Rhythmic-Motion Synthesis Based on Motion-Beat Analysis

Tae-hoon Kim

Sang Il Park

Sung Yong Shin

Korea Advanced Institute of Science and Technology

Abstract

Real-time animation of human-like characters is an active research
area in computer graphics. The conventional approaches have,
however, hardly dealt with the rhythmic patterns of motions, which
are essential in handling rhythmic motions such as dancing and lo-
comotive motions. In this paper, we present a novel scheme for
synthesizing a new motion from unlabelled example motions while
preserving their rhythmic pattern. Our scheme first captures the
motion beats from the example motions to extract the basic move-
ments and their transitions. Based on those data, our scheme then
constructs a movement transition graph that represents the example
motions. Given an input sound signal, our scheme finally synthe-
sizes a novel motion in an on-line manner while traversing the mo-
tion transition graph, which is synchronized with the input sound
signal and also satisfies kinematic constraints given explicitly and
implicitly. Through experiments, we have demonstrated that our
scheme can effectively produce a variety of rhythmic motions.

CR Categories: K.6.1 [Management of Computing and Infor-
mation Systems]: Project and People Management—Life Cycle;
K.7.m [The Computing Profession]: Miscellaneous—Ethics

Keywords: Beat Analysis, Motion Synchronization, Motion Syn-
thesis, Motion Blending, Motion Transition, Motion Signal pro-
cessing,

1 Introduction

Synthesizing realistic human motions is an important issue in
computer animation. The advent of motion capture devices has
greatly facilitated the acquisition of realistic human motion data
and attracted many researchers to develop motion editing tech-
niques to reuse captured motion clips guided by user-specified con-
straints [Bruderlin and Williams 1995; Gleicher 1998; Lee and Shin
1999; Popovié¢ and Witkin 1999; Rose et al. 1996; Shin et al. 2001;
Unuma et al. 1995; Witkin and Popovi¢ 1995]. Brand and Hertz-
mann proposed a statistical model called “style machine” learned
from captured motion data, to generate new motions of various
styles [Brand and Hertzmann 2000]. Recently, example-based ap-
proaches have been explored to synthesize novel motions either by
blending labelled motion clips of an identical structure [Park et al.
2002; Rose et al. 1998; Wiley and Hahn 1997] or by rearranging un-
labelled motion data [Arikan and Forsyth 2002; Galata et al. 2001;
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Kovar et al. 2002; Lee et al. 2002; Li et al. 2002; Tanco and Hilton
2000].

While mainly focusing on generation of convincing posture se-
quences, the conventional techniques barely deal with structured,
regular temporal patterns called rhythms contained in example mo-
tions. The rhythms are essential in producing motions such as danc-
ing and marching, which can be regarded as simultaneous responses
to external rhythmic signals such as background music and drum
beats. To create a new rhythmic motion from example motions, we
need to consider the rhythms involved in the example motions as
well as the constituent movements themselves.

In this paper, we present a novel approach to synthesizing a new
rhythmic motion from unlabelled example motions while maintain-
ing their rhythmic features. To capture the rhythms of example mo-
tions, we introduce the notion of a motion beat and that of a rhyth-
mic pattern based on the results in choreography: The motion beat
is a regular, rhythmic unit of time for a motion, and the rhythmic
pattern is a sequence of motion beats corresponding to a motion
unit [Blom and Chaplin 1982; Hawkins 1988].

Given example motions consisting of variations (examples) of
motion units called basic movements, we extract their motion beats
by detecting the moments of evident directional changes. It is well-
known that distinctive directional changes periodically occur in real
motions [Jones and Boltz 1989]. However, not all moments of such
directional changes are necessarily motion beats. Thus, to identify
the motion beats, we estimate the dominant periodic pattern over
the temporal distribution of such moments. Every example motion
is represented as a sequence of basic movements, each of which
spans consecutive motion beats and corresponds to the rhythmic
pattern underlying the motion. We identify the basic movements
embedded in the example motions by punctuating the correspond-
ing streams of motion beats with a priori knowledge on their rhyth-
mic pattern, and then classify them into groups according to their
similarities.

Every group of basic movements can be regarded as variations
of a prototype movement. We model the prototype movements
and their transitions as a movement transition graph, of which each
node and edge represent a prototype movement and the transition
(possibly self-transition) from a prototype movement to a prototype
movement, respectively. A node contains a group of basic move-
ments, that is, variants of a prototype movement. By analyzing the
connections between basic movements in the example motions, we
find the likelihoods of transitions that reflect the natural, organized
progression of those motions. By blending the basic movements
at a node, we can synthesize a novel basic movement of the same
structure. The temporal correspondence among those movements is
determined by their motion beats, since all basic movements have
the same rhythmic pattern.

Our motion beat analysis scheme facilitates the generation of
a novel rhythmic motion synchronized with an input sound signal
such as background music, to create convincing animations on the
fly. After constructing the movement transition graph, we traverse
this graph from node to node guided by the transition probabilities
until the sound signal ends, while synthesizing a basic movement
at each node. In addition to the temporal constraints given by the
sound signal, we also make the resulting motion satisfy the kine-
matic constraints either given explicitly or derived from the envi-



ronment changing dynamically. Our approach can also be used for
controlling a group of characters automatically in virtual environ-
ments, for example, characters dancing in a ballroom and soldiers
marching in formation.

The remainder of this paper is organized as follows: We first
review related work in Section 2. We present a novel scheme for
extracting the motion beats from rhythmic motions in Section 3.
Then, we describe how to represent a set of example motions as
a movement transition graph in Section 4. Motion synthesis from
the movement transition graph is presented in Section 5. We show
experimental results in Section 6. Finally, Sections 7 and 8 provide
discussion and conclusion, respectively.

