
Feature-Based Light Field Morphing

Zhunping Zhang Lifeng Wang Baining Guo Heung-Yeung Shum

Microsoft Research Asia�

Figure 1: Light field morphing: A 3D morphing sequence from a furry toy cat (real object) to the Stanford bunny (synthetic object).

Abstract

We present a feature-based technique for morphing 3D objects rep-
resented by light fields. Our technique enables morphing of image-
based objects whose geometry and surface properties are too diffi-
cult to model with traditional vision and graphics techniques. Light
field morphing is not based on 3D reconstruction; instead it relies
on ray correspondence, i.e., the correspondence between rays of
the source and target light fields. We address two main issues in
light field morphing: feature specification and visibility changes.
For feature specification, we develop an intuitive and easy-to-use
user interface (UI). The key to this UI is feature polygons, which
are intuitively specified as 3D polygons and are used as a control
mechanism for ray correspondence in the abstract 4D ray space.
For handling visibility changes due to object shape changes, we in-
troduce ray-space warping. Ray-space warping can fill arbitrarily
large holes caused by object shape changes; these holes are usually
too large to be properly handled by traditional image warping. Our
method can deal with non-Lambertian surfaces, including specular
surfaces (with dense light fields). We demonstrate that light field
morphing is an effective and easy-to-use technqiue that can gener-
ate convincing 3D morphing effects.

Keywords: 3D morphing, light field, ray correspondence, feature
polygons, global visibility map, ray-space warping

1 Introduction

�3F, Beijing Sigma Center, No. 49, Zhichun Road, Haidian District,
Beijing 100080, P R China. email:bainguo@microsoft.com

Metamorphosis, or morphing, is a popular technique for visual ef-
fects. When used effectively, morphing can give a compelling illu-
sion that an object is smoothly transforming into another. Following
the success of image morphing [1, 26], graphics researchers have
developed a variety of techniques for morphing 3D objects [15, 10].
These techniques are designed for geometry-based objects, i.e., ob-
jects whose geometry and surface properties are known, either ex-
plicitly as for boundary-based techniques (e.g., [14, 6, 16]) or im-
plicitly as for volume-based techniques (e.g., [13, 17, 5]).

In this paper, we describe a feature-based morphing technique
for 3D objects represented by light fields/lumigraphs [19, 11]. Un-
like traditional graphics rendering, light field rendering generates
novel views directly from images; no knowledge about object ge-
ometry or surface properties is assumed [19]. Light field morphing
thus enables morphing between image-based objects, whose geom-
etry and surface properties, including surface reflectance, hypertex-
ture, and subsurface scattering [7], may be unknown or difficult to
model with traditional graphics techniques.

The light field morphing problem can be stated as follows: Given
the source and target light fields L0 and L1 representing objects O0

and O1, construct a set of intermediate light fields fL� j 0 < � <
1g that smoothly transforms L0 into L1, with each L� representing
a plausible object O� having the essential features of O0 and O1.
We call the intermediate light fieldL� a light field morph, or simply
a morph.

A naive approach to light field morphing is to apply image mor-
phing to individual images in the source and target light fields and
assemble the light field morphs from the intermediate images of
image morphing. Unfortunately, this approach will fail for a fun-
damental reason: light field morphing is a 3D morphing and image
morphing is not. This difference manifests itself when a hidden part
of the morphing object becomes visible because of object shape
change, as image morphing will produce “ghosting” that betrays a
compelling 3D morphing.

The plenoptic editing proposed by Seitz and Kutulakos [22] rep-
resents another approach to image-based 3D morphing. They first
recover a 3D voxel model from the image data and then apply
traditional 3D warping to the recovered model. The visibility is-
sues can be resolved with the recovered geometry, but there are
problems, including the Lambertian surface assumption needed for
voxel carving [22] and the difficulties with recovering detailed ge-
ometry. Most of the problems are related to the fundamental diffi-
culties of recovering surface geometry from images [9].

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1-212-869-0481 or e-mail permissions@acm.org.
© 2002 ACM 1-58113-521-1/02/0007 $5.00

457

Specifying
features

Light field
warping Blending

LF0

LF1

LF0 with
features

LF1 with
features

Warped
LF1

Warped
LF0

Morphed
LF

Feature polygon 2

Feature polygon n

Computing
visibility

map

Ray bundle 1

Ray bundle 2

Ray bundle n

Ray space
warping

Feature polygon 1

LF with
features

Warped
LF

UI Component Morphing Component

Figure 2: Overview of light field morphing. The overall pipeline is illustrated in the upper part, whereas the warping of a light field is detailed
in the lower part.

