 (more details on this scene
are provided on the Web http://www.mpi-
sb.mpg.de/resources/atrium). The main
motivation for this choice were the interesting occlusion
relationships between objects which are challenging
for IBR. Also, a vast majority of the surfaces exhibit
some view-dependent reflection properties, including
the mirror-like and transparent surfaces, which made
the computation of inbetween frames more difficult.
Under such conditions, the AQM guided selection of
keyframes and glossy objects within inbetween frames to
be recomputed was more critical, and wrong decisions
concerning these issues could be easy to perceive.
            

Figure 5: An atrium of the Research Quadrangle at the
University of Aizu: rendering based on the simplified
atrium model.

For our experiments we selected a walkthrough se-
quence of 200 frames. At the initial keyframe selection
step, we assumed the length � � � � �� frames for each
animation segment �. Figure 6a illustrates adaptive re-
finement of the initial keyframe placement guided by the
AQM predictions. We use the global measure (refer to
Section 3.3) of the differences between frames, i.e., the
percentage of pixels in ���� for which the differences are
over 1 JND. Note that only pixels to be derived using the

IBR approach are considered, while pixels to be ray traced
are masked out (refer to Section 4.1). The filled squares in
Figure 6a show the global AQM predictions of the differ-
ences between the subsequent keyframe pairs: �� warped
to �������, and �� warped to �������� for every initial seg-
ment �. Segments with global predictions over 10% are
split, and the filled diamonds show the corresponding re-
duction of the predicted perceivable differences between
the newly inserted frames. The 10% threshold was cho-
sen experimentally, and can be justified by the fact that
for an animated sequence the observer can only fixate at
one location per frame. For such a location and its sur-
round of approximately 1 visual degree the eye sensitivity
is high due to the foveal vision [32], while it decreases
significantly for the remaining image regions which are
perceived by means of the peripheral vision (eccentricity
effect). The AQM sensitivity is tuned for the foveal vision
because at the stage of animation rendering it is not known
where the observer will be looking. This means that the
AQM predictions might be too conservative for many im-
age regions, and the degradation of quality usually cannot
be perceived unless the observer attention is specifically
attracted to these regions. To improve the rendering per-
formance, we chose a trade-off solution in which visible
differences between warped keyframes are allowed for a
small number of pixels (up to 10%). Although some per-
ceivable quality problems may arise for these pixels, it is
most likely that the observer will not notice them at all.

The overall costs of the computation of inbetween
frames are strongly affected by the number pixels of that
must be ray traced. As we discussed in Section 4, we re-
place IBR-derived pixels by ray traced pixels for image
patterns moving with low velocity. The graph in Figure 6b
shows the percentage of such pixels for which the PF val-
ues are below the experimentally derived threshold veloc-
ity 0.5 degree/second (for details concerning the derivation
of this threshold value refer to [21]). Also, we use ray trac-
ing to derive pixels depicting specular objects for which
the IBR technique leads to the AQM predicted degradation
of the animation quality. As described in Section 4.1, for
every segment � we run the AQM once to decide upon the
specular objects which require recomputation. If a group
of connected pixels representing an object (or a part of
an object) exhibits differences greater than 2 JND units (a
93.75% probability of the difference discrimination), we
select such an object for recalculation. If differences be-
low 2 JND units are reported for an object by the AQM
then we estimate the ratio of pixels exhibiting such dif-
ferences to all pixels depicting this object. If the ratio is
bigger than 25%, we select such an object for recomputa-
tion - 25% is an experimentally selected trade-off value,
which makes a reduction in the number of specular ob-
jects requiring recomputation possible, at the expense of
some potentially perceivable image artifacts. The graph in
Figure 6b shows the percentage of specular pixels selected
for recomputation. Finally, the percentage of pixels that
are ray traced due to IBR occlusion problems is included
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in this graph. Table 1 summarizes the results depicted in
Figure 6b by providing the average percentage of pixels
per frame to be ray traced. Note that the keyframe pixels,
which are always ray traced, are included in the average.
The overall rendering time was reduced almost twofold.
Even better performance can be expected for environments
in which specular objects are depicted by a smaller per-
centage of pixels, and camera motion is faster.

In the following section we discuss another AQM appli-
cation in which the metric is applied to guide the indirect
lighting computation.