2 Related Work

In computer animation, motions of characters have frequently been
combined with music in order to convey various emotions [Lay-
bourne 1998; Pausch et al. 1996]. The synchronization of an ani-
mated image sequence with sounds helps deliver an artistic theme
to the audience [Laybourne 1998]. However, to our knowledge,
there have been few attempts to automatically produce novel mo-
tions synchronized with music by reusing existing motion data. An-
imators have spent their time and efforts in creating new motions,
the rhythm of which matches that of a given piece of music [Cassell
et al. 2001; Laybourne 1998].

Extracting the temporal structures from rhythmic signals such as
drum sounds, music, and motion is a difficult problem. In psychol-
ogy, the human ability to perceive and produce rhythms has been
a well-known research subject. Many research results have been
presented for modelling the human ability to recognize the rhyth-
mic patterns from signals [Eck et al. 2000; Essens and Povel 1985;
Jones and Boltz 1989; Large and Kolen 1994; Scarborough et al.
1992]. Those models were based on the analysis of the captured
salient features of signals. In particular, Jones and Boltz observed
that distinctive directional changes occur periodically in limb mo-
tions [Jones and Boltz 1989]. This observation provides us with a
clue to capturing the rhythm of human motion. In radar, a simi-
lar problem has been studied to improve the performances of radar
systems [Fogel and Gavish 1988; Sadler and Casey 1998]. Fogel
and Gavish [Fogel and Gavish 1988] estimated the periodic interval
from a given pulse signal with noise by performing spectral analy-
sis. Sadler and Casey [Sadler and Casey 1998] formulated it as a
linear regression problem. Our scheme for motion beat analysis is
inspired by those results.

There have been quite a few works related to motion synthe-
sis. For our purpose, we focus on the two categories of schemes
for example-based motion synthesis: the schemes based on mo-
tion blending [Guo and Robergé 1996; Park et al. 2002; Rose et al.
1998; Wiley and Hahn 1997] and those based on posture rearrange-
ment [Arikan and Forsyth 2002; Galata et al. 2001; Kovar et al.
2002; Lee et al. 2002; Li et al. 2002; Pullen and Bregler 2002;
Tanco and Hilton 2000]. The main difference between the two
categories is kinds of example motions to be used. The example
motions for the former are labeled, and those for the latter are unla-
beled.

The former category includes various motion blending schemes.
Guo and Rovergé [Guo and Robergé 1996] and Wiley and
Hahn [Wiley and Hahn 1997] provided interpolation techniques for
example motions located regularly in parameter spaces. Rose ef
al. [Rose et al. 1998] and Sloan et al. [Sloan et al. 2001] introduced
frameworks of motion blending based on scattered data interpola-
tion with radial basis functions. Park et al. [Park et al. 2002] pre-
sented an on-line motion blending scheme to control virtual char-
acters in real-time. To avoid singularities in motion blending, they
represented joint orientations by unit quaternions. Provided with
the temporal correspondence among the example motions, the mo-
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tion blending schemes in this category can generate a desired mo-
tion in real time that satisfies the given constraints on both motion
characteristics and environment geometry.

The latter category of schemes seamlessly rearrange postures
in the example motions to obtain realistic motions [Arikan and
Forsyth 2002; Galata et al. 2001; Kovar et al. 2002; Lee et al. 2002;
Li et al. 2002; Pullen and Bregler 2002; Tanco and Hilton 2000].
Kovar et al. [Kovar et al. 2002] introduced a motion graph to repre-
sent the transitions among the poses of captured motion data. They
also manually attached descriptive labels to motion clips for high-
level control. Lee er al. [Lee et al. 2002] also represented captured
motion data using a similar graph structure, and provided effec-
tive user interfaces for interactive character control. Arikan and
Forsyth [Arikan and Forsyth 2002] applied a randomized algorithm
for searching motions from a hierarchy of transition graphs. Pullen
and Bregler [Pullen and Bregler 2002] developed a method for en-
hancing roughly-keyframed animation with captured motion data.
In general, the posture rearrangement schemes can generate realis-
tic motions while preserving details of the original motions. How-
ever, it may be time-consuming to search for desired motions from
the graph when the number of example motions is large.

To exploit the advantages of both categories, we combine the
idea of motion blending and that of posture rearrangement. After
extracting all basic movements and their transitions from the unla-
beled example motions based on motion beat analysis, our scheme
classifies them into groups and constructs a movement transition
graph whose nodes and edges respectively represent the prototype
basic movements (groups) and their transitions reflecting the exam-
ple motions. Given rhythmic sound together with kinematic con-
straints, our scheme traverses the graph while blending the labeled
basic movements at each node in an on-line manner to synthesize a
desired rhythmic motion.

3 Motion Beat Analysis

In this section, we present a novel scheme for extracting motion
beats from given rhythmic motion data. Our scheme is based on
the observation that distinctive directional changes periodically oc-
cur in real motions [Jones and Boltz 1989]. However, not every
moment of rapid directional change necessarily corresponds to an
actual motion beat but is just a candidate for a motion beat. Fur-
thermore, we need to analyze the motion signals for all joints while
compensating for their phase differences due to the hierarchical
structure of a human body. We first describe how to find the most
dominant period of the candidates obtained from the motion signal
of a single joint. Then, we generalize this idea to simultaneously
handle multiple joints. Using the dominant period, our scheme
marks a sequence of moments called reference beats. Based on the
reference beats, the actual motion beats are statistically estimated
from the candidates obtained from all body parts.