Light field morphing is an image-based 3D morphing technique
that is not based on 3D surface reconstruction. The basis of light
field morphing is ray correspondence, i.e., the correspondence be-
tween rays of the source and target light fields [19]. The role of
ray correspondence in light field morphing is the similar to that of
vertex correspondence in geometry-based 3D morphing [15, 16].
Like vertex correspondence (e.g., see [6, 12]), ray correspondence
is controlled by user-specified feature elements.

A key issue in light field morphing is thus the construction of
a user interface (UI) for specifying feature elements. Since there
is no intrinsic solution to a morphing problem, user interaction is
essential to the success of any morphing system [17, 26, 15]. For
light field morphing, the main challenge is the design of intuitive
feature elements for an abstract 4D ray space [19]. To address this
challenge, we introduce feature polygons as the central feature ele-
ments for light field morphing. As 3D polygons, feature polygons
are intuitive to specify. More importantly, feature polygons parti-
tion a light field into groups of rays. The rays associated with a
feature polygon P constitute a ray bundle, and the ray correspon-
dence of this ray bundle is controlled by the control primitives of
the feature polygon P . Note that feature polygons do not make a
rough geometry of the underlying object; they are needed only at
places where visibility changes (due to object shape change).

Another key issue in light field morphing, and more generally
in image-based 3D morphing, is visibility change. Two types of
visibility change exist. The first is due to viewpoint changes. In
light field morphing, this type of visibility change is automatically
taken care of by the input light fields. The second type of visibil-
ity change is that caused by object shape changes, and this is an
issue we must handle. For a given view, a hole is created when a
hidden surface patch in the source light field L0 becomes visible in
the target light field L1 due to object shape change. This type of
hole may be arbitrarily large and thus cannot be dealt with properly
by traditional image warping methods (e.g., [4, 21]). We solve this
problem using a novel technique called ray-space warping, which
is inspired by Beier and Neely’s image warping [1]. With ray-space
warping we can fill a hole by approximating an occluded ray with
the “nearest visible ray”. Not surprisingly, ray-space warping re-
quires visibility processing and the key to visibility processing is
the global visibility map, which associates each light field ray with
a feature polygon.

Ray-space warping produces accurate results under the popular
Lambertian surface assumption [4, 21]. For non-Lambertian sur-

faces, ray-space warping tries to minimize the errors by using the
“nearest visible rays”. We demonstrate that, unlike plenoptic edit-
ing [22], our method can effectively handle non-Lambertian sur-
faces, including specular surfaces.

Light field morphing is easy to use and flexible. Feature specifi-
cation usually takes about 20 � 30 minutes and sparse light fields
can be used as input to save storage and computation. When the
input light fields are very sparse (e.g. 2 � 3 images per light
field), we call light field morphing key-frame morphing to empha-
size its similarity with image morphing. Key-frame morphing may
be regarded as a generalization of view morphing [21] because key-
frame morphing allows the user to add more input images as needed
to eliminate the holes caused by visibility changes. Note that al-
though view morphing can generate morphing sequences that ap-
pear strikingly 3D, it is not a general scheme for image-based 3D
morphing because the viewpoint is restricted to move along a pre-
scribed line.

We will demonstrate results for a few applications of light field
morphing, including generating 3D morphs for interactive viewing,
creating animation sequences of a 3D morphing observed by a cam-
era moving along an arbitrary path in 3D, key-frame morphing, and
transferring textures from one 3D object to another. For computing
an animation sequence of a 3D morphing, we present an efficient
method that generates the sequence without fully evaluating all the
morphs. The techniques we present can be used as visualization
tools for illustration/education purposes [2], in the entertainment
industry, and for warping/sculpting image-based objects [18, 22].

The rest of the paper is organized as follows. In Section 2, we
give an overview of our system. Section 3 describes the specifi-
cation of feature elements, in particular feature polygons, and vis-
ibility processing. Section 4 presents the warping algorithms for
warping a light field and for generating 3D animation sequences.
Experimental results are reported in Section 5, followed by conclu-
sions in Section 6.

2 Overview

As shown in Fig. 2, our system has two main components. The first
is a UI for specifying feature element pairs through side-by-side
interactive displays of the source and target light fields. We use
three types of feature elements: feature lines, feature polygons, and
background edges. The second component is a morphing unit that

458

1 2

3
4 5

6

Figure 3: The user interface for feature specification. On the top, windows (1) and (2) are interactive renderings of the source and target
light fields. Three pairs of feature polygons are drawn using wireframe rendering (white lines) on top of the source and target objects. The
background edges are drawn as yellow polylines. On the bottom, windows (3) and (6) are interactive renderings of the global visibility maps,
showing the visibility of the feature polygons using color-coded polygons. Windows (4) and (5) display the (s; t)-planes of the two light
fields, with each yellow dot representing a key view used for specifying background edges.

automatically computes the morph L� for a given � through the
following steps. First, the feature elements of L� are obtained by
linearly interpolating those of L0 and L1. Second, L0 and L1 are
warped to L̂0 and L̂1 respectively for feature alignment. Finally,
L� is obtained by linearly interpolating the warped light fields L̂0

and L̂1. Of these steps, both the first and last steps are simple; the
warping step is the main part of the second component.

