
Creating believable animated human fig-
ures proves difficult, even with the most

sophisticated software available. Once an acceptable
animation segment has been created, either by an ani-
mator or through motion capture, the results remain
difficult to reuse. The additional work to modify the
animation may take almost as much time as creating
the original motion. Furthermore, the exact style or

structure needed for a particular
motion may not be known until run-
time. Interactive applications, such
as a 3D video game or a virtual envi-
ronment require a real-time con-
trollable animation system.

Research into controllable human
figure animation divides into three
major groupings: procedural, simu-
lated, and interpolated. Procedural
animation uses code fragments to
derive the degrees of freedom
(DOF) values at a particular time.
The procedures can be as sophisti-
cated as needed to provide different
motion styles or react to different

conditions of the simulated environment.
Dynamically simulated figure animation uses con-

trollers together with a simulated human to generate
motion. The degree to which this method succeeds relies
on how accurately we can understand and model
human motion. Unfortunately, both these methods can
alienate classically trained animators and use motion-
capture technology ineffectively. This proves important
since animators and motion-capture systems each pro-
duce compelling results. To leverage their qualities, a
system must use what these resources provide.

The third major grouping, interpolated animation,
uses sets of example motion with an interpolation
scheme to construct new motions. The primary prob-
lems to solve with this approach are to provide a set of
meaningful, high-level control knobs to the animator or
runtime system, maintain the aesthetic of the source

motions in the interpolated motions, and extrapolate
motion. Plus, it is difficult to acquire the examples—
each is precious. Additionally, motion interpolation
must be efficient for use in a run-time environment
rather than earlier in a production pipeline. For these
reasons, we chose an interpolation scheme using radi-
al basis functions.

This article describes a system for real-time interpo-
lated animation that addresses some of these problems.
Through creating parameterized motions—which we
call “verbs” parameterized by “adverbs”—a single
authored verb produces a continuous range of subtle
variations of a given motion at real-time rates. As a
result, simulated figures alter their actions based on
their momentary mood or in response to changes in
their goals or environmental stimuli. For example, we
demonstrate a “walk” verb that can show emotions such
as happiness and sadness, and demonstrate subtle vari-
ations due to walking up or down hill while turning to
the left and right.

We also describe “verb graphs,” which act as the glue
to assemble verbs and their adverbs into a runtime data
structure. Verb graphs provide the means for seamless
transition from verb to verb for the simulated figures
within an interactive runtime system. Finally, we briefly
discuss the discrete event simulator that handles the
runtime main loop.

Related work
The idea of altering existing animation to produce dif-

ferent characteristics is not new. Unuma et al.1 use Fouri-
er techniques to interpolate and extrapolate motion
data. Amaya et al.2 alter existing animation by extract-
ing an “emotional transform” from example motions,
which they then apply to other motions. For example,
“anger” from an angry walk can be applied to a run to
generate an “angry” run. Our work does not follow this
approach—it does not apply characteristics of one
motion to another, but instead assumes that the initial
library of motions contains these emotions. Unlike these
two techniques, our method is not based in the fre-
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quency domain and thus can handle nonperiodic
motions that earlier methods failed to capture.

Bruderlin and Williams3 use multi-target interpola-
tion with dynamic time warping to blend between
motions and displacement mappings to alter motions
such as grasps. Witkin and Popovic4 have a similar sys-
tem for editing motion-capture clips. The former work—
done in the same spirit as ours—addresses many of the
same difficulties, specifically the need for selecting
appropriate key times and the consequent need for time
warping. One difference between the two approaches
lies in the choice of interpolation techniques: Bruderlin
and Williams use multiresolution filtering of joint angles
in the frequency domain, whereas our technique decou-
ples the solution representation from the interpolation
mechanism. Perlin5 approaches this problem in a very
different way by using noise functions to simulate per-
sonality and emotion in existing animation.

Both Wiley and Hahn6 and Guo and Robergé7 pro-
duce new motions using linear interpolation on a set of
example motions. Both techniques require O(2d) exam-
ples, where d is the dimensionality of the control space.
Our technique, using radial B-splines, requires O(n)
examples to establish the baseline approximation and
O(n3) to compute the resulting answer. To compare, a
Delaunay triangulation of the data would require 
O(nceil (d/2)) to compute, when d ≥ 3.

