
Most of today’s computing environ-
ments—by design—support interaction

between one person and one computer. The user sits at
a workstation or laptop, or holds a personal digital assis-
tant (PDA), focusing on a single device at a time—even
with several devices around, linked and synchronized.

Collaboration occurs over the net-
work using e-mail, shared files, or
in some cases explicitly designed
groupware. In noncomputerized
work settings, on the other hand,
people interact in a rich environ-
ment that includes information
from many sources—paper, white-
boards, computers, physical mod-
els, and so on. They can use these
simultaneously and move among
them flexibly and quickly. The few
integrated multidevice computer
environments existing today tend to
be highly specialized and based on
application-specific software.

The Interactive Workspaces Project at Stanford
explores new possibilities for people to work together
in technology-rich spaces with computing and interac-
tion devices on many different scales. It includes facul-
ty and students from the areas of graphics,
human-computer interaction (HCI), networking, ubiq-
uitous computing, and databases, and draws on previ-
ous work in all those areas. We design and experiment
with multidevice, multiuser environments based on a
new architecture that makes it easy to create and add
new display and input devices, to move work of all kinds
from one computing device to another, and to support
and facilitate group interactions. In the same way that
today’s standard operating systems make it feasible to
write single-workstation software that uses multiple
devices and networked resources, we are constructing a

higher level operating system for the world of ubiqui-
tous computing. We combine research on infrastructure
(ways of flexibly configuring and connecting devices,
processes, and communication links) with research on
HCI (ways of interacting with heterogeneous changing
collections of devices with multiple modalities).

The Interactive Room (iRoom) infrastructure de-
scribed in this article is brand new: the physical plant
for the room was constructed during the summer of
1999, and the room became operational for the first time
in late September 1999. We report here on our very early
work on our strategy for integrating PDAs into this
infrastructure.

Application target areas
We chose to focus our current work on an augment-

ed dedicated space (a meeting room, rather than an
individual’s office or home, or a tele-connected set of
spaces) and to concentrate on task-oriented work rather
than entertainment, personal communication, or ambi-
ent information. In this section we describe some of our
initial research goals in terms of specific applications we
developed. These applications also serve as motivating
examples for the programming mechanisms described
in later sections.

The photo of the current iRoom configuration (Fig-
ure 1) illustrates the basic room hardware: three touch-
sensitive SmartBoard displays; a bottom-projected
table; a front-projected (non-input-responsive) screen;
a variety of wireless mice, keyboards, and PDAs for inter-
acting with the screens; and approximately eight PCs
(not visible) providing computing, rendering, and dis-
play server capabilities.

Our interest in multimodal input forms the basis of
our investigation of human-centric interaction,1 in which
contextual information provided by software observers
is integrated to identify user intent based on multiple
input sources and modalities. The focus remains on the

0272-1716/00/$10.00 © 2000 IEEE

Information Appliances

54 May/June 2000

We present a robust,

infrastructure-centric, and

platform-independent

approach to integrating

information appliances into

the iRoom, our interactive

workspace.

Armando Fox, Brad Johanson, Pat Hanrahan, and
Terry Winograd
Stanford University

Integrating
Information
Appliances into an
Interactive
Workspace

person and the task (which will be integrated across
multiple devices) rather than on device-bound applica-
tions. The architecture makes it easy for application
designers to mix and match devices in a way that best
enhances the interaction affordances for the user. This
can include using large touchscreen devices, ordinary
laptops and workstations, and PDAs.

For our initial explorations of this area, we wanted
the ability to rapidly prototype new applications and
new usage scenarios for existing applications, in partic-
ular those that would integrate PDAs into the applica-
tion usage model. The rest of this article describes our
specific strategies and our experience building proto-
types to date. We applied our techniques in two areas.
The first involves augmenting widely deployed legacy
applications such as Web browsers and desktop pro-
ductivity tools with collaborative behaviors and the abil-
ity to handle multimodal input. The second focuses on
the use of PDAs as remote controllers for logical or phys-
ical entities in the iRoom.