The two most important operations in light field morphing are
feature specification and visibility processing. The key to feature
specification is the feature polygons, which are 3D (non-planar)
polygons approximating surface patches of 3D objects. The key to
visibility processing is the global visibility map, which associates
each ray of a light field L with a feature polygon of L.

The critical roles of feature polygons and global visibility maps
in the warping of a light field L are illustrated in the lower part
of Fig. 2. From the user-specified feature polygons of L, we can
compute the global visibility map of L. The global visibility map
partitions L into ray bundles such that each feature polygon P is
associated with a ray bundle R(P). Light field warping is then per-
formed by warping one ray bundle at a time using ray-space warp-
ing, with the ray correspondence of a ray bundle R(P) determined
by P ’s control primitives.

Feature polygons are only needed where visibility changes. Rays
not in any ray bundle are called background rays, which can be eas-
ily treated by image warping because there is no visibility change
involved.

Notation: Following the convention of [11], we call the image
plane the (u; v)-plane and the camera plane the (s; t)-plane. For
a given light field L, we can think of L either as a collection of im-
ages fL(s;t)g or as a set of rays fL(u; v; s; t)g. An image L(s0;t0)

is also called a view of the light field L. In L(s0;t0), the pixel at po-
sition (u0; v0) is denoted as L(s0;t0)(u0; v0), which is equivalent
to ray L(u0; v0; s0; t0).

3 Features and Visibility

In feature-based morphing [10], the corresponding features of the
source and target objects are identified by a pair of feature elements.
In this section, we show how to specify such feature element pairs
when the source and target objects are described by light fields. We
also describe visibility processing using feature polygons.

3.1 Feature Specification

The user specifies feature element pairs using the UI shown in
Fig. 3. We use three types of feature elements: feature lines, feature
polygons, and background edges.
Feature Lines: A feature line is a 3D line segment connecting two
points called its vertices, which are also called feature points. The
purpose of a feature line is to approximate a curve on the surface
of a 3D object. The user specifies a feature line E by identifying
the pixel locations of its vertices. Once E is specified, our system
displays E on top of the interactive rendering of the light field.

To determine the 3D position of a vertex v, we use geometry-
guided manual correspondence: the user manually identifies pro-
jections p1(v) and p2(v) of v in two different views L(s1;t1) and
L(s2;t2) under the guidance of epipolar geometry [9]. After the user
specifies p1(v) in view L(s1;t1), the epipolar line of p1(v) is drawn
in view L(s2;t2) as a guide for specifying p2(v) since p2(v) must
be on the epipolar line of p1(v). Because the camera parameters
of both views are known, calculating v from p1(v) and p2(v) is
straightforward.
Feature Polygons: A feature polygon P is a 3D polygon defined
by n feature lines fE1; :::; Eng, which are called the edges of P .
P has control primitives fE1, ..., En+kg which includes both the
edges of P and supplementary feature lines fEn+1, ..., En+kg for
additional control inside the feature polygon. The purpose of a fea-
ture polygon is to approximate a surface patch of a 3D object. In
general, P is allowed to be non-planar so that it can approximate a
large surface patch as long as the surface patch is relatively flat.

459

Object

C1 C2 C3

A B

Feature
Polygon P1

Ray Bundle
R(P1)

C1 C2 C3

Occluder

P2

Ray Bundle
R(P2)

Figure 4: Left: Example of ray bundles in a light field with three
cameras. The rays associated with a feature polygon P1 across all
views of the light field constitute ray bundle R(P1). In this exam-
ple, R(P1) includes all pink rays but not the green rays. Right:
Example of nearest visible rays in a light field with three cameras.
Occluded ray C1B (pink) is replaced by C2B (pink), while C1A is
replaced by C3A.

To specify a feature polygon, the user draws a series of connected
feature lines (two consecutive lines sharing a vertex) in counter-
clockwise order in the interactive display of a light field. A techni-
cal difficulty in the specification process is that, because light field
rendering does not perform visible surface computation, all ver-
tices are visible in every view. Fortunately, our experience indicates
that the user can easily distinguish vertices on visible surfaces from
those on hidden surfaces, for two reasons. First, there are relatively
few vertices and a vertex on the visible surface can be identified
by the landmark it labels. More importantly, the interactive display
gives different motion parallax to visible vertices in the front and
invisible ones in the back.