Wiley and Hahn’s work closely relates to our own,
with the additional difference that their time scaling is
uniform, whereas ours is nonuniform and based on key
events. While uniform time scaling obviates the need
for an animator to select structurally similar poses dur-
ing motions, it assumes that the motions being interpo-
lated are very similar in time. When you violate this
assumption, oddities in the motion can result. Wiley and
Hahn also reparameterize and sample their motions on
a multidimensional grid. Then they perform simple
interpolations at runtime. This requires computation
and storage exponential in the number of parameters.

Additionally, neither Wiley and Hahn nor Guo and
Robergé discuss blending subsets of examples, which
would arise when a designer places new examples
“between” old examples when refining the interpolat-
ed motion space. Our technique, on the other hand,
becomes refined with more examples as required.

Because we use an approximation method based on
radial B-splines with compact support to perform the
interpolation, our examples have limited effect over the
space of animations, thus ensuring the use of subsets of
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Table 1. Terminology for objects.

Object Variable Subscript Subscript Meaning Subscript Range

Motion example M i Motion example number 1..NumExamples
DOF θ i Motion example number 1..NumExamples

j DOF index 1..NumDOF
B-spline B k B-spline index 1..NumCP
B-spline control point b i,j,k
Point in adverb space p i
Keytime K m Keytime index 1..NumKeyTimes
Radial basis R i Basis associated with Mi

Radial coefficient r i,j,k
Linear basis A l Adverb index 1..NumAdverbs
Linear coefficient a j,k,l
Distance d i Distance to pi

To Find Out More About This Research

The Human Figure
Animation Project is working
to make better and more
realistic animations of
humans for computer
graphics. Much of our
current work involves motion
capture reuse. Past work
includes torque-minimal
transitioning between
motion captured segments
and robust motion capture
analysis.

More information about
this work, video segments in
particular, can be found at
the Human Figure Animation
Project’s Web site at
http://www.research.
microsoft.com/research/
graphics/hfap. See Figure A
for an example of verbs and
adverbs in use.

A The character depicted walk-
ing here expresses different
emotional states through its
demeanor while turning in
various directions. You can see
increasing happiness in the walk
from bottom to top.
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the examples at runtime as appropriate.
Hodgins and Pollard8 interpolate over the space of

control laws as opposed to joint trajectories. The con-
trol functions define the gains in the joints within a phys-
ical dynamics framework. By interpolating the control
for an action such as running, they can alter a figure’s
physical characteristics from a child to an adult or from
a male to a female character.

An important distinction in our work is that we per-
form the interpolation simultaneously in real time over
multiple dimensions, such as emotional content and
physical characteristics. Although we apply the tech-
niques to interpolating trajectories characterized by
coefficients of spline curves, the methods presented here
also apply to coefficients in the Fourier and other
domains. It may also be possible to apply similar ideas
to control the parameters of a physically based model.

In the context of autonomous agents, our work pre-
sents a back end for applications such as games, the
Improv9 system, and the work proposed by Blumberg and
Galyean.10 The high-level control structures found in such
applications can select verbs and adverbs, while the work
we present here provides the low-level animation itself.
Thus, we create the motion in real time for “directable”
creatures as discussed by Blumberg and Galyean.

Verbs and adverbs
The figure animation system presented here consists

of two main parts. An offline authoring system provides
the tools for a designer to construct controllable
motions—verbs—from sets of examples. In addition,
the authoring system provides tools for constructing
transitions between verbs. It also puts the verbs and
transitions together in a verb graph. This structure
becomes the controlled object for the runtime portion of
the verbs and adverbs system. The runtime system con-
trols invoking the verbs and evaluating the figure’s pose
at each frame of the animation. We begin with a dis-
cussion of the authoring system and then move on to
the runtime system. Refer to Tables 1 and 2 for the sym-
bols used in the text.

We assume that the simulated figures, or “creatures,”
discussed here are represented well as a hierarchy of
rigid links connected by joints. Each joint may contain
one or more rotational DOF. The root of the hierarchy
has six special DOF representing the figure’s position
and orientation in the global coordinate frame. In par-
ticular, we use a 46 DOF human figure. Each DOF’s
motion is represented as a function through time θj(T),
j = 1… ΝumDOF, where T represents clock time from
[0..duration of the motion], which will shortly be
defined as keytime time. Given these motions of the
DOF, you can render the creature at any point in time.