Augmenting legacy applications. Rather than
immediately starting to design new applications explic-
itly written to interact with PDAs, we focused on aug-
menting existing applications. For example, SmartPPT
(Smart PowerPoint), a student project using the iRoom,
seamlessly integrates the multiple displays available in
the workspace to provide the speaker presenting Pow-
erPoint slides with more creative space. It also supports
the audience in using laptops, PDAs, and other hand-
held devices to participate in the discussion by allowing
them to browse through the information presented,
annotate it, and communicate with the speaker and the
rest of the audience. Audience members can view an
outline of the presentation along with thumbnails and
details of individual slides; preview slides yet to be pre-
sented; review slides already presented; post questions
to be integrated into the presentation; and store meta
information about the presentation (such as e-mail
addresses, URLs, and so forth). The presentation author
can script the desired behaviors (for example, the on-
screen slide layout) in advance with a separate author-
ing tool that integrates with PowerPoint or rely on some

built-in default behaviors. SmartPPT was directly
inspired by the StuPad application of the pioneering
Classroom 2000 project,2,3 but as we describe later, its
infrastructure-centric approach has resulted in a lighter
weight implementation.

Universal interactors. PDA-like devices can con-
trol physical devices or applications running in the
room. Prior work4 explored how applications or devices
might export canonicalized descriptions of their inter-
faces, permitting on-the-fly creation of a user interface
and its export to a handheld device. Our Java-based
room display manager shows a list box with various
potentially interesting URLs and a schematic of the
screens in the room. Users can drag and drop the URLs
on the desired screen to view the corresponding Web
page on that display. During meetings, this provides a
convenient way for participants to take advantage of all
the display surfaces for displaying information, without
requiring them to choreograph a presentation in
advance. We also wrote two versions of an application
for remotely controlling projectors and lights in the
room, described in a later section.

A number of other projects are developing multi-
device interactive workspaces, but with a different
underlying software architecture. For example, the
iLand environment built at GMD-IPSI in Darmstadt5

physically resembles our interactive workspace. It
includes an interactive electronic wall (DynaWall) based
on three back-projected touchscreen displays, an inter-
active table (InteracTable) with a bottom-projected dis-
play, computer-enhanced chairs (CommChair) that
incorporate docking for wireless use of laptops, and the
Passage mechanism, which uses physical tokens to rep-
resent information objects.

However, iLand’s software philosophy differs from
our approach. They build software for use in the envi-
ronment using their own tools, rather than incorporat-
ing preexisting interfaces and applications. Their Beach
software platform is built in Smalltalk, based on an
object-oriented framework called Coast for synchro-
nizing multiple simultaneous access to objects. This
enables them to develop sophisticated groupware envi-

IEEE Computer Graphics and Applications 55

1 The Interac-
tive Workroom
(iRoom).

ronments that depend on object synchronization, but it
does not support standard Unix or Windows applica-
tions as regular components of the environment.

In contrast, we chose to leverage existing applications
as much as possible. We wanted both to maximize the
impact of our work and to minimize the resources
expended in constructing the “scaffolding” needed to
begin conducting interesting HCI and applications
research in the iRoom.

Meta-goals
Beyond the specific functionality required to support

PDA applications, some of our desiderata for PDA inte-
gration involve robustness and maintenance. We believe
these to be of primary importance if others are to bene-
fit from our work by adapting our infrastructure to their
own projects.

Hardware and software diversity. We already
support a diverse array of PDA devices and similar ubiq-
uitous-computing gadgets, such as PC-controlled
lighting via X10, a programmatic interface to a sur-
round-sound system for the room, and so forth. To the
extent possible, our programming infrastructure should
shield application developers from having to deal direct-
ly with hardware and protocol heterogeneity.