To ensure that the patches are well approximated by feature poly-
gons, we restrict the geometry of the patches. Specifically, for a sur-
face patch S approximated by a feature polygon P , we require that
S has no self-occlusion and is relatively flat. We split S if either
requirement is not met. By requiring S to have no self-occlusion,
we can avoid self-occlusion in P if it is a sufficiently close approxi-
mation of S. For such a P , we only have to check occlusion caused
by other feature polygons during visibility processing. Note that
whether S satisfies the two conditions is solely judged within the
viewing range of L. For example, consider any one of the faces
in Fig. 3. The surface patch approximated by a feature polygon
has no self-occlusion for the viewing range of the light field shown.
However, when the viewpoint moves beyond the viewing range of
this light field, e.g., to the side of the face, the nose will cause self-
occlusion within the surface patch.

Background Edges: We introduce background edges to control
rays that do not belong to any feature polygons. These rays exist
for two reasons. First, feature polygons only roughly approximate
surface patches of a 3D object. In each light field view, rays near
the object silhouette may not be covered by the projection of any
feature polygons. Second, parts of the object surface may not be
affected by the visibility change caused by object shape change.
There is no need to specify feature polygons for the corresponding
rays.

For rays that do not belong to any feature polygons, we control
them with background edges, which are 2D image edges specified
by the user. Background edges play the same role as the feature
edges in image morphing [1]. A series of connected background
edges form a background polyline. As shown in Fig. 3, a back-
ground polyline is manually specified in a few key views and inter-
polated into other views by linear interpolation.

3.2 Global Visibility Map

After specifying all feature elements of a light field L, we can de-
fine the global visibility map (or visibility map for short) of L as
follows.

Definition 1 The global visibility map of a light field L with feature
polygons fP1; :::; Pnpg is a mapping V : L ! N from the ray
space L to the set of integers N such that

V (u; v; s; t) =

�
i if ray L(u; v; s; t) belongs to Pi
�1 otherwise

Intuitively, V may be regarded as a light field of false colors, with
V (u; v; s; t) indicating the id of the feature polygon visible at ray
L(u; v; s; t). Fig. 3 shows examples of visibility maps.
Visibility Computation: The visibility map V is computed based
on the vertex geometry of feature polygons1 as well as the fact that
feature polygons have no self-occlusion by construction. The main
calculation is that of the visibility of a set of relatively flat but non-
planar polygons. This is a calculation that can be done efficiently
using OpenGL.

Consider rendering a non-planar polygon Pi into a view L(s;t).
A problem with this rendering is that the projection of Pi into the
view L(s;t) may be a concave polygon, which OpenGL cannot dis-
play correctly. One solution to this problem is a two-pass render-
ing method using the stencil buffer. This method works for feature
polygons since they have no self-occlusion as we mentioned ear-
lier. Alternatively, we can simplify visibility map computation by
restricting feature polygons to be triangles without supplementary
feature lines, but then the user has to draw many feature polygons,
which makes feature specification unnecessarily tedious.
Ray Bundles: Based on the visibility map V , we can group the
rays of L according to their associated feature polygons. A group
so obtained is called a ray bundle, denoted as R(Pi) where Pi is
the associated feature polygon. As we shall see in Section 4, R(Pi)
can be warped using ray-space warping with the control primitives
of Pi (see the ray-space warping equation (1) in Section 4). The
ray correspondence of R(Pi) is thus completely determined by the
control primitives of Pi. Rays that do not belong to any ray bundle
are called background rays. Background rays are controlled by the
background edges.

Ray bundles have been used by Szirmay-Kalos in the context of
global illumination [25].

4 Warping

As mentioned, for each 0 < � < 1, the light field morph L� is
obtained by blending two light fields L̂0 and L̂1, which are warped
from L0 and L1 for feature alignment. In this section, we discuss
the warping from L0 to L̂0 since the warping from L1 to L̂1 is es-
sentially the same. We also describe an efficient warping algorithm
for animation sequences of 3D morphing.

The warping from L0 to L̂0 takes the following steps: (a) cal-
culate feature polygons and background edges of L̂0, (b) build the
visibility map of L̂0, (c) compute ray bundles of the warped light
field L̂0, and (d) treat background rays.

4.1 Basic Ray-Space Warping

Because the rays of a light fieldL are grouped ray bundles, the basic
operation of light field warping is to warp a ray bundle R(Pi). For

1Using feature polygons to handle occlusion is related to layered repre-
sentations in image-based rendering (e.g. [23]).