Traditionally, hand-crafted or motion-captured ani-

mation segments have DOF functions of one variable—
time. The DOF functions for a verb are never explicitly
represented, but rather evolve at runtime through inter-
polating example motions weighted by changing inter-
polation parameters or adverbs. These adverbs may
represent emotional axes such as happy-sad, knowl-
edgeable-clueless, and so on. They may also represent
physical parameters such as whether, in the case of a
walk verb, the figure walks up or down hill and whether
the motion curves to the left or right. The set of adverb
axes define a multidimensional adverb space of all pos-
sible variations for a particular verb.

We construct verbs from sets of similar but distinct
example motions. These examples can be obtained by
keyframing or with a motion-capture system. In either
case, certain restrictions on the set of examples apply.
The primary restriction is that all examples for a verb
must be structurally similar. A set of example walks, for
instance, must all start out on the same foot, take the
same number of steps, have the same arm swing phase,
and have no spurious motions such as a head scratch.
The other primary restriction is consistent use of joint
angles. Anatomically implausible settings of the DOF
values can yield the same overall effect as a plausible
setting due to the redundant nature of two- and three-
DOF joints. Bodenheimer et al.11 present methods to
ensure consistent DOF values for motion captured data.

We annotate each example motion by hand with a set
of adverb values, placing the example somewhere in the
adverb space. Additionally, a set of “keytimes”—
instances when important structural elements such as a
foot-down occur—must be specified. We use these key-
times to preprocess the examples into a canonical time-
line for interpolation and for later synthesis of the
phrasing for the interpolated motions. Finally, we anno-
tate examples with a set of intermittent constraints (for
example, the foot should not slip while in contact with
the floor).

A verb M is therefore defined by a set of example
motions Mi,

Mi = {θij(T), pi, Km : i = 1… NumExamples,
j = 1… NumDOF, m = 0… NumKeyTimes}

where the θij(T) are the DOF functions for the ith exam-
ple Mi, pi the location of the example in the adverb
space, and K the set of keytimes that describe the exam-
ple’s phrasing (relative timing of the structural ele-
ments). The time parameter, T, represents clocktime
with the clock starting at 0 at the beginning of the
motion example.

Example motions
Each example motion Mi is defined by a number of

DOF functions, denoted by θij(T). Each θij (that is, the
jth DOF for the ith example) is represented as a uniform
cubic B-spline curve specified by NumCP control points:

θij ijk k

k

NumCP

T b B T( ) ( )=
=

∑
1
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Table 2. Terminology for time.

Time Variable Range

Clock τ
Keytime T 0..KNumKeyTimes

Generic t 0..1

.



where the Bk(T) are the B-splines
and the bijk are the scalar B-spline
coefficients or control points for the
ith example Mi. Bartels et al.12 offer
an extensive discussion of B-splines
and their properties.

The interpolation technique pre-
sented here decouples the interpola-
tion scheme from the representation
of the examples. The examples,
therefore, could be encoded using
other methods, such as a wavelet or
Fourier decomposition.

Time warping
The keytimes define a piecewise

linear mapping from T ∈
{0 … KNumKeyTimes} to a generic time
t ∈ {0 … 1}. The first keytime of the
verb, K1, is defined as 0. The last
keytime, KNumKeyTimes, marks the
verb’s duration. In the case of cyclic
verbs, such as walking, it must also
mark the same event as the first.
More generally, given a T between
0 and KNumKeyTimes,

(1)

for the largest m such that T > Km and keeping in mind
that t(0) = 0. Figure 1 shows this mapping. In other
words, at each keytime, the generic time

At the third of four keytimes, t = 2/3 as the keytimes will
be at 0, 1/3, 2/3, and 1. Between keytimes, t is linearly
interpolated.

Once all the examples have had their time reparame-
terized to generic time t, they are in what is called canon-
ical form. For a given t, all examples will lie at the same
structural point of the motion, regardless of phrasing or
overall duration. The system interpolates the examples
within this generic timeframe. The keytime equations
themselves are also interpolated between examples. The
system then applies the inverse of this interpolated tim-
ing function to “untimewarp” the interpolated motion to
recapture phrasing and duration.

Inverse kinematic constraints
In addition to time warping the motions, keytimes

also specify periods during which kinematic constraints
must be enforced. For example, a walk’s keytimes might
be heel-strike and toe-off. Between these keytimes, the
foot must remain stationary.