3.1 Candidate Beat Extraction

Our motion data consist of a bundle of motion signals. Those sig-
nals are sampled at a sequence of discrete time instances with a uni-
form interval to form the corresponding sequence of frames. The
sampled values from the signals at each frame determine the con-
figuration of an articulated figure at that frame. We denote a mo-
tion (discrete motion signal) by m(i) = (p(3), q1 (), ..., 4 (3))7,
where p(i) € R* and q; (i) € S? describe the position and orienta-
tion of the root segment, q;(i) € S* gives the orientation of joint j
at frame ¢, and J is the number of joints. For convenience, the root
is often referred to as a joint (j = 1).

To identify the candidates for motion beats, we extract the mo-
ments of rapid directional changes in a motion. Such moments can
be detected from the zero-crossings of the second derivative of each
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Figure 1: Phase differences among motion signals.

motion signal at every frame, which can be computed from the lin-
ear or angular acceleration of the signal. We concentrate on extract-
ing the zero-crossing moments from orientation signals. For posi-
tion data such as the root and end effector positions, we refer the
readers to previous results [Bindiganavale and Badler 1998]. For
beat analysis, we can use either joint positions or joint orientations.
In our experiments, both of those data have been equally good for
extracting motion beats. However, we prefer joint orientations since
they are intrinsic parameters and facilitate more convenient posture
control of articulated figures.

The angular velocity of an orientation curve q(t) in a continu-
ous domain is w(t) = 2q~'(¢)¢(t). However, we cannot apply
this differential equation to a discrete motion signal q; () since the
exact value of g, (7) is not available. Instead, we approximate the
angular velocity w;(¢) of joint j using the angular velocity of the
slerp (spherical linear interpolation) motion [Shoemake 1985] that
starts at q; (¢ — 1) toward q; (). That is,

e R®, 6))

where h is the time interval between frames ¢ — 1 and 4. It can
be proved that the approximate angular velocity in Equation (1)
converges to the exact angular velocity, w(t) = 2q ™" (t)q(t), as the
time interval h approaches zero [Kim 1996]. Thus, we approximate
the angular acceleration «;(4) of joint j at frame ¢ as follows:

Olj(i) ~ wj(i) — ;’JLJ' (Z — 1) ) )

We choose all zero-crossing moments of the motion signal as the
candidate motion beats, which can be obtained by detecting the
zero-crossing of every component of «; (7).

The sequence of candidates extracted from a motion signal em-
beds a periodic pattern with some missing observations, which can
possibly be contaminated with outliers. As shown in Figure 1, the
candidate beats have a complicated distribution due to the phase
differences among the movements of body parts. Therefore, the
outliers are hard to be distinguished from the actual motion beats.

3.2 Reference Beat Estimation

We first provide a method for finding the dominant period for the
candidates obtained from a single motion signal. Then, we gen-
eralize this scheme for a bundle of motion signals to estimate the
reference beats.

Single joint: A problem of estimating the dominant period of
a candidate sequence can be transformed to that of estimating the
pulse repetition interval (PRI) from periodic pulse trains based on
their arrival times only [Sadler and Casey 1998].

Let S be the sequence of candidate beats, that is, S = {t;}]_;.
Eacht;, 1 < j < N, is a moment of zero-crossing, which can be
modeled as follows:

tj=¢+kT+mn;, j=1,...,N 3)
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Figure 2: Estimating the reference beats from a motion signal.

where T is the unknown period of beats, ¢ is a random phase with
a uniform distribution over an interval [0, T), that is, ¢ ~ U[0,T),
kj, 1 < 7 < N are positive non-repeating integers, and 7;, 1 <
7 < N are zero-mean additive white Gaussian noises in the interval
[—-T/2,T/2).

As previously described, not every moment of zero-crossing is
necessarily a motion beat. For example, some of ¢;, 1 < j <
N can possibly be outliers with a uniform distribution. For those
outliers, their moments of zero-crossing do not correspond to noisy
integer multiples of 7" as given in Equation (3). Instead, they can be
completely random in time. Without loss of generality, we assume
thatt; < tjpiforj=1,...,N —1.

To obtain the dominant period of S, we estimate the dominant
frequency of a sinusoidal function that has its upper extreme value
att; for 1 < j < N, that is, a sinusoidal function y(¢) such that
y(t;) = 1 for all j as shown in Figure 2. For simplicity in sinusoid
fitting, we construct (N — 1) cosine curves each of which spans
a time interval [tx_1,tx) with a single cycle for all k, that is, the
sinusoidal function y(¢) is defined as

o(t) = { cos(2m (1)) it <t <ty k=2 N
1 if t=t N.
C))
y(t) is not a sinusoidal function in a strict sense, since it does
not guarantee even C'' continuity at the joining points, (t;, y(t;)).
However, their deviations from a perfect sinusoidal function are
small enough to be regarded as noise.

We assume that the beat period is not less than the inter-frame
time of the motion, that is, the highest possible frequency compo-
nent of y(¢) is a reciprocal of the inter-frame time. Based on the
Nyquist sampling theorem [Proakis and Manolakis 1996], we regu-
larly sample M values from y(t), that is, £; for j = 1, ..., M, with
a sampling rate of more than twice the highest possible frequency.
Then, we perform spectral analysis using the periodogram:

1 M ~ .
Py(f) = 3712 v(E)e™ B P, )
j=1

The power spectrum density (PSD) of y(¢) has a distinctive peak
at the dominant frequency [Gomes and Velho 1999; Proakis and
Manolakis 1996]. As illustrated in Figure 2, the most dominant

frequency of the candidate beats is the frequency f that gives the

peak value for Py (f):

f= argm;ixpy(fh (6)

from which we obtain the dominant period T = L. Then, we esti-

1
f
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Figure 3: Estimating the reference beats from a bundle of motion signals.

mate the phase ¢ as follows:

M
¢ =argmaxd y(l)y(l; +0), 0<o<T. (D)

j=1

The k-th reference beat, rx, K = 1,..., N is finally computed by
rr, = ¢ + kT, which would be coincident with the corresponding
motion beat for a perfectly-rhythmic motion.