The HCI focus of our research agenda leads us to an
interesting notion of application portability: applica-
tions should be portable between devices with similar
usage models. From a research standpoint, Windows CE
palm-sized PCs and Palm Pilots might well be consid-
ered the “same” device type because even though their
operating environments and programming models dif-
fer, their usage models are similar. In contrast, both
sketchpad-sized Jupiter-class subnotebooks and the
wall-sized SmartBoards run Microsoft Windows-based
operating systems, but clearly their usage models differ
markedly. We would like our programming environ-
ment to reflect this HCI-centric notion of portability.

Legacy application support. We want to interact
with unmodified legacy applications (Web, productivi-
ty, computer-aided design, and other domain-specific
tools) from PDAs. We emphasize “unmodified” because
we don’t in general have source code for the legacy appli-

cations. Even if we did, we would like other researchers
to benefit from iRoom software without having to obtain
specialized versions of these applications.

Leverage. Historically, PDA programming has
proved awkward and difficult even for seasoned pro-
grammers of desktop applications, in part because of
the limited programming environments and nontrivial
resource constraints PDAs present when compared with
their desktop counterparts. We would like to facilitate
application prototyping for PDAs by greatly reducing
the level of expertise required to implement simple
behaviors. At the same time, we want to provide suffi-
cient flexibility for advanced programmers to prototype
and design sophisticated PDA user interfaces in a way
that will permit reusing their efforts in the future.

To realize these goals, we have favored platform-neu-
tral languages and development environments (for exam-
ple, Java instead of C++). We also adapted widely
deployed protocols and infrastructures in building new
applications rather than using lower level specialized pro-
tocols, even at the expense of some efficiency (such as
Web applications with Web-based GUIs instead of cus-
tom client-server applications with specialized GUIs). We
extended these strategies to PDAs relatively painlessly.

No-futz functionality. Entering the iRoom and
doing useful work should not require a user to be an
expert in the organization of the software infrastruc-
ture. As much as possible, the software should be self-
managing and self-repairing in the face of simple
transient faults. Similarly, application programmers
who want to write fairly simple applications, or add col-
laborative behaviors to existing applications, should not
have to understand the entire software infrastructure.

Infrastructure-centric approach to ubiquitous
computing

A large body of work goes by the names ubiquitous,
pervasive, and mobile computing. Although many peo-
ple use the terms loosely and often interchangeably, we
find it useful to categorize each contribution according
to the degree to which it is infrastructure-centric. By this
we mean that a ubiquitous-computing device such as a
PDA can make strong assumptions about its environ-
ment: the availability and quality of network connec-
tivity, and the availability and quality of computation
embedded in the infrastructure to assist PDAs in inter-
acting with the rest of the environment and even with
each other.

For example, consider a group of PDA-equipped users
entering a room. They would like to share the notes each
user has taken on her PDA. One solution is for the PDA
software to assume very little about the infrastructure:
each device must be able to locate or discover the pres-
ence of other devices, establish or participate in a small
ad-hoc network for physical communication, and agree
on distributed protocols for information exchange. This
solution (and its formidable engineering challenges)
may suit scenarios in which we cannot assume the avail-
ability of a single, centrally managed, resource-rich
infrastructure. For example, if the users weren’t all part

Information Appliances

56 May/June 2000

The human-computer interaction

focus of our research agenda

leads us to an interesting notion

of application portability:

applications should

be portable between devices

with similar usage models.

of a common user community, administrative or security
concerns might prevent them from enjoying a common
infrastructure.

A different solution assumes that the room into which
the users enter already has a centralized wireless base
station and logically centralized software components
that facilitate communication and data interchange
among devices. Clearly this approach removes much of
the burden from individual devices, assuming the infra-
structure assumption holds. We call this scenario the
infrastructure-centric scenario.

We chose the infrastructure-centric scenario for sev-
eral reasons:

1. We focus on using PDAs in a specific location, name-
ly, the iRoom. It’s reasonable to collocate network
gateways and servers in the room and keep them
highly available, since the room is fixed and cen-
trally managed.

