
The Javatm slogan “Write once, run anywhere” has attracted a
great deal of attention. Today, 3D graphics professionals are
wondering if the slogan can apply to 3D graphics application
development as well. This panel brings together representatives
from groups developing 3D APIs for Java and challenges them to
compare and contrast their products, discussing product features,
differences, performance, portability, and limitations.

Brad Grantham, Silicon Graphics Inc.

Silicon Graphics provides a number of solutions to application
developers and users desiring the Java language and high-perfor-
mance interactive 3D graphics.

Application programmers may use Java bindings to OpenGL++,
a scene graph toolkit for OpenGLtm, to render and to provide
interaction with 3D objects and scenes. OpenGL++ provides
interaction features similar to the Inventor interactive toolkit and
features derived from Silicon Graphics’ experience with the high-
performance Performer visual simulation toolkit. Developers
have control over their 3D application from as high a level as
“load and render this VRML 2.0 database” to as low a level as
“draw these polygons with these colors, viewed from this loca-
tion”.

The Cosmo Worldstm VRML 2.0 authoring application in con-
junction with the multi-platform Cosmo Playertm VRML 2.0 nav-
igator provides VRML 2.0 content authors with powerful model-
ing features. Embedded Java script nodes can directly control
and manipulate the VRML 2.0 scene graph and access standard
Java packages and language features. Java applets may control
VRML 2.0 content through the External Authoring Interface
(EAI).

Java bindings to OpenGL on both Silicon Graphics workstations
and Windows 95/NT PCs can be used in a variety of domains
where the overhead of frequent Java method calls is acceptable,
including education, experimentation, and the prototype conver-
sion of OpenGL code from other languages.

A developer’s choice of 3D API for Java must be based on the
developer’s requirements and the available features.

Java bindings for OpenGL and OpenGL++ provide access to
advanced features on workstations which may be important to a
developer requiring, for example, high polygon counts, advanced
texture capabilities, or machine-specific extensions. On the other
hand, the use of these advanced features may preclude using a
Windows NT/95 PC. Java3D, as a required part of Java, can be
relied upon to be ubiquitous. Any operating system that provides
the JavaMedia APIs will provide Java3D, and that may be impor-
tant to users from games developers to teachers to intranet appli-
cation developers.

The VRML 2.0 EAI and scripting nodes provide an efficient
interface to controlling active VRML 2.0 content that exists on
any VRML 2.0 browser. The EAI provides simple application
control of databases. This may be important, for example, to cus-
tomers providing kiosk applications which must direct user inter-
action with the database. Scripting nodes, on the other hand, pro-
vide intelligent content that can be readily referenced and includ-
ed as URLs in larger databases, which may be important for ven-
dors building multi-user VRML worlds.

Silicon Graphics brings a substantial amount of expertise in
interactive high-performance 3D graphics to the table. SGI pro-
vides a range of solutions for Java developers from detailed
OpenGL pipeline control to high-level VRML 2.0 navigation.

To state that any particular solution is the best, however, is as
inappropriate as claiming a Lotus is always a better choice of
vehicle than a Geo Metro. OpenGL++ and alternative 3D APIs
all have advantages and disadvantages. A developer’s choice of
3D Java API can only be made after consideration of the merits
of each solution and the developer’s requirements.

Colin McCartney, Microsoft Corp.

Microsoft’s commitment to 3D graphics is founded on the prin-
cipals of flexibility and choice for developers, giving them the
ability to select the appropriate tools for the task in hand.
Microsoft offers a full range of integrated 3D graphics options
from the high to low end, enabling developers to create the full
spectrum of 3D applications.

The company’s Javatm strategy embraces these same principals of
choice and flexibility, enabling developers to create applications
in the languages of their choice through features such as
ActiveX/Beans integration and cross-language debugging, allow-
ing them to leverage their existing experience and code bases
while taking advantage of Java. To enhance the developer’s Java
experience, Microsoft is focused on providing the fastest, most
secure, most robust Java VM, the richest, most fully featured
suite of Java class libraries and the best tools for Java develop-
ment.

Microsoft’s DirectX Jtm suite of multimedia Java class libraries
gives developers access to the power of DirectX’s highly opti-
mised native code and enables them to take advantage of hard-
ware acceleration in their Java applications. DirectX J is
Microsoft’s multimedia solution for Java, and includes the fol-
lowing technologies for comprehensive, cross-platform 3D
graphics in Java:

* Direct3Dtm J: Direct3D J gives Java developers both
low-overhead to-the-metal access via its Immediate Mode
API, and interoperable access to a higher-level suite of
functionality, including a full world management system,

What 3D API for Java should I use and why?

Organizer
Dave Nadeau (San Diego Supercomputer Center)

Panelists
Brad Grantham (Silicon Graphics, Inc.)

Colin McCartney (Microsoft Corporation)
Mitra (Mitra Internet Consulting)

Henry Sowizral (Sun Microsystems Inc.)

via its Retained Mode API.
* DirectAnimationtm: DirectAnimation is a higher level

media integration API that allows developers to integrate
media compoments such as 3D graphics, video, 2D
graphics and audio with ease.