5 Dynamic Environments -
Indirect Lighting Solution

An important research goal is to improve the perfor-
mance of global illumination computation for animated
sequences of high quality. This can be achieved by ex-
ploiting the temporal coherence in indirect lighting distri-
bution in a better way. As a framework for global illumi-
nation computation, we chose the Density Estimation Pho-
ton Tracing (DEPT) algorithm [31]. The DEPT is similar
to other stochastic solutions in which photons are traced
from light sources towards surfaces in the scene, and the
lighting energy carried by every photon is deposited at the
hit point locations on those surfaces (refer to Figure 7).
A simple photon bucketing on a dense triangular mesh is
performed, and every photon is discarded immediately af-
ter its energy is distributed to the mesh vertices.

We assume that photons are traced sparsely for all ani-
mation frames and our goal is to minimize the number of
those photons without compromising the animation qual-
ity. To achieve this goal we exploit the temporal coherence
of indirect lighting and for a given frame we also consider
photons that were traced for neighboring frames. Ideally,
as many frames should be processed as it is required to re-

duce the stochastic noise below the sensitivity level of the
human observer. However, the expansion of the photon
collection in the temporal domain might be limited due to
changes in dynamic environments that affect the lighting
distribution. A contradictory requirement arises between
maximizing the number of collected photons and minimiz-
ing the number of neighboring frames (the time span) for
which these photons were traced. A trade-off solution to
this problem relies on balancing the stochastic noise (re-
sulting from collecting too few photons) and the errors in
reconstructed illumination (caused by collecting too many
invalid photons in the temporal domain) to make those
artifacts as little objectionable as possible for the human
observer. The perception-based AQM is used to find the
minimal number of photons per frame which is required to
make the noise undetectable. An energy-based stochastic
error metric [22], which is applied to each mesh element
and to every frame, is used to guide the photon collection
in the temporal domain. We found this mesh-element level
of applying the energy-based metric to be very efficient,
and therefore abandoned the use of perception-based guid-
ance of photon collection at this low level which would be
far more expensive.

5.1 AQM Application

The main goal of adjusting the number of photons per
frame �
��
� is to keep the noise below a perceivable
level. Increasing �
��
� for each frame in a given ani-
mation segment is an expensive operation and should only
be performed if the noise can be perceived by the human
observer.

The AQM is used to measure the errors of the indi-
rect lighting reconstruction which enables the perception-
guided selection of �
��
� to minimize the computational
costs without degrading the animation quality. The AQM
requires two animation frames �� and �� as input, and
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Table 1: Statistics of the ray traced pixels in the ATRIUM walkthrough.

Slow motion Specular objects IBR occlusions Keyframes Total
[%] [%] [%] [%] [%]
2.4 40.8 0.3 6.0 49.5

will then predict the perceivable differences between them.
Ideally, a frame resulting from the temporal photon pro-
cessing should be compared to some exact reference so-
lution. Since such a reference solution is not available in
practice, we decided to measure the differences in indirect
lighting reconstructed for the central frame � by splitting
the photons collected for all frames in a given segment
into two halves (the even and odd photons). The indirect
lighting in ����� and ����� is reconstructed using these
halved sets of photons. In order to measure the level of
noise in the conditions in which the actual temporal pho-
ton processing is performed for all animation frames, the
procedure of adaptive photon collection in the temporal
domain [22] is used for the ����� and ����� computation
as well.

As the result of AQM processing a map ���� is gen-
erated which shows the prediction of perceivable differ-
ences in indirect lighting between all corresponding pixels
in ����� and �����. As a scalar metric of the frame qual-
ity the percentage ���� of ���� pixels with differences
over one unit Just Noticeable Difference (JND) is assumed
[21]. The user chooses a certain threshold value ���� of
the AQM predicted differences, and when ���� � ����,
�
��
� is doubled and the whole procedure is repeated un-
til ���� � ����.

Since the same mesh is used for lighting reconstruction
in frames ����� and �����), the AQM is used to measure
the perceivable differences between two equally biased in-
direct lighting solutions. Thus, the discretization error is
the same for frames ����� and �����, which means that
all measured differences between the frames result from
the stochastic noise. Effectively the AQM provides a con-
servative stopping condition for photon tracing when the
noise falls below the sensitivity level of the human ob-
server. Tracing more photons cannot improve the per-
ceived quality of the indirect lighting reconstruction due
to limitations in the spatial mesh resolution.