2. In the common case, iRoom users do in fact belong
to a single community. However, we can provide at
least some services to visitors, if the visitors are will-
ing to install minimal software on their devices.
(Even for visitors the infrastructure approach proves
advantageous, since it minimizes the amount of
functionality each visitor must install on her device
in order to participate in the iRoom.)

3. We can leverage a large body of existing work that
has successfully addressed specific pieces of the PDA
problem with infrastructure-centric solutions. For
example, information access solutions such as Prox-
iNet’s ProxiWeb browser (http://www.proxinet
.com) permit accessing most standard Web pages
unmodified from a PDA, including graphics, forms,
and so on. We would like to use this existing tech-
nology as building blocks for more sophisticated
applications.

Note that most of the high-level functionality resides
in infrastructure software. The infrastructure assump-
tion is more about software than about hardware and
raw network connectivity. A substantial literature exists
on how infrastructure-software approaches can great-
ly simplify ubiquitous computing, from the seminal
ParcTab project6 to generalized infrastructure support
for Web-like applications on thin or low-bandwidth
clients.7 Several research projects concentrate exclu-
sively on the software frameworks needed to deploy
such infrastructures.8

Information appliance programming
approaches and examples

Our PDA arsenal currently includes

■ A few standard Palm III devices
■ Two Vadem Clio Windows CE devices with touch-sen-

sitive screens, keyboards extendable (to create a sub-
notebook-like device) or hidden (to create a
sketchpad-like device), and WaveLAN PC cards

■ Three Cassiopeia E-10 Windows CE palm-sized PCs
with a form factor approximately the same as the
Palm devices, but higher resolution screens (320 ×

240 versus 160 × 120) and support for 16-bit color
(versus 2-bit grayscale)

■ One HP Jornada 680 handheld PC—the “clamshell”
model that unfolds into a keyboard and screen—
equipped with a WaveLAN PC card

■ A variety of notebooks and subnotebooks running
Windows and Linux, equipped with WaveLAN PC
cards

All the Palm devices and the palm-sized Windows CE
devices have the ProxiWeb browser and Waba Virtual
Machine installed.

The iRoom is part of the Gates Computer Science
Building IP network. In addition to Ethernet taps and
serial cables connected to a point-to-point protocol
(PPP) server, the iRoom provides wireless Ethernet
access via WaveLAN (IEEE 802.11) base stations. The
Cassiopeia E-10 and the Palm III use PPP over serial
cables; all other devices, including the Clios and iRoom
team members’ laptops, support WaveLAN. All com-
munication uses protocols based on TCP/IP.

The event heap
The primary software abstraction in the iRoom is the

event heap. An event heap resembles a traditional GUI
event queue, with a few important differences:

■ Multiple entities can subscribe to a given event
stream, enabling multicast-style groupware applica-
tions.

■ Events auto-expire and are eventually garbage-col-
lected from the heap if not consumed, making it
unnecessary for event senders to verify whether any
receivers are present.

■ The event data structure is largely self-describing and
extensible, so events can be subclassed without
explicitly informing all entities about changes in a
class hierarchy.

Later we motivate the choice of an event heap mech-
anism over explicit client-server couplings. Functional-
ly, the event heap is a tuple-space-like mechanism by
which entities in the iRoom communicate. (In fact, our

IEEE Computer Graphics and Applications 57

Assume the room already has a

centralized wireless base station

and logically centralized software

components. Clearly this removes

much of the burden from

individual devices.

We call this scenario

the infrastructure-centric scenario.

current implementation is based on TSpaces.9) Entities
can post events to the event heap, query the event heap
for the presence of events matching a template, or sub-
scribe for notification when another entity posts events
matching a template. We have devised naming schemes
to identify the intended source, receiver classes, and
other relevant event fields. For concreteness, see Table
1 for details of the event heap data structures, includ-
ing required fields and currently supported event types.