The values for specific constraint conditions such as
the location the end effector (for example, the foot)
should maintain, are set not when they’re designed, but
at playback when a keytime that triggers a constraint is

crossed. If, for example, a keytime is crossed triggering
a foot constraint when the foot’s horizontal location is
(x, z) and the floor’s height at that point is y =
floor(x, z), then the constraint location is set to (x, y, z).
The system maintains this constraint position until
another keytime releasing the constraint is crossed.

A fast inverse kinematics optimization enforces con-
straints at runtime. At a given generic time t, a creature
is first positioned independent of any constraints by
evaluating the active verb(s) at that time. In general,
this will place the end effector close to the constraint
point. We need only consider modifying the DOF
between the root and the end effector when making the
subtle changes needed to exactly satisfy the constraint.
You can find the changes in these DOF needed to satis-
fy the constraint at each frame at runtime by solving the
linear system (typically of size 5 or 6) of the form

J ∆θ = ∆x (2)

where J is the Jacobian of the DOF with respect to the
end effector’s motion, ∆x is the vector from where the
verb placed the end effector to the constraint point, and
∆θ is the amount the DOF must be perturbed to hold the
end effector in place. See Girard13 or Watt14 for details on
such inverse kinematic problems.

Verb construction
Once the example motions have been specified for a

verb with their associated keytimes and adverb settings,
the system then constructs a continuous “space” of
motions parameterized by the adverbs. The dimension
of this space equals the number of adverbs, NumAdverbs.
The specific values of the individual adverbs define a
point in this space. The point may move from moment
to moment during the interactive animation if, for exam-
ple, the character’s mood changes or the character

t K
m

NumKeyTimes
m( ) = −

−
1
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t T m
T K

K K NumKeyTimes
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begins to walk up or down hill. The goal is to produce at
any point p in the adverb space a new motion M(p, t)
derived by interpolating the example motions. When p
equals the adverb settings for a particular example
motion i, then M(p, t) should equal Mi(t).

Each example motion has one free variable for each
DOF’s B-spline control point and one free variable for
each keytime. The time warping described above
ensures that corresponding control points in each exam-
ple motion specify similar moments in each motion,
even if the overall lengths of the example motions differ.
This lets us treat the example motion interpolation as a
separate problem for each control point and each key-
time (that is, NumCP × NumDOF + NumKeyTimes indi-
vidual interpolation problems).

Here is the standard problem of multivariable inter-
polation: given N distinct points pi in Rn and N values 
vi in R, find a function f : Rn → R such that for all i, 
f(pi) = vi and such that f does not oscillate badly
between values. The high dimensionality of the space
defined by the adverbs, coupled with the desire to
require few example motions (perhaps only two to three
times the number of adverbs), presents difficulties for
many interpolation methods. Given these difficulties,
we selected a combination of radial basis functions and
low-order (linear) polynomials for this problem. The
polynomial function provides an overall approximation
to the space defined by the example motions. It also
allows for extrapolation outside the convex hull of the
locations of the example motions. The radial bases then
locally adjust the polynomial to interpolate the exam-
ple motions themselves.

Radial basis functions have the form

Ri (di(p))

where Ri is the radial basis associated with Mi and di(p)
is a measure of the distance between p and pi, most
often the Euclidean norm p−pi . Because sums of radi-
al bases cannot represent an affine or polynomial func-
tion, radial basis sets are often augmented by adding a
polynomial of fixed degree.

Details of the mathematics for this type of interpola-
tion can be found in the seminal work of Micchelli15 and
in the survey article by Powell.16 Radial basis functions
have been used in computer graphics for image warp-
ing by Ruprecht and Müller17 and Arad et al.18

The value of each interpolated DOF curve control
point in this space, bjk(p), is defined as

(3)

where the rijk and Ri are the radial basis function weights
and radial basis functions themselves, and the ajkl and
Al the linear coefficients and linear bases as explained
below. Interpolated keytimes are similarly defined as

(4)

For each verb there are (NumCP × NumDOF) control
point interpolations (Equation 3) and NumKeyTimes
keytime interpolations (Equation 4).

This leaves us with the problem of choosing the spe-
cific shape of the radial bases and determining the lin-
ear and radial coefficients. We solve these problems in
two steps, by solving first for the linear coefficients and
then for the radial basis coefficients.