Multiple joints: The period estimation scheme for a single mo-
tion signal can be extended to multiple motion signals. As illus-
trated in Figure 3, we first superpose (add) K sinusoidal func-
tions y1(t), ..., yx (t) constructed from the corresponding candi-
date beat sequences, where K is the number of joints for an artic-
ulated figure. Then, we compute the PSD of the superposed signal
S(t) =y (t) + e+ yi (1)

M

Ps(f) = 221 3 SO P, ®)

Jj=1

where fj, 1 < j £ M are defined similarly as in Equation (5). The
dominant period 7" and the phase ¢ of the composite sequence S(t)
can respectively be estimated from Ps(f) and S(£;) as described

in the case of a single joint, to determine the reference beat 7,
1<k<N.

3.3 Motion Beat Estimation

We now estimate the actual motion beats from the candidates
guided by the reference beats. The actual beats are not perfectly co-
incident with the reference beats unlike in an ideal case. However,
most candidate beats except some outliers are likely to be clustered
around the reference motion beats as depicted in Figure 4. The
representative of each cluster is chosen as the actual beat using a
Huber M-estimator [Huber 1981]. For each reference beat 7, we
estimate the representative by, from the candidates within the win-

dow [r, — T'/2, 71 + T'/2] as follows:
R M
b, = arg mbinz Wi (E;)p(t; —b), )

Jj=0

where p(z) is a Huber function:

2 .
_ x°/2 if 2] <o
o= { k(je| = k/2) if |z > o, (10)
for a tuning constant o, and W () is a window function:
(1 e T2+ T2
Wi(=) = { 0 otherwise. (11)
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Figure 4: Clusters of candidate beats.

by is computed numerically with the downhill simplex minimiza-
tion algorithm [Press et al. 1999]. The reference beat r, is used as
an initial guess for the solver.

Motion signals may miss distinctive directional changes at some
motion beats, that is, it is possible that no candidate beats are de-

tected in a range [ry, —1'/2, 71 + T'/2] for some k. In this case, we
designate the reference beat 7, itself as a motion beat by,.

4 Movement Transition Graph

In this section, we show how to construct a movement transition
graph of which the nodes and edges represent the prototype move-
ments and their transitions, respectively. Given basic movements
extracted from the unlabeled example motions, we classify those
movements into groups based on their similarities such that the ba-
sic movements in a group can be thought of as variants of the same
labeled basic movement called a prototype movement. Then, we
estimate the likelihoods of transitions between the groups of basic
movements by analyzing the example motions.

4.1 Basic Movement Classification

Let £ = {Mi,Ma,..., My} be a set of example motions. Each
example motion M;, 1 < ¢ < N consists of a sequence of ba-
sic movements, that is, M; = (m} m? ... m*), where m¢,
1 < ¢ < N;, and N; are a basic movement and the number of
basic movements in IM;, respectively.

We assume that the type of every example motion M;, 1 <
i < N such as the Waltz and the Tango has been already spec-
ified at the motion-capture stage. The motion type uniquely de-
termines the rhythmic pattern, that is, a sequence of motion beats.
We decompose the example motion IM; into basic movements ms,
1 < ¢ < N; such that the motion beats of every movement m§ are
coincident with the rhythmic pattern of M; called a meter. Since
the example motions may have different tempos, the inter-beat in-
tervals called beat periods of basic movements may also be differ-
ent from each other. To make their beat periods identical, we align
all basic movements by timewarping, interpreting the motion beats
as keytimes.

Even apparently-similar basic movements may have quite differ-
ent root positions and orientations, since the configurations of root
segments are represented in a global coordinate system. To mea-
sure the difference between the basic movements in a coordinate
system compatible to all of them, we make all basic movements be
located at a fixed position while facing a fixed direction as described
in [Kovar et al. 2002]: We translate them along the horizontal (zx)
plane and rotate them about the vertical (y) axis so that their root
segments at the first frame are on the y-axis and face the 4z direc-
tion.

Let Sk, 1 < k < K be the groups of similar basic move-
ments for the example motions in £. Those groups are obtained
by clustering the basic movements extracted from the example mo-
tions. For clustering, we need a difference measure between ba-
sic movements. Consider a pair of basic movements, mi (i) =



(p* (i), a1 (9), ., ay(i)) and ma(i) = (P*(9), i (), ..., a5 (4)),
where p(i) and q(¢) for 1 < j < Jand ¢ = 1,2 are the po-
sition of the root segment and the orientation of joint j at frame ¢
of movement m. as defined in Section 3.1. Motivated by a result of
copyright protection for choreographic works [J. van Camp 1994],
we derive a new difference measure from the posture correspon-
dence at every motion beat.

At frame ¢, we define the difference measure D between move-
ments, m; and m» as suggested in Lee et al. [Lee et al. 2002]:

mg(z)) + vdy (my (Z)Jng(’b)) (12)

The first and second terms respectively represent the posture dif-
ference and the velocity difference, and v is a weight value for the
second term. The first term reflects the differences in the root posi-
tion and joint angles:

D(m1 (), m2(4)) = da(m1 (i),

J
Ip* ()= @I+ w;ll log(a (i) ' af ()],

j=1

da (ml (7/)7 ma2 (Z)) =

13)
where w;, 1 < 5 < nis the weight value. The velocity term is for
comparing the dynamics of motions and is represented as the sum
of the weighted velocity differences:

do(m1 (i), m2(i)) = [|vi( @I +Z vjllw; () —wi @)%, (14)

where v©(i), ¢ = 1,2, is the linear velocity of the root segment of
movement m.. at frame 4, wj (), 1 < j < n is the angular velocity
of joint j, and v; is the weight value.