* VRML 97: Following Microsoft’s acquisition of
DimensionX, developers can not only build tools and
applications using Microsoft’s Liquid Realitytm-based
Java VRML viewer; they can now take advantage of Java
and VRML-specific 3D capabilities that will be integrated
into the Direct3D J class libraries.

Mitra, Mitra Internet Consulting

When choosing an API to use for programming 3D and Java, the
most important thing is to know what you are trying to achieve.
Each of the API’s presented in this panel has their strengths and
weaknesses.

As I see it, the biggest distinction between the API’s is what I
call “Who’s on top”.

* If you see yourself as writing a 3D application (for
example a game), then one of the lower level API’s
(Direct3D, Java3D, or OpenGL++) might make sense.
At the time of this writing, Direct3D has only just added
Java bindings, and the specifications for Java3D and
OpenGL++ are not available, so comparisom is not real-
ly useful.

* If, on the other hand, you see yourself as modelling a
world of active, independent, or inter-dependant, objects,
then you should probably be building the world in
VRML, and adding behavior to the VRML objects via
VRML2.0’s Java scripting API (not to be confused with
JavaScript scripting).

* Alternatively, if you are building a Web page, that needs
a 3D image, for example to graph some results, then
using VRML’s Java or Javascript External Application
Interface (EAI) probably makes sense.

The biggest advantage that the VRML/Java scripting API gives
you is its simplicity. Essentially your Java program is mostly
manipulating the fields and nodes of a standard VRML 2.0 scene
graph. In Java3D or OpenGL++ I understand that you will have
intimate control of the lighting, and other rendering characteris-
tics. In VRML’s API’s you don’t worry about these things, leav-
ing them to the browser. This allows the behavior author to con-
centrate on what they do best, writing programs, leaving a mod-
eler to do what they do best, using an authoring tool to set up a
visual effect.

Of course, in the VRML API, as in anything else the author has
full access to everything you expect in Java, for example to AWT
classes, or to Threads, or the network.

Henry Sowizral, Sun Microsystems Inc.

The Java 3D Graphics API is a scene graph-based and Java-based
API designed with graphics performance in mind. Its inheritance
model removes as much graphic state information from the inte-
rior of a scene graph as possible and moves that information to
the scene-graph’s leaves. By placing the state information at the
leaves, Java 3D can use scene graphs as carriers of graphics
information. It need not treat them as a computational structure.

Efficient processing of a Java 3D scene graph will require that a
Java 3D renderer build and use ancillary data structures.

The Java 3D API provides programmers with three rendering
modes: immediate, retained, and compiled retained.
Programmers can use any one, two, or even all three modes at
the same time to render a scene. The immediate mode defines a
higher level abstraction of low-level functionality by providing
programmers with a means to change graphic attributes and to
render sets of points, lines, or triangles directly to a canvas. The
retained mode allows programmers to specify a scene-graph and
to inform the Java 3D renderer that it should render that scene
graph. The compiled retained mode allows programmers to iden-
tify a scene graph fragment as a candidate for compilation. That
fragment may have mutable components identified as such by the
programmer. Such information allows a Java 3D compiler to ana-
lyze a scene-graph fragment and replace it with a opaque repre-
sentation subject to the programmer specified mutability con-
straints.

The API includes a number of unique features including a more
complete view model (one that supports more exotic viewing
environments such a immersive and fish-tank VR applications),
an extended input model that permits access to real-time inputs
such as six-degree-of-freedom trackers and joysticks, and a
behavior execution and execution-culling model that uses Java as
its base language and the registration of “wakeup criteria” to per-
mit culling. As a runtime API, Java 3D programs must construct
their scene-graphs programatically. The API does not specify an
external file format for scene graphs. It does however, make it
quite straightforward to build object loaders and scene-graph
loaders. As an example, we rapidly built a wavefront “.obj” for-
mat loader and a VRML 1.0 loader. In future, we anticipate the
availability of many other loaders including a VRML 2.0 loader.
In the case of VRML 2.0, the Java 3D API specifies a uniform
technique for processing VRML 2.0 routes and fields. That spec-
ification relies on a Java 3D behavior that triggers at each frame
and propagates any changes associated with a route.
Applications that do not use VRML 2.0 routes pay no cost for
runtime support of routes and fields.

The Java 3D Graphics API was initially designed by a small
group of partner companies. Sun distributed the design resulting
from that effort to its Java licensees as a 0.9 specification of the
Java 3D API. Interested Java licensees provided feedback that
resulted in changes to the 0.9 specification. Sun incorporated
those updates into the specification and then distributed the
updated 0.95 specification of the Java 3D API to the general pub-
lic for feedback. Comments from the public will change the 0.95
specification and culminate in the 1.0 specification of the Java
3D API.

Java is a trademark of Sun Microsystems Inc. Cosmo, Cosmo
Player, Cosmo Worlds, and OpenGL are trademarks of Silicon
Graphics Inc. DirectX J, Direct3D, and DirectAnimation are
trademarks of Microsoft Corp. All other product names men-
tioned herein are the trademarks of their respective owners.