Linear approximation
In the first step, we solve for the linear coefficients by

finding the hyperplane through the adverb space that
best fits the variation across the example motions of the
selected control point or keytime. The linear basis func-
tions are simply Al(p) = pl, the lth component of p, and
A0(p) = 1. An ordinary least squares solution deter-
mines the NumAdverbs + 1 linear coefficients, ajkl, that
minimize the sum of squared errors between

and bijk, the actual B-spline control point (or keytime)
being interpolated, where pi is the adverb setting for the
ith example motion. Letting bjk and 

~
bjk denote vectors of

each bijk(pj) and 
~
bijk(pj) for a fixed j and k, the linear

approximation leaves the residuals

The radial basis interpolates these residuals.

Radial basis functions
We define one radial basis function for each example

motion. The radial basis functions are solely a function
of the distance, di(p)=p−pi between a point in the
adverb space, p, and the point in the adverb space cor-
responding to example motion i, pi. The radial basis
itself, Ri(p), has its maximum at pi (that is, where 
d = 0). We would also like the radial bases to have com-
pact support (that is, have value zero beyond some dis-
tance) to limit each example motion’s influence to a local
region of adverb space.

Several choices exist for the specific shape of the radi-
al basis. For its combination of simplicity and C2 conti-
nuity, we chose a radial basis with a cross section of a
dilated cubic B-spline, B(d/α). We chose the dilation
factor, 1/α, for each example motion to create a support
radius for the B-spline equal to twice the Euclidean dis-
tance to the nearest other example motion. For α = 1,
the cubic B-spline has a radius of 2.0, thus α is simply
the minimum separation to the nearest other example
in the adverb space. Given this definition, it is clear that
the example motions must be well separated.

The coefficients, rijk, can now be found for each DOF
B-spline control point and keytime by solving the linear
system,

where rjk is a vector of the rijk terms for a fixed j and k,

  Dr bjk jk=

   b b bjk jk jk= −
~

~
( ) ( )b a Aijk i jkl l i

l

NumAdverbs

p p=
=
∑

0

K r R a Am im i

i

NumExamples

lm l

l

NumAdverbs

( ) ( ) ( )p p p= +
= =
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1 0

b r R a Ajk ijk i
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and D a square matrix with terms Di1, i2 equal to the
value of the radial basis function centered on motion i1

at the location of motion i2. Thus

Verb graphs
In addition to constructing individual verbs, it is

important to combine them so that smooth transitions
occur between verbs. To do so, an author builds a direct-
ed graph of verbs, or “verb graph,” in which the nodes
represent the verbs and the arcs represent transitions
between verbs. If multiple transition arcs leave a verb,
each transition may be given a “likelihood,” used to sto-
chastically choose at runtime between multiple possi-
ble transitions if none have been explicitly specified.

The adverbs are shared across verbs although each
verb may or may not respond to each adverb. For exam-
ple, an adverb for up hill or down hill may have no mean-
ing to a “sit” verb. The verb graph remains static, that is,
fixed at authoring time.

Transitions
Given corresponding time intervals (as set by the

designer) in two verbs, transitions move control smooth-
ly from one verb to the next. For example, in transition-
ing from walking to running, the time intervals may
both be set to span the right foot placement.

A transition maps similar segments between two
verbs A and B. The correspondence region is determined
by the four variables, t A

s, t A
e, t B

s, and t B
e the start and stop

times of the region in each of the two verbs. Note that
we express these times as generic times since the verbs
A and B may have different durations based on their cur-
rent adverb settings. In other words, the transitions are
designed based on the similarity of the motions’ struc-
ture (generic time) and so will work even though the
verbs themselves change at runtime.

We calculate the transition’s duration by taking the
average of the two blending regions’ lengths:

where the T function maps generic time to real time (key-
time time) for the verb’s current adverb settings. Transi-
tions, since they are made up of verbs, are affected by the
verb’s adverb settings and therefore take on the mood,
duration, and phrasing of their constituent verbs.

Rose et al.19 discuss space-time transitioning mecha-
nisms. Generating space-time transitions between two
motions remains an offline process. Since the specific
motions the verbs generate are not known until runtime,
we cannot use this method here. Thus, in this work we
rely on a simpler formulation to calculate the transitions
between verbs at runtime.