We created event-heap procedure interfaces in Java
and C/C++. Both call the underlying TSpaces code,
which uses socket communications to invoke against a
TSpaces server process running on a machine in the
iRoom.

For the present discussion, what’s relevant is that all
iRoom applications use the event heap to some degree
as an interapplication communication mechanism. An
application can be “aware” of other iRoom entities if it
can post and subscribe to event heap events. Applica-
tions can either communicate with the event heap
directly, through Java or C library wrappers around
TSpaces calls, or indirectly through a gateway. Gate-
ways provide protocol conversion that allows non-
Tspaces clients to effect limited communication with the
event heap. We describe how to do this for HTTP
clients—that is, a Web interface to the event heap—in
the next section and for clients too lightweight to sup-
port a full Java virtual machine (VM) implementation in
the following section, and what specific limitations are
imposed by each type of gateway compared to a direct
communication path to the event heap. Figure 2 illus-
trates direct and indirect communication paths between
iRoom entities and the event heap.

Approach 1: Web front end plus infrastructure
proxy

Since one domain for PDA usage includes remote-con-
trol and universal-interactor applications, it would be
valuable to leverage the Web’s advantages: familiar user
interface widgets, mature development and authoring
tools, extensive deployed infrastructure, and the abili-
ty to deploy new infrastructure (for example, new
servers) using only off-the-shelf commodity hardware
and software. To do this, we created an application
called the usher that behaves like an HTTP server whose
sole purpose is to convert well-formed HTTP GET and
POST requests into operations against the event heap.

(In other words, it tunnels event-heap remote procedure
calls over HTTP.) The usher is currently implemented
as several Java servlets that plug into standard Java sup-
porting Web servers.

To post an event, the event fields and values are
encoded into either a “fat URL” for a GET (as is done in
HTTP GET form submissions) or an HTTP POST form
submission. The usher parses the submission and posts
the appropriate event to the event heap. To query the
event heap for events matching a template, the template
is encoded in a fat URL or HTTP POST form, and the
event data is returned encoded in the destination page
of the HTTP form request. Using this mechanism, the
usher can be invoked via any action that causes a link to
be followed: user clicking a button, user following a link,
HTTP redirect, and so on. The encoding for an event
posting can specify the URL of the page that should be
returned once the event has been successfully posted to
the event heap; this means that Web links can be set up
to both trigger an event to be placed into the event heap
and send the local browser to a new page. In essence,
the usher provides a limited way to interact with the
event heap that is understandable by existing off-the-
shelf Web browsers and controllable using standard
Web pages with links and forms.

To interact with the usher from a PDA requires only
that the PDA be able to run a Web browser that can
download and allow interaction with standard HTML
pages and forms. Fortunately, such a browser exists:
ProxiWeb handles secure and insecure HTML text,
forms, images, image maps, and most other basic Web
content types. It does not handle dynamic HTML or
client-side scripting in Java or JavaScript, so Web appli-
cations for PDAs are limited to static content. The Proxi-
Web client and service are free; a commercial
transformational proxy gateway, based on research
described elsewhere,8 is used to transparently fetch
pages from destination servers, convert them to a form
viewable on the PDA, and transmit them to the PDA. Fig-
ure 3 illustrates the Web interface to the event heap both
via a standard desktop Web browser such as Netscape
Navigator and via the PDA Web browser, ProxiWeb.

Example: Multibrowsing. Using the technique
just described, we created a technology called multi-
browsing for the iRoom. Multibrowsing lets users con-
struct Web sites in which following links can cause the
destination page to appear on any of the iRoom’s
screens, not just the screen displaying the page con-
taining the link. Displays in the room are multibrows-
able if the machine driving the display is running
multibrowsed, a simple daemon that subscribes to spe-
cial multibrowsing events from the event heap and caus-
es the browser running on that display to visit the URL
encoded in the multibrowse event (or starts a browser
if needed). Any event-heap application that knows the
format of multibrowse events can therefore trigger any
display in the room to show a specified Web page.