460

(a) (b) (c)

(d) (e) (f)

Figure 5: Issues in light field warping. Top row shows interpolation
of feature polygons, viewed from (s; t) = (3; 0). (a) Light field L0
with feature lines. (b) Light field L0:5 with feature lines. (c) Light
field L1 with feature lines. Bottom row shows a hole caused by
object shape change. (d) Light fieldL0 viewed from (s; t) = (3; 0).
(e) Warped light field L̂0 viewed from (s; t) = (3; 0). The area
highlighted in green is a hole corresponding to the occluded part of
a feature polygon in (d). (f) Light field L0 viewed from (s; t) =
(32; 32). The feature polygon occluded at view (s; t) = (3; 0) is
now fully visible.

simplicity, let us assume that L has only an n-sided feature poly-
gon Pi, whose feature lines are fE1; :::; En+kg before warping and
fÊ1; :::; Ên+kg afterwards.

The basic ray-space warping regards the warped light field L̂ as a
4D ray space and directly computes color values of individual rays:

L̂(u; v; s; t) = L(u
0

; v
0

; s
0

; t
0

); where

(u
0

; v
0

)
T
= f(u; v; E

1
(s0;t0); :::; E

n+k

(s0;t0); Ê
1
(s;t); :::; Ê

n+k

(s;t)) (1)

and (s0; t0) are free variables in the (s; t)-plane. The vector function
f() is the Beier-Neely field warping function [1]. For a given point
(u; v) in view L̂(s;t), f() finds the preimage (u0; v0) in view L(s0;t0)

based on the correspondence between the feature lines E1
(s0;t0), ...,

En+k

(s0;t0)
in L(s0;t0) and Ê1

(s;t), ..., Ên+k

(s;t)
in L̂(s;t).

For each ray L̂(u; v; s; t), the basic ray-space warping provides
a set of rays fL(u0; v0; s0; t0)g whose colors can be assigned to
L̂(u; v; s; t). Possible values of (s0; t0) include (s; t), in which case
ray-space warping yields the same result as image warping [1].

4.2 Light Field Warping

To warp the light field L0 to L̂0, we apply the basic warping meth-
ods described above to feature polygons of L0. The warping takes
four steps. First, we calculate feature polygons and background
edges of L̂0. The vertices of feature lines in L̂0 are linearly interpo-
lated from their counterparts of L0 and L1. Fig. 5 (top row) shows
an example of feature interpolation. For i = 0; 1, let fvi

1; :::;v
i

ng
be the vertices of feature lines in Li. The vertices of feature lines
in L̂0 are fv̂1, :::; v̂ng, where

v̂k = (1� �)v
0
k + �v

1
k; k = 1; :::; n:

The connections between the vertices are the same in L̂0 and L0.
Thus we can easily obtain the feature polygons of L̂0 as well as
their control primitives.

Figure 6: 3D facial morphing.

Second, we build the visibility map of L̂0 and that gives us infor-
mation about the visibility changes caused by object shape change.
Using the edge geometry of feature polygons of L̂0, we can per-
form the visibility calculation of these polygons, with non-planar
polygons rendered by the view-dependent triangulation as before.
The result of this visibility calculation is the visibility map of L̂0.

Third, we compute the warped ray bundles of light field L̂0 =
fL̂0 (s;t)g view-by-view. Consider processing ray bundle R(P̂0)
in view L̂0 (s;t) for feature polygon P̂0 that corresponds to feature
polygon P0 in L0. We evaluate L̂0(u; v; s; t) in three steps:

visibility testing We check the visibility map of L0 to see whether
P0 is visible at ray L0(u

0; v0; s; t) determined by the ray-
space warping equation (1) with (s0; t0) = (s; t).

pixel mapping If P0 is visible at ray L0(u
0; v0; s; t), we let

L̂0(u; v; s; t) = L0(u
0

; v
0

; s; t):

ray-space warping Otherwise, L̂0 (s;t)(u; v) is in a hole and we
invoke ray-space warping to fill the hole. Fig. 5 (top row)
shows an example of a hole. The basic ray-space warping de-
scribed earlier provides a set of values fL0(u0; v0; s0; t0)g pa-
rameterized by free variable (s0; t0). Using the visibility map
of L0, we search for the “nearest visible ray” L0(u0; v0; s0; t0)
such that P0 is visible at ray L0(u

0; v0; s0; t0) determined by
the ray-space warping equation (1) and (s0; t0) is as close
to (s; t) as possible. This search starts from the immedi-
ate neighbors of (s; t) in the (s; t)-plane and propagates out-
wards, accepting the first valid (s0; t0). Note that the search
will never fail because P0 by construction is fully visible in at
least one view of L0. Once (s0; t0) is found, we set

L̂(u; v; s; t) = L0(u
0

; v
0

; s
0

; t
0

)

according to the ray-space warping equation (1).

Fig. 4 illustrates the “nearest visible ray”.
In the last step, we treat background rays, which correspond to

pixels not covered by the projection of any feature polygon. We
apply image warping to these pixels, using the background edges
and (projected) feature polygon edges as control primitives.