5.2 Issues of AQM Processing Effi-
ciency

To reduce the costs of HVS modeling the AQM processing
is performed only once per segment for the central frame
�. Thus, the �
��
� value obtained for � is assumed to
be valid for all frames in a given segment. In practice, this
trade-off approach works well because the differences in
indirect lighting are usually small for a given animation
segment whose length was adjusted to reduce such differ-
ences using the energy-based error metrics.

Our indirect lighting solution requires only seconds or

Figure 7: Density Estimation Photon Tracing algorithm:
the lighting function is known implicitly as the density of
photon hitting points over the scene surfaces.

single minutes to process complex scenes so the overhead
of the HVS modeling plays an important role in our appli-
cation of the AQM. In practice, this means that the HVS
characteristics that are too costly to model have to be ig-
nored. In order to reduce the cost of the AQM, we ignore
the orientation channels processing in the visual masking,
which to some extent can be justified by cross-masking
between various orientations as discussed in [23]. Also,
we scale down images which are input to the AQM to
���� ��� pixels. At the same time we proportionally re-
duce the distance of the observer to the screen (which is an
input parameter of the AQM) to preserve the same spatial
frequencies as in the original animation frames. All those
simplifications result in the AQM processing time of about
4 seconds for a pair of compared frames.

5.3 Case Study Animations

We present results that we obtained for the
ROOM scene (about 5,300 mesh elements, refer
to Figure 8a), and the resulting animations are
available under the URL http://www.mpi-
sb.mpg.de/resources/dynenv. Also, we briefly
summarize the results obtained for another scene SALON

(about 48,600 mesh elements), which are qualitatively
very similar and therefore do not need to be discussed in
full length.

Figure 8b summarizes the results obtained using the
perception-based procedure of noise level estimation as
described in Section 5.1. It was assumed that ���� � ��,
which means in practice that the perceivable differences
���� � �� with respect to the reference solution are usu-
ally obtained. Table 1 summarizes the number of photons
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Figure 8: a) Example frame from the ROOM sequence. b) The AQM predicted percentage of pixels ���� with perceivable
differences as a function of �
��
� for the central segment frames ��.

�
��
� chosen for every segment based on the graphs in
Figure 8b. The average time of the indirect lighting com-
putation per frame was 3.9 seconds.

�
��
� �
��

�� 40,000 30
�� 40,000 30
�� 10,000 44

Table 2: Final settings for the ROOM scene animation.

The results obtained for the SALON scene are very sim-
ilar to the ones for ROOM. In general, �
��
� fell into the
range of 40,000–160,000photons while the animation seg-
ment length lay between 15 and 44 frames. The average
time of the indirect lighting computation per frame was 8.3
seconds. Figure 9a shows an animation frame obtained us-
ing our temporal photon processing algorithm. Figure 9b
depicts the corresponding frame obtained using the tradi-
tional approach without any temporal photon processing.
Strong temporal aliasing was observed when the anima-
tion composed of such quality frames was viewed.

6 Conclusions

We showed two successful examples in which the
perception-based guidance of rendering resulted in signif-
icant improvement of the computation performance. First,
we proposed an efficient approach for rendering of high
quality walkthrough animation sequences. Our contribu-
tion is in developing a fully automatic, perception-based
guidance of inbetween frame computation, which mini-
mizes the number of pixels computed using costly ray trac-
ing, and seamlessly (in terms of the perception of animated
sequences) replace them by pixels derived using inexpen-
sive IBR techniques. Also, we discussed our global il-

lumination technique for dynamic environments which is
suitable for high-quality animation rendering. We applied
the AQM to decide upon the stopping conditions for our
photon tracing procedures when the stochastic noise falls
below the sensitivity level of the human observer. As a
result the efficiency of computation is improved and the
temporal aliasing is reduced with respect to traditional ap-
proaches which ignore temporal processing and perceptual
considerations.

As future work we want to investigate our techniques
in the context of MPEG coding. The accuracy of the ren-
dering computation can be adjusted in order to obtain a
degradation of the animation quality that is perceived as
being as homogeneous as possible for an assumed anima-
tion compression level. Also, by removing non-visible im-
age details from animations the compression performance
can be improved.
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