Multibrowse-enabled Web pages are constructed with
“fat URLs” that submit a form request to the usher to
generate a multibrowse event encapsulating the link
URL to follow and the multibrowsable target screen that

Information Appliances

58 May/June 2000

Multibrowsing lets users construct

Web sites in which following

links can cause the destination page

to appear on any of the iRoom’s screens,

not just the screen displaying

the page containing the link.

should display the page. Since being a multibrowse con-
troller requires no special support, PDAs can participate
as first-class citizens in multibrowsing by running the
ProxiWeb browser.

We currently use multibrowsing for running meetings.
The moderator constructs a multibrowsable page to
choose which applications or Web pages to bring up on
a given display as the meeting progresses. Displaying this
control page on a PDA permits using all of the screen real
estate of the large displays for group content, while leav-
ing the control capabilities on the moderator’s PDA.

We’ve also used multibrowsing to enhance HTML-

converted PowerPoint presentations. A control page is
created containing links for each step in the presenta-
tion. Each such link encodes a mapping of slides to dis-
plays for that particular point in the presentation. Note
that for each page of information, up to one link per out-
put screen can be created, allowing the user of the con-
trol page to display any information on any screen at any
point during the meeting.

Example: Projector controller. Since our
schema for generating events from fat URLs is quite gen-
eral, we have also been able to use this mechanism to

IEEE Computer Graphics and Applications 59

Event heap

RMILite (client)

RMILite (server)

TSpaces (server)

Stanford UCB Ninja
IBM Almaden ProxiNet

HTTP
Socket

PDA
application

(Waba)

PDA
application

(Web-based)

ProxiWeb

ProxiWare
Gateway

Java servlet

Desktop
application

(Web-based)

Netscape/IE

Desktop
application

(Java)

Event heap

TSpaces (client)

Desktop
application

(C/C++)

Event heap

Java/C glue

TSpaces (client)

2 The various
paths through
the event heap.

Event heap
servlet TspacesProxiWeb

converter

HTTP

ProxiWeb

HTML form
submission

3 PDA Web
pathway.

Table 1. Some event heap details.

Mandatory Event Fields Some Currently Supported Event Types

OpCode: Indicates type of fields to expect Multi-Browse: Specify URLs or applications to load on a
target machine

SourceID: All participants are known Projector: Commands to turn on/off and switch projector inputs
GroupID, PersonID, TargetID: Automatically View Change: Causes a 3D viewer to rotate views

controlled to allow application grouping
and targeting of events

Time To Live: Events are cleared from the heap New Image: Causes an application to load in a specified image
this long after posting, whether they have been
read/consumed or not

Number of Accesses: Event removed after specified Mouse/Keyboard: Used to retarget mouse and keyboard
number of accesses between machines

build a Web page (reproduced in part in Figure 4) that
allows control of the various room projectors (turn pro-
jectors on/off, remotely control the multiplexer that
determines which machine drives which projector, and
so forth). Currently the interface is stripped down—
clicking on various textual links causes the actions to
happen—but it would be simple to decorate the inter-
face with form elements, image maps, and so on. By
using URL-passing as a gateway to the event heap, we
have enabled very rapid prototyping of this style of
remote-control application. Note that this “application”
can run on either a standard (laptop/desktop) Web
browser or on a PDA via ProxiWeb.

Discussion. Multibrowsing is a simple mechanism
with obvious drawbacks. For example, you can open
Web pages or start applications, but currently you can’t
close Web browser windows or kill running applications,
nor in general take control of an already-running appli-
cation not started via multibrowsed. Nonetheless, it has
proved useful for a variety of tasks, such as those men-
tioned above, and is implemented entirely using simple
event-heap mechanisms and existing Web infrastruc-
ture. Other than the creation of pages with properly con-
structed fat URLs, authoring multibrowsable pages
requires no programming skills.