The idea behind choosing the “nearest visible ray” is the follow-
ing. For L̂0(u; v; s; t), the basic ray-space warping provides a set of
values fL0(u

0; v0; s0; t0)g. Under the Lambertian surface assump-
tion, all rays are equally valid. However, the Lambertian surface

461

Figure 7: A morphing example with large occlusions and specular surfaces.

Figure 8: Morphing between two real objects.

assumption only approximately holds despite its widespread use in
image-based rendering [4, 21]. By choosing the visible ray near-
est to ray L0(u

0; v0; s; t) when P0 is occluded at the latter, we are
trying to minimize the error caused by the Lambertian surface as-
sumption.

Note that for the “nearest visible ray”, we choose a visible ray
L0(u

0; v0; s0; t0) with (s0; t0) as close to (s; t) as possible. This is
the measure of “closeness” used in [19]. A more natural measure is
the angle deviation in [3]. Unfortunately, calculation of angle devia-
tion requires a good estimation of the depth at pixel L0 (s;t)(u

0; v0).
The depth estimation we can get from the associated feature poly-
gon does not necessarily have enough accuracy.

4.3 Warping for Animation Sequences

Our system can produce animation sequences that allow the user
to observe a morphing process from a camera moving along an ar-
bitrary path in 3D. In particular, the camera does not have to be
inside the (s; t)-plane. One way to compute such a 3D morph-
ing sequence is to first compute a sequence of light field morphs

M = fL0; L1=n; :::; L(n�1)=n; L1g and then create the 3D mor-
phing sequence by rendering the light field morphs in M . Unfortu-
nately, the CPU/storage costs for computing M can be very high.
We describe a method for generating a 3D morphing sequence with-
out fully evaluating the sequence M .

Suppose we are given � and we want to compute the image I�
in the morphing sequence. From the known camera path and �,
we can find the camera position v�. The image I� is a blend
of two images Î0 and Î1, where Î0 is warped from L0 and Î1 is
warped from L1. The image Î0 is warped from L0 by first calculat-
ing, for each pixel (x�; y�) in the image Î0, its corresponding ray
(u�; v�; s�; t�) and then applying ray-space warping. The image
Î1 is warped from L1 the same way.

5 Results and Discussion

We have implemented the light field morphing algorithm on a Pen-
tium III 667 MHz PC. In this section we report some results and a
few applications.
3D Morphs and Animations: A 3D morph L� represents a plausi-
ble object having the essential features of both the source and target
objects. We can interactively display L� by light field rendering
[19]. We can also generate an animation sequence of the 3D mor-
phing process from a camera moving along an arbitrary path in 3D.

Fig. 6 shows a 3D facial morphing between an Asian male and
a Caucasian male. Both light fields are 33 � 33 in the (s; t)-plane
and 256 � 256 in the (u; v)-plane. These light fields are rendered
in 3D Studio Max from two Cyberscan models, each having about
90k triangles; the models are not used for morphing. Feature spec-
ification took about 20 minutes. We specified 12 pairs of feature
polygons and 9 pairs of supplementary feature lines with 41 pairs
of feature points. We also specified 8 background polylines made of
53 background edges. On the average, a background polyline was
specified in 8 out of the 1089 views of each light field and interpo-
lated into other views. With our unoptimized implementation, the
two global visibility maps took 37 seconds each, whereas light field
warping and blending took 15 seconds and 0.5 seconds respectively
per image.

Fig. 7 provides an example with large occlusion and specular
surfaces. The light fields are acquired the same way at the same res-
olution as in the 3D facial morphing example. Feature specification
took about 30 minutes. We specified 50 pairs of feature polygons
and 1 pair of supplementary feature lines with 126 pairs of feature

462

Figure 9: A frame (second from the left) enlarged from the 3D
morphing sequence shown in Fig. 1.

points. We also specified 4 background polylines made of 50 back-
ground edges. On the average, a background polyline was specified
in 8 out of the 1089 views of each light field and interpolated into
other views.

Fig. 11 shows the morphing between a real bronze statue and
the famous statue of Egyptian queen Nefertiti. The surface of the
antique bronze statue shows complicated material property. This is
very difficult to model with a textured geometry model, although
some nice progress has been made in this area [7].

To acquire the light fields of the bronze statue, we used an
outside-looking-in concentric mosaic (CM) [24], which is a slightly
different parameterization of the light field. We acquired 300 im-
ages of the bronze statue at a resolution of 360 � 360. The CM
of the Nefertiti statue was rendered at the same resolution in 3D
Studio Max from a textured model (model not used for morphing).
Feature specification took about 20 minutes. As for morphing time,
the global visibility map took 15 seconds per map. Warping and
blending took 7 seconds per image.