Verbs A and B blend together by fading one out while
fading the other in. A monotonically decreasing blend-
ing function with a range and domain of [0,1] determines
the relative contribution of the two verbs. We use a sig-

moid-like function, α = 0.5 cos (βπ) + 0.5, in this work.
Over the transition duration, β moves linearly from 0

to 1, representing the fraction of the way through the
transition intervals in each verb. We determine the tran-
sitional motion by linearly interpolating the verbs A and
B with weights α and 1 − α, respectively. You can find
the internal DOF by interpolating the joint positions as
in Figure 2, which shows the DOF function θj as a com-
bination of the two DOF functions θ A

j and θ B
j during the

transition region. The path the joint takes is defined by
θ A

j before the transition, θ j
A→B during the transition, and

θ B
j after the transition. To achieve smooth motion for

the root DOF, we interpolate the velocities (rather than
positions) of the two verbs and then integrate the results
through the transition.

Verb graph at runtime
Issuing commands to the creature controls the move-

ment from verb to verb in the verb graph. When direct-
ed to perform a particular verb, the system executes a
search to determine a sequence of transitions and verbs
that will reach the desired action from the one current-
ly playing. The system chooses the shortest path, where
shortness represents the number of needed transitions.
We represent this path through the verb graph as a queue
consisting of transition, verb, transition, verb, and so on.

To keep the verb graph in a useful state requires some
bookkeeping. The root of the creature’s motion must be
stored and maintained at each time step to reorient and
reposition the base verbs for concatenation onto the cur-
rent action. For example, in a walk transitioning to itself,
the horizontal position specified by the verb indicates
an offset from the creature’s position when the verb was
invoked. Thus, the creature continues to walk forward
and does not jump back to the origin on each stride.
Also, the set of current active constraints must be updat-
ed by discarding expired constraints and creating new
ones as the animation progresses.

The verb graph’s execution queue cannot be empty or
the creature will come to a stop. For the verb graph to
continue, it must transition from its current action
before that action has completed. When only the cur-
rently active verb remains in the queue, the system auto-
matically selects a transition from the set of available
transitions away from that verb. The selection is made
stochastically according to weights the designer speci-
fied during the verb graph construction. In cyclic verbs
such as walking, the default (with a probability of one)
transition is usually the one leading back into itself.

Runtime verb evaluation
Given the authored verbs parameterized by adverbs

and time warped by keytimes, and a verb graph to orga-
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nize the verbs and transitions, we are now ready to see
how these structures operate at runtime. The goal is to
continuously vary the adverb settings and have these
changes reflected in the simulated creatures’ subtle
motion. In other words, the user or application defines
the path that the point p will take on the fly, and the run-
time system must respond accordingly. Given the time
and setting of p, the evaluation of the creature’s pose
must be fast enough to allow interactive frame rates.

A discrete event simulator serves as the runtime sys-
tem’s main loop. This system tracks the clock and
sequentially processes events placed on its event queue.
Each event has a time stamp and an associated callback
function. The system inserts events in the event queue
(in time stamp order) and processes them by invoking
the callback function with the time stamp as a parame-
ter. Events may be one of three types: normal, sync, or
optional. The system processes normal events as they
are reached in the queue, independent of the relative
values of the time stamp and clock. Sync events wait for
the clock to catch up to the time stamp if the clock time
is less than the time stamp; they execute immediately
otherwise. The system skips optional events if the clock
has passed the time stamp; otherwise, optional events
act like normal events.

The most common events are “render” and “display”
events. A render event evaluates the DOF at the time
indicated by the time stamp to set the creature’s pose,
then renders (but does not display) an image. The ren-
der event has the “normal” flag and thus creates an
image as soon as the event reaches the queue. A display
event with the same time stamp but with a sync flag

waits for the clock to reach the time stamp and displays
the rendered image. The render event also measures the
amount of clock time between frames and estimates the
best time stamp for the next render or display events and
inserts them in the event queue. This way, the frame rate
dynamically adjusts to the computational load.

The system schedules other events to induce transi-
tions between verbs or to turn on or off constraints.

Evaluating DOF
The render event callback requests that all DOF be

evaluated at a given time, τ. The currently active verb
(or verbs when a transition occurs) is evaluated at time
τ − τoffset with the current adverb settings, p. τoffset is the
clock time when the current verb or transition comes to
the fore of the queue. The following pseudocode sum-
marizes this process:

1 T = τ − τoffset
2

3 For each keytime m

4 Km = IInntteerrKKeeyy(m, pp)  // Eqn.  4

5 Next

6

7 t = GGeenneerriiccTTiimmee(T, K)  // Eqn.  1

8

9 For each DOF j

10 For each B-spline coefficient k

11 bjk = IInntteerrBBSSCCooeeffff(j, k, p) 