Now, the difference between two movements, m; and ms is
measured by the sum of posture differences at their corresponding
motion beats, {b1,...,bp }:

B

=3 Dy (bi), m2(b)), (15)

=1

D(HH, mg)

where b; is the i-th motion beat of m; and mo, and B is the number
of motion beats. Based on this difference measure, we can classify
all basic movements into groups. There are two cases depending on
the availability of the number of groups.

Suppose that the number K of groups is given in advance. Let

= {81, 82,..., Sk} denote the set of all those groups. Then,
we can employ a well-known K -means clustering method [Bezdek
1981; Dubes and Jain 1976; Forgy 1965; Lee et al. 2002] to identify
them. Let X’ be a set of the basic movements obtained from &, that
is, X = {x1,...,xn} where x;, 1 < ¢ < n and n denote a basic
movement and the total number of basic movements, respectively.
The K-means clustering method partitions X" into groups Si, 1 <
k < K by minimizing the following objective function f(S, X):

X) =Y > D(xi,ck), (16)

k=1x;ES)

where ¢y, is the group center for S,. We optimize the objective
function by iterative estimations of c; and Si. Initially, the move-
ments are assigned at random to K groups. At each iteration, every
x; is assigned to a group Sy, such that its difference from the group
center ¢ is minimized. Then, the group centers are reestimated
from Sj, as follows:

ck—argmanDxxl) 1<k<K. 17

x; €Sy

These two steps are alternated until there is no further change in
the assignment. This process may be trapped in a local minimum.
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Therefore, we may try the process with different initial assignments
for better clustering.

Now, suppose that the information on the number K of groups
is not available in advance. Then, we use the subtractive clustering
method [Chiu 1994], which is a fast one-pass algorithm for estimat-
ing the number of groups in a data set and the group centers. The
subtractive clustering method assumes that each x; has a potential
to be a group center. The potential P; of x; is given by

Z Xé"’)), i=1,..,m, (18)

where r is a parameter indicating the range of influence of a move-
ment over other movements. We choose the movement x,,, with the
highest potential P,,, as the first group center, and then remove the
influence of the potential P, from the others as follows:

D(xi,Xm)

P; =P; — P,y exp(— =), i=1,..,n, (19)

sr
where s > 1 is a constant. The constant s controls the range of x,,
within which the existence of other group centers are discouraged.
We select the basic movement with the highest remaining potential
as the next group center and remove its influence from the remain-
ders. This process is repeated until the potentials of all remaining
movements fall below a threshold. Based on the estimated number
of groups and their centers, every x; is assigned to a group Sy, of
which the center has the greatest influence over it, that is, S, such
that

T (Xiv cj)
k = _
e e exp( r?

) (20)

where c; is the center of S;.

4.2 Graph Construction

With the groups of basic movements identified, we now describe
how to construct a movement transition graph by finding the tran-
sitions among the prototype movements representing the groups.
Those transitions are established based on two factors, kinematic
continuity and behavioral continuity: The former measures the
smoothness of a transition, and the latter reflects the degree of sat-
isfying the transition rules such as choreographic patterns observed
in the example motions.

Kinematic continuity: The kinematic continuity has been
widely used for modeling transitions between motion segments or
motion frames [Arikan and Forsyth 2002; Kovar et al. 2002; Lee
et al. 2002]. The likelihood of the transition from a basic move-
ment to a basic movement (possibly itself) can be estimated using
the difference between the last posture of the former and the first
posture of the latter. We define the difference measure between the
groups as

> omecs; msES, D(me (L), ms(F))?
D& 55) \/ SIS, :

ey

where F' and L respectively denote the first frame of m. and the
last frame of ms, and |S;| and |S;| are respectively the number of
basic movements in S; and that in S;. Then, we can determine the
likelihood Py (4, j) of the transition from S; to S; as follows:

Pr(i, ) = wi exp(=D(8:, ;) /o), (22)

where o is a control parameter specified by a user. The weight value
w; is determined so that Z;il Pr(i,j) = 1 for all ¢, where K is
the number of the movement groups.
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Figure 5: A set of example motions and their movement transition graph.

Behavioral continuity: The behavioral continuity captures the
natural transitions among the prototype movements of the exam-
ple motions. From the movement transitions between the groups
observed in the example motions, the likelihoods of the transitions
between the corresponding prototype movements are estimated to
represent the behaviors of example motions. Figure 5 illustrates a
set of example motions and their movement transition graph, where
similar basic movements are marked with similar colors and classi-
fied into the same group.

Let Py (i, j) and () respectively be the likelihood of the tran-
sition from S; to S; and the probability that a motion starts from
Sii

Po(i,j) = Plsty1 = Sjlse = Si, (23)
Pls1 =S4, 24)

3
—~

o~
=

where s; is the state of the transition model at time ¢. To learn
the transition model automatically, we employ Baum-Welch’s EM
(expectation-modification) method [Li and Parizeau 2000; Ra-
biner 1989]. This method iteratively reestimates the probabilities,
Pu(i,7) and 7 (1) as follows:

— . expected number of transitions from S; to S;

, 25
expected number of transitions from S; 25)

0 expected number of times in S; attime ¢t = 1
(1) =

Zi;l expected number of times in Sy, at time ¢ = 1

. (26)

These probabilities reflect the behavioral continuity as observed in
the example motions. The initial state distribution 7(:) may be
specified manually when sufficient example motions are not avail-
able.