Fig. 8 shows the morphing between two real bronze statues: a
deer and a horse. The light fields were acquired at the same reso-
lution as in the Nefertiti example. Feature specification took about
25 minutes. The global visibility map took 25 seconds per map.
Warping and blending took 5 seconds per image.
Key-Frame Morphing: As mentioned, key-frame morphing is
light field morphing with very sparse light fields. Fig. 1 and Fig. 9
show the result of key-frame morphing between a real furry toy cat
and the Stanford bunny. Note that the fur on the cat surface is very
difficult to model with textured geometry models.

We took three photographs of the cat using a calibrated cam-
era. Three images of the bunny were rendered using the same cam-
era parameters as the real photographs. Feature specification took
about 7 minutes. The global visibility map took 4 seconds to com-
pute for each object. Warping and blending each image of the 3D
morphing sequence took 24 seconds.

The number of key frames needed depends on both the visibil-
ity complexity of the source and target objects and the presence
of non-lambertian surfaces. As expected, the quality of key-frame
morphing improves as more input images are used. In this regard,
key-frame morphing is more flexible than view morphing [21]. This
flexibility is particularly important when, e.g., there are a lot of vis-
ibility changes due to object shape change, in which case the near-
est visible ray will be frequently needed to fill the holes, and we
want the nearest visible rays to be actually nearer for highly non-

(a) (b)

Figure 10: Plenoptic texture transfer. The fur of the furry cat toy
in Fig. 1 is transferred onto the surface of the Stanford bunny. The
images show the bunny before and after the texture transfer from
different view points.

Lambertian surfaces.
Plenoptic Texture Transfer: Given the source and target objects
O0 and O1 represented by light fields L0 and L1, we transfer the
texture of O0 onto O1 by constructing a light field L01 as follows.
First, the feature elements of L01 are obtained as those of L1. Sec-
ond, L0 is warped to L̂0 for feature alignment. Finally, L01 is ob-
tained as the warped light fields L̂0. Intuitively, we create a morph
using the feature elements of L1 and the radiance of L0. Unlike 2D
texture transfer (e.g., [8]), plenoptic texture transfer is a 3D effect.
Fig. 10 shows the result of plenoptic texture transfer from the furry
cat toy in Fig. 1 onto the Stanford bunny. Note that for plenoptic
texture transfer to work well, the two objects should be similar to
avoid texture distortions.
Discussion: In light field morphing, it is easy to handle complex
surface properties. Geometry-based 3D morphing, for example,
will have difficulties with the furry cat example in Fig. 1. On the
other hand, the lack of geometry causes problems in light field mor-
phing. An example is the view point restriction imposed by the
input light fields. We can incorporate geometry-based 3D morph-
ing into light field morphing by using image-based visual hulls [20]
as rough geometry to morph two light fields. However, the visual
hull geometry cannot replace feature polygons because visual hull
geometry is obtained from the silhouette and thus cannot handle
visibility changes not on object silhouette.

Light field morphing can be regarded as a generalization of im-
age morphing (an image is a 1�1 light field) and as such can suffer
the ghost problem in image morphing for poorly-specified feature
lines [1]. Fortunately the usual fixes in image morphing also work
for light field morphing [1].

6 Conclusions

We have presented an algorithm for morphing 3D objects repre-
sented by light fields. The principal advantage of light field mor-
phing is the ability to morph between image-based objects whose
geometry and surface properties may be too difficult to model with
traditional vision and graphics techniques. Light field morphing is
based on ray correspondence, not surface reconstruction. The mor-
phing algorithm we present is feature-based. We built an intuitive
and easy-to-use UI for specifying feature polygons for controlling
the ray correspondence between two light fields. We also show that
the visibility changes due to object shape changes can be effectively
handled by ray-space warping. Finally, it is worth to note that light
field morphing is a flexible morphing scheme. The user can perform
3D morphing by starting with a few input images and adding more

463

Figure 11: A morphing example involving a surface of complicated material property (the antique bronze statue).

input images as necessary to improve the quality of 3D morphing
sequences.

A number of topics remains to be explored. It is desirable to ex-
tend our system so that it supports a change of topology [6] and
multiple light slabs representing the same object [19]. Another
promising area is to use computer vision techniques to automate
the feature/visibility specification tasks as much as possible. Fi-
nally, we are interested in other operations that can be performed
on light fields [18].
Acknowledgments: First of all, we want to thank Hua Zhong, who
developed an earlier version of the light field morphing system at
Microsoft Research Asia. Since then he moved onto more excit-
ing things and did not have time to work on the current system.
Many thanks to Sing Bing Kang for useful discussions, to Yin Li
and Steve Lin for their help in video production, to Steve Lin for
proofreading this paper, and to anonymous reviewers for their con-
structive critique.