// Eqn. 3

12 Next

13 qi =   Âk bjk Bk(t)

14 Next

15 For each kinematic constraint c

16 EEnnffoorrcceeCCoonnssttrraaiinntt(c)  //  Eqn. 2

17 Next

Note that only lines 1, 7, 13, and 16 must be evaluat-
ed at each frame time. The system caches the values com-
puted at the other steps. The interpolations, lines 4 and
11, only change when the parameters change or the sys-
tem invokes a new verb. In addition, in line 11 only four
of the B-spline coefficients are required for a given t. As
t progresses past a B-spline knot value, one coefficient
drops off the beginning of the set of four and the system
adds a new one as the knot value passes. Thus, on aver-
age, less than one of the interpolated coefficients per
DOF need be evaluated per frame if p does not change.
If p changes from frame to frame, four coefficients per
DOF must be calculated as must the m interpolated key-
times. The entire DOF evaluation process takes only a
small fraction of the time to compute compared to the
polygon rendering for the frame given the pose.

Results
Our library of motion capture contains a repertoire

of example motions for a variety of parameterized
verbs—walking, jogging, reaching, and idling. Some
verbs, such as walk, have a large number of examples
representing different emotions such as happy, sad,
angry, afraid, clueless, tired, delirious, determined, fren-
zied, ashamed, bored, goofy, and grief stricken. We also
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3 A walk sam-
pled across two
emotional axes.
The green
figures are the
example
motions. The
rest were creat-
ed through the
verb-adverb
mechanism.
Happiness
increases from
bottom to top
and knowledge
from left to

.



have walks at different inclinations
and radii of turn.

The data for the example motions
we discuss here were motion cap-
tured with an Ascension Motion Star
system sampled at 120 Hz with 15
six-DOF sensors positioned on the
body. The raw data must be pre-
processed to fit a rigid-body model
with hierarchical joint rotations and
fewer DOF corresponding to the lim-
itations of human joints. The meth-
ods described by Bodenheimer et
al.11 ensure that the motion-capture
data use joint angles consistently for
redundant DOF. The final model has
40 joint DOF in addition to six DOF
of the root, located between the
hips, for global positioning and 
orientation.

We constructed a parameterized
walk along two emotional axes—
happy-sad and knowledgeable-
clueless—as well as physical charac-
teristics such as up hill or down hill
and turning. Figure 3 shows a sam-
pling of this walk across the two
emotional axes. A reaching verb was
parameterized by the three posi-
tional values representing the goal
of the reach (see Figure 4). We con-
structed various emotional idle
motions, plus a jog with a turning
adverb.

Parameterizing a space based on turning and on
changing elevation gives us great control over the crea-
ture. We created the jogging and walking turn adverbs
from two motion-captured example motions each, a for-
ward motion and a motion to the right. To create a third
example motion to the left, we mirrored the motion to
the right. The interpolation gives convincing control of
the radii of the turn’s curvature and allows convincing
navigation.

Solving for the interpolation coefficients took about
two minutes on a 200-Mhz PentiumPro processor for
the most complex verbs. Recall that this offline compu-
tation need only be carried out once per verb. At run-
time, you can evaluate a character’s position as
described in the pseudocode above at approximately
200 Hz, or about 5 milliseconds, thus barely affecting
the overall frame rate. This timing was taken with a con-
stantly changing p, thus requiring interpolating the full
four coefficients per DOF per frame plus the m keytimes.

We can move through the adverb space and verb
graph to exhibit several degrees of emotions and sub-
tleties of movement. We have shown the construction
of a large verb graph consisting of these parameterized
verbs in addition to various unparameterized motions
such as stretching, standing, and looking around, with
associated transitions between them. The transitions
are generated in real time and obey inverse kinematic
constraints.

Conclusions
Currently our system only accepts variations in

expressions and changes of behavior through user input,
but future work will explore putting much of this input
under the control of state machines executing under our
discrete-event simulator. We plan to eventually create
complex autonomous agents in virtual environments.

We expect to continue to enhance the authoring sys-
tem for verb construction to allow fast modification of
the interpolation space the verb defines. The verb-
adverb construction described here should thus provide
a means to leverage what is perhaps the most valuable
aspect of any animation system—the talent and inspi-
ration of the animator constructing the example
motions and the capture of real motion from expensive
motion-capture systems. In this way, the artist’s skills
can be leveraged within a real-time setting. ■
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