With the groups of basic movements and the transitions among
the groups identified, we are ready to describe how to construct the
movement transition graph. Each node n;, 1 < ¢ < K represents a
group S; of basic movements. The likelihood P(3, j) of the transi-
tion from a group S; to a group S; can be expressed as the weighted
sum of kinematic and behavioral continuities as follows:

where Py (i,5) and Py(i,j) are likelihoods defined in Equa-
tions (22) and (25), respectively, and w1 and w2 are weight val-
ues such that w; + we = 1, wy > 0, and w2 > 0. A node n;
is connected to a node n; with an edge if P (7, ) is larger than a
given threshold. P(4, ) is renormalized after identifying the edges
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such that } . P(i, ) = 1 for all node 4. The resulting movement
transition graph represents the transitions among basic movements
reflecting the example motions as illustrated in Figure 5.

4.3 Refinement

After constructing the movement transition graph, we may edit this
graph interactively. For example, ballroom dances such as the Waltz
and the Tango have choreographic rules, that is, transition rules
that specify preferable movements followed by each basic move-
ment [Silvester 1993]. The likelihoods of transitions learned from
the example motions may not perfectly reflect the choreographic
rules when the example motions are not sufficient enough to re-
flect the rules properly. Thus, we may connect nodes of which
transitions are left out and adjust the likelihoods of transitions in
accordance with the choreographic rules. In particular, we avoid
dead-ends, that is, nodes with no outgoing edges by interactively
connecting them with another nodes. We may also remove those
nodes automatically as described in [Kovar et al. 2002; Lee et al.
2002; Schodl et al. 2000].

5 Motion Synthesis

Given a rhythmic sound signal such as music together with the di-
rection and speed to move, our objective is to generate a new rhyth-
mic motion on the fly. The direction and speed are either given
explicitly or derived from the environment changing dynamically.
The resulting motion should satisfy both temporal and spatial con-
straints prescribed by the characteristics of a given sound and the
motion specification. We assume that the input sound signal is spec-
ified in a MIDI format so as to provide the constituent music beats
directly. We also specify interactively the type of sound signal such
as the Waltz and the Tango once at the beginning.

For motion synthesis, we prepare a library of movement transi-
tion graphs each of which represents a collection of rhythmic mo-
tions of an identical type. From the library, a movement transition
graph is chosen so that the type of motions represented by the graph
matches that of the input sound signal. Starting from a node S; cho-
sen at random according to its probability (i) of being the initial
basic movement, we traverse the movement transition graph from
node to node, guided by the transition probabilities until the sound
signal ends, while synthesizing a basic movement at each node. By
the way in which we have connected a pair of nodes by an edge,
a basic movement synthesized at a node can be stitched with that
at the next node seamlessly, since the final posture of the former is
sufficiently similar to the starting posture of the latter.

We employ the on-line motion blending scheme as given in [Park
et al. 2002] to generate a basic movement at a node. Based on mul-
tidimensional scattered data interpolation, this scheme consists of
four steps: parameterization, weight computation, time-warping,
and posture blending. In the pre-processing step, all basic move-
ments are parameterized according to their characteristics such as
speed and turning angle. Provided with the parameters of a target
motion such as motion type, direction, and speed extracted from the
motion specification, the next step is for computing the contribution
of every basic movement to the target movement using cardinal ba-
sis functions [Sloan et al. 2001]. The third step is for incremen-
tal time-warping. We adapt this step for synchronizing the basic
movements with the input sound signal on the fly. Specifically, the
motion beats of every basic movement are aligned with the music
beats. The final step is for blending the time-warped movements in
accordance with their contributions to synthesize the target move-
ment.

The size and proportions of a target character may be different
from those of the performer for the captured motions. Therefore,



we cannot apply the blended motion directly to the target charac-
ter. Otherwise, artifacts such as foot sliding or penetration would
appear in the resulting images. To avoid those artifacts, the target
stance foot position is first computed at each frame by blending the
stance foot positions of example motions. Then, we employ the
real-time motion retargeting algorithm in [Shin et al. 2001], which
adapts the motion to the target character and the environment.

6 Experimental Results

We perform experiments on an Intel® Pentium® PC (P4 2.2GHz
processor and 1GB memory). Our human model had 43 DOFs (De-
grees Of Freedom) that consist of 6 DOFs for the pelvis, 3 DOFs
for the spine, 7 DOFs for each limb, 3 DOFs for the neck, and 3
DOFs for the head. The motion clips were captured at the rate of
120 frames per second and then down-sampled at the rate of 30
frames per second for real-time display. Input sound signals were
given in the type O standard MIDI format. We first demonstrate ex-
perimental results for motion beat analysis, and then show those for
rhythmic motion synthesis.

6.1 Motion Beat Analysis

To evaluate the accuracy of our motion beat analysis scheme, ex-
periments were performed for two kinds of motions: motions with
regular motion beats and those with random motion beats. For each
of these cases, the differences of the estimated beats from their cor-
responding actual beats were within one frame.

Make-up Motions: We created a motion with regular motion
beats by repeatedly concatenating a short cyclic walking motion.
Since we knew the moments of the distinctive directional change
and the length of the motion, the exact motion beats could be ob-
tained. The length and beat period were 900 frames and 15 frames,
respectively.

A motion with irregular beats was similarly obtained by perturb-
ing the moments of distinctive directional change of the cyclic mo-
tion randomly within 15% of its length. With the magnitude of each
perturbation known, we could mark the actual motion beats exactly
by hand. The length of the test motion was 900 frames.