References
[1] Thaddeus Beier and Shawn Neely. Feature-based image metamorphosis. Com-

puter Graphics (Proceedings of SIGGRAPH 92), 26(2):35–42, July 1992.

[2] Bryan P. Bergeron. Morphing as a means of generating variability in visual med-
ical teaching materials. Computers in Biology and Medicine, 24:11–18, January
1994.

[3] Chris Buehler, Michael Bosse, Leonard McMillan, Steven J. Gortler, and
Michael F. Cohen. Unstructured lumigraph rendering. Proceedings of SIG-
GRAPH 2001, pages 425–432, August 2001.

[4] Shenchang Eric Chen and Lance Williams. View interpolation for image synthe-
sis. Proceedings of SIGGRAPH 93, pages 279–288, August 1993.

[5] Daniel Cohen-Or, Amira Solomovici, and David Levin. Three-dimensional dis-
tance field metamorphosis. ACM Transactions on Graphics, 17(2):116–141,
April 1998. ISSN 0730-0301.

[6] Douglas DeCarlo and Jean Gallier. Topological evolution of surfaces. Graphics
Interface ’96, pages 194–203, May 1996.

[7] Julie Dorsey and Pat Hanrahan. Modeling and rendering of metallic patinas.
Proceedings of SIGGRAPH 96, pages 387–396, August 1996.

[8] Alexei A. Efros and William T. Freeman. Image quilting for texture synthesis
and transfer. Proceedings of SIGGRAPH 2001, pages 341–346, August 2001.

[9] Oliver Faugeras. 3D Computer Vision. The MIT Press, Cambridge, MA, 1993.

[10] Jonas Gomes, Bruno Costa, Lucia Darsa, and Luiz Velho. Warping and Morph-
ing of Graphics Objects. Morgan Kaufmann, 1998.

[11] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen.
The lumigraph. Proceedings of SIGGRAPH 96, pages 43–54, August 1996.

[12] Arthur Gregory, Andrei State, Ming C. Lin, Dinesh Manocha, and Mark A. Liv-
ingston. Interactive surface decomposition for polyhedral morphing. The Visual
Computer, 15(9):453–470, 1999.

[13] John F. Hughes. Scheduled fourier volume morphing. Computer Graphics (Pro-
ceedings of SIGGRAPH 92), 26(2):43–46, July 1992.

[14] James R. Kent, Wayne E. Carlson, and Richard E. Parent. Shape transformation
for polyhedral objects. Computer Graphics (Proceedings of SIGGRAPH 92),
26(2):47–54, July 1992.

[15] Francis Lazarus and Anne Verroust. Three-dimensional metamorphosis: a sur-
vey. The Visual Computer, 14(8-9):373–389, 1998.

[16] Aaron Lee, David Dobkin, Wim Sweldens, and Peter Schröder. Multiresolution
mesh morphing. Proceedings of SIGGRAPH 99, pages 343–350, August 1999.

[17] Apostolos Lerios, Chase D. Garfinkle, and Marc Levoy. Feature-based volume
metamorphosis. Proceedings of SIGGRAPH 95, pages 449–456, August 1995.

[18] Marc Levoy. Expanding the horizons of image-based modeling and rendering.
In SIGGRAPH 97 Panel:Image-Based Rendering:Really New or Deja Vu, 1997.

[19] Marc Levoy and Pat Hanrahan. Light field rendering. Proceedings of SIGGRAPH
96, pages 31–42, August 1996.

[20] Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J. Gortler, and
Leonard McMillan. Image-based visual hulls. In Proceedings of ACM SIG-
GRAPH 2000, Computer Graphics Proceedings, Annual Conference Series,
pages 369–374, July 2000.

[21] Steven M. Seitz and Charles R. Dyer. View morphing: Synthesizing 3d metamor-
phoses using image transforms. Proceedings of SIGGRAPH 96, pages 21–30,
August 1996.

[22] Steven M. Seitz and Kiriakos N. Kutulakos. Plenoptic image editing. In ICCV98,
pages 17–24, 1998.

[23] Jonathan Shade, Steven J. Gortler, Li wei He, and Richard Szeliski. Layered
depth images. In Proceedings of SIGGRAPH 98, Computer Graphics Proceed-
ings, Annual Conference Series, pages 231–242, Orlando, Florida, July 1998.

[24] Heung-Yeung Shum and Li-Wei He. Rendering with concentric mosaics. Pro-
ceedings of SIGGRAPH 99, pages 299–306, August 1999. ISBN 0-20148-560-5.
Held in Los Angeles, California.

[25] László Szirmay-Kalos and Werner Purgathofer. Global ray-bundle tracing with
hardware acceleration. Eurographics Rendering Workshop 1998, pages 247–258,
June 1998.

[26] George Wolberg. Image morphing: a survey. The Visual Computer, 14(8-9):360–
372, 1998.

464