Figures 6(a) and (b) show the errors between the estimated beats
and the actual beats for the motion with the regular beats and those
for the motion with the irregular beats, respectively. For the motion
with the regular beats, no errors were observed as expected. For the
motion with the irregular beats, the errors were distributed within
one frame, and their mean and variance were 0.3233 and 0.2999,
respectively.

Dance Motions: We applied our scheme to a real rhythmic mo-
tion, that is, a captured dance motion. The tempo of background
music was 150 beats per minute. Since the actual motion beats
were not known in advance, we marked them manually by refer-
ring to the beats of the background music acquired together with
the dance motion. The length and beat period of the test motion
were 714 frames and 12 frames, respectively. The differences of
the estimated beats from the corresponding manually-marked beats
were within one frame as shown in Figure 6-(c). Their mean and
variance were 0.3787 and 0.1344, respectively.

6.2 Rhythmic Motion Synthesis

We demonstrated the capability of our scheme for rhythmic motion
synthesis through five experiments. In all experiments, our scheme
generated motions extremely fast. For the first three experiments, a
request for motion generation of a character can be handled at more
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Figure 6: The accuracy of the estimated motion beat: The horizontal and
vertical axes represent the beat number and the error at each beat, respec-
tively.

than 2000 Hz. The fourth experiment is most time-consuming, for
which frame rate is 46 Hz. The frame rate of the last experiment is
50 Hz.

Synchronization: Our first experiment was for showing the dif-
ference of a synchronized motion from an unsynchronized motion.
We created an unsynchronized test motion by simply stitching the
blended basic movements without timewarping while traversing the
movement transition graph in accordance with the likelihoods of
transitions. Those movements were obtained from two example
motions of different tempos as will be explained later. The mo-
tion synchronized with background music was obtained using our
scheme while following the same path in the movement transition
graph. The characters on the right and left hand sides in Fig-
ure 7 show synchronized and unsynchronized motions, respectively.
Their difference can be observed more clearly in the accompanying
movie clip.

We used two free-style modern dances of the 4/4 meter as ex-
ample motions. The beat periods of the corresponding motion clips
were 12 and 13 frames, respectively, and their total length was 2367
frames. Our scheme decomposed the example motions into 48 ba-
sic movements by punctuating them at every four beats, and then
classified the basic movements to construct a movement transition
graph. The resulting movement transition graph was composed of
37 nodes. On average, 1.3 basic movements were distributed to
each node. For synchronization, the background music was given
in a MIDI track.

Interactive Choreography: To show the on-line, real-time ca-
pability of our motion synthesis scheme, we interactively chore-
ographed a new motion synchronized with a given piece of mu-
sic. We moved the mouse pointer in an on-line manner to make
the target character dance to the music while chasing the pointer as
illustrated in Figure 8. During motion synthesis, motion parame-
ters such as speed and direction were computed from the sampled
pointer position and the current posture of the target character.

Our example motions were modern dances, which do not have
standardized sets of basic movements unlike other forms of dances
such as the ballet or the Waltz. However, owing to the property
of dances, that is, the repetition of similar movements with varia-
tions [Hawkins 1988; Minton 1997], we can construct the move-



Figure 7: Synchronized vs. unsynchronized motions: Frame 609 (sur-
rounded by the red rectangle) corresponds to the beat.

Figure 8: Interactive choreography.

ment transition graph using a small number of example motions.
We captured the example motions from a performer dancing to a
piece of background music of the 4/4 meter. Thus, basic move-
ments are obtained by punctuating the example motions at every
four beats. We used three captured example motions and their
mirror-reflected motions, of which the total length and beat period
were 5100 and 12 frames, respectively. The movement transition
graph was composed of 34 nodes which were constructed from 108
basic movements. 3.2 basic movements were assigned to each node
on average.

Waltzing Couple: We constructed a movement transition graph
for a coupled motion (see Figure 9). Assuming that the motions of a
couple have a common rhythmic structure, we obtained the motion
beats by analyzing their motion signals simultaneously. Each node
of the constructed movement transition graph represents variations
of a prototype movement of the couple observed in the example mo-
tions. The total length and beat periods of example motions were
1829 and 20 frames, respectively. 30 basic movements of the Waltz
were captured from the motions. The constructed movement transi-
tion graph had five nodes each of which had six coupled movements
on average.

The Waltz is composed of basic movements for flowing zigzag
around a ballroom [Bottomer 1998; Silvester 1993]. Every basic
movement has three beats each of which respectively corresponds
to forward or backward, left-side or right-side, and close steps. Fig-
ure 9 (left) shows a simple Waltz figure adopted for our experiment.
The movements containing a backward step are rarely used for
moving forward. Similarly, those containing a forward step are not
used in general for moving backward. To form zigzagged moving
patterns, the movements containing a left-side step is more likely to
be followed by those containing a right-side step than others, and
vice versa. Example motions included a variety of basic movements
mentioned above. Our scheme can handle any kind of Waltz figures
as long as their motion beats match the corresponding music beats.
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Figure 9: A waltzing couple. (Left) A basic Waltz step for man: the white
and blue feet represent the left and right feet, respectively. (Right) Interac-
tive control of the couple.

A novel coupled motion was synthesized based on those rules.
Our scheme prescribed the parameters of a movement to be synthe-
sized at a node guided by the mouse pointer, and selected the next
node to transit in accordance with the pre-computed likelihoods of
transitions attached to the edges incident from the node. To gener-
ate a motion for the coupled characters, the parameters of a desired
basic movement for the leader (man) were first computed to obtain
the weights for blending (see Section 5). Then, the movement of the
couple was produced by blending their basic movements at the cur-
rent node with those weights. The parameters included the speed,
direction, and body orientation of the leader determined from the
goal position specified by the mouse pointer and the posture of the
character at the current frame.

Ballroom Dance: We applied our scheme to a crowd dancing
in a ballroom. The example motions and their control parameters
were the same as those of the previous experiment. Based on the
work in [Helbing and Molnar 1995; Helbing et al. 2000; Kim et al.
2003], we determined the behaviors of couples by combining the
Sflow forces for couples to travel around the room and the interaction
forces for avoiding collisions with other couples or static objects in
the room such as walls and columns. Since the natural flow of the
Waltz is moving around the room [Bottomer 1998], we were able
to automatically generate the flow force by creating a vortex. The
interaction force exerted on a couple was adaptively determined to
react to nearby approaching couples and static objects, which can be
sensed by employing the event-driven collision detection algorithm
in [Kim 2002; Kim et al. 2003]. The control parameters such as
speed, direction, and body orientation were determined from the
resulting force field. With this crowd behavior model, we produced
an animation of 20 waltzing couples in real time (46 frames per
second) as illustrated in Figure 10.

Marching Soldiers: We finally applied our scheme to locomo-
tive motions to synthesize a scene with troops marching in step syn-
chronized with a piece of military music. We captured marching
motions of various speed and turning angle. These motions were
1299 frames long in total, and their beat periods were 16 frames.
Since the period of the marching motion is two beats, we decom-
posed the example motions into 44 basic movements each consist-
ing of two motion beats. The movement transition graph was com-
posed of two nodes each of which contains 22 basic movements on
average. In order to preserve the formation of the troops while turn-
ing left or right, we used different speed and turning angle for the
characters at the inside corner than those at the outside corner (see
Figure 11 (left)). To do this, we fitted an offset curve of the B-spline
curve representing the street center for each row of the soldiers, and
then determined the speed and turning angle from the tangent vector
of the curve at each frame. We simulated the 40 marching soldiers
in real time (50 frames per second).



Figure 11: Marching soldiers

7 Discussion

Unlike previous work based on frame-level transitions [Arikan and
Forsyth 2002; Kovar et al. 2002; Lee et al. 2002], our motion syn-
thesis scheme is based on transitions between basic movements.
The frame-level transitions may not preserve the rhythms of mo-
tions, since transitions occur from frame to frame without consid-
ering beat patterns. Accordingly, distinctive directional changes at
motion beats may be vanished in a synthesized motion.

Our beat analysis scheme estimates the motion beats automati-
cally from a given rhythmic motion without any additional infor-
mation such as background music. Motion beat analysis is required
even if the background music is captured together with the rhyth-
mic motion: Due to various sources of noise, the motion beats of
the captured motion may not be coincident with the correspond-
ing music beats. Simple rearrangement of noisy basic movements,
obtained by punctuating the input motion only with the help of the
music beats, may yield a motion of which the distinctive directional
changes drift from the music beats.

We have determined the likelihoods of transitions among the
basic movements based on the proposed measure reflecting both
kinematic continuity and behavioral continuity (see Section 4).
When sufficient example motions are available, we can construct
the movement transition graph by placing more weight on the be-
havioral continuity so that the graph reflects the natural transitions
among basic movements. Otherwise, by placing more weight on the
kinematic continuity, the movement transition graph can generate a
variety of motions from a small number of example motions.

In motion synthesis, we have parameterized basic movements by
speed and turning angle. Those parameters are extracted from the
trajectory of each movement by approximating it to an arc. For
basic movements with complex trajectories such as those in waltz-
ing, we approximate their global moving patterns to linear arcs (of
infinite radius) by connecting the initial and final positions while
regarding the differences between the trajectories and their corre-
sponding arcs as motion details.

8 Conclusion

We have proposed a novel scheme for synthesizing a new rhythmic
motion from unlabelled example motions. Our scheme extracts the
motion beats from the example motions to capture the basic move-
ments and their transitions, and then constructs a movement tran-
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sition graph using those data. Given rhythmic sound together with
kinematic constraints, our scheme traverses the graph from node
to node guided by transition probabilities while blending the basic
movements at each node, to synthesize a desired rhythmic motion.
We exploit both advantages of motion blending and posture rear-
rangement. For efficiency and controllability of motion synthesis,
we adopt the idea of motion blending. For preservation of rhyth-
mic patterns, we generalize the idea of posture rearrangement to
the level of basic movements.

Our scheme can be applied to automatically generating danc-
ing and locomotive motions of characters, for example, a dancing
crowd, a musical band performing a piece of music, and a troop of
soldiers marching down the street. Our scheme can be used for syn-
chronizing rhythmic motions with audio tracks, which has been a
labor-intensive task in producing computer animations. Choreogra-
phers and stage directors can benefit from the interactive capability
of our scheme.

Our scheme can handle rhythmic motions beats of which match
those of background music. Moreover, the beats of such a motion
should have the same fixed period. Some kinds of motions may
have different meters than that of background music. For example,
a Swing dance includes the basic movements of the 6/4 meter while
the background music has the 4/4 meter. Our scheme cannot han-
dle such a motion without a priori knowledge on the motion type.
Automatic recognition of the meter of a basic movement without
such knowledge will be a good future research topic on rhythmic
motion analysis.

We are planning to extend our scheme to reflect the continuity
between motion phrases, each of which consists of multiple basic
movements. For automated music-driven choreography, we will
also extend the idea of learning the transitions among the basic
movements to learning the background music appropriate to those
movements.
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