HTML-only user interfaces have well-known draw-
backs. The transformations done by the ProxiWeb ser-
vice have two relevant side effects: control over widget
layout is limited, and the ability to do client-side script-
ing of any kind is lost. The latter restriction implies that
every user action requires a roundtrip to the server for
the result of the action to be indicated on the PDA
screen, rendering this method almost useless for inter-
actions in which the action-perception coupling must
be tight and therefore requires low latency—for exam-
ple, pointer tracking by dragging a finger on a PDA
screen. However, the method is still useful for limited-
interactivity applications, such as remote controls.

A less obvious but very significant drawback of this
approach is that you cannot asynchronously “push”
events all the way to the PDA—the best you can do is
have the PDA periodically poll for events by refreshing
the Web page being viewed. This makes it impossible to
write applications in which state changes in some other

iRoom entity cause immediate state changes on the PDA.
On the other hand, the advantages of the HTML

approach (at least for prototyping) are clear:

■ new applications require no compile or install cycle;
■ applications work from both desktop browsers and

PDAs;
■ application designers can use extensive and familiar

Web tools to design the application; and
■ there is no need to tightly integrate the application

with the iRoom infrastructure (for example, no need
to publish pages on a specific server).

Given these advantages, Web front-end applications
in the iRoom showcase an aggressive embracing of infra-
structure computing. First and most obvious, they lever-
age existing HTTP standards and servers, converting
Web data in these protocols to event data transmitted
to the event heap using its native Java interface. Less
obviously, but perhaps more interestingly, the transfor-
mational proxy gateway through which all ProxiWeb
requests are routed is not hosted on any machine in the
iRoom, nor indeed any machine at Stanford. It is a
shared, publicly available service hosted offsite, on a
cluster of workstations somewhere in Santa Clara. This
offers a strong case for computing in the infrastruc-
ture—it illustrates how our ability to exploit existing
infrastructure services gives us a huge advantage in
leveraging an entire set of solutions (desktop Web
browser compatible access to iRoom mechanisms)
directly into another domain (PDAs). Finally, pages
embedding HTML links or forms addressed to the usher
can be published anywhere—they don’t need to be tight-
ly integrated with the iRoom infrastructure.

An interesting consequence of our aggressive adop-
tion of this approach is that, if not for our IP firewall
around the iRoom, a stranger could publish a Web page
on any server, pull out a PDA with a wireless modem
(such as a Metricom Ricochet or Novatel CDPD
Minstrel), surf to the published page from anywhere in
the world, and cause the lights in the iRoom to blink on
and off—or any number of other amusing events. We
are working on a crisp description of the desired security
model for iRoom applications so that we can investigate
more flexible security and authentication mechanisms.

Information Appliances

60 May/June 2000

InFocus iRoom Projector Control Page

Turn On Projector
Turn on All Projectors: projsubmit 1 1 0 0 null 2 1 0 0 null 3 1 0 0 null 5 1 0 0 null 6 1 0 0 null
Turn on Smartboard 1: projsubmit 1 1 0 0 null
Turn on Smartboard 2: projsubmit 2 1 0 0 null
Turn on Smartboard 3: projsubmit 3 1 0 0 null
Turn on Table: projsubmit 5 1 0 0 null
Turn on Front: projsubmit 6 1 0 0 null

Switch to Table Laptop Drop Display
Switch All Projectors to laptop drop: projsubmit 1 1 14 0 null 2 1 14 0 null 3 1 14 0 null 5 1 14 0 null 6 1 14 0

null
Switch Smartboard 1 to laptop drop: projsubmit 1 1 14 0 null
Switch Smartboard 2 to laptop drop: projsubmit 2 1 14 0 null
Switch Smartboard 3 to laptop drop: projsubmit 3 1 14 0 null
Switch Table to laptop drop: projsubmit 5 1 14 0 null
Switch Front to laptop drop: projsubmit 6 1 14 0 null

4 Part of the
projector con-
trol Web page
that uses multi-
browsing.

Approach 2: Pseudo-native
code plus infrastructure
translator

We also used the Waba virtual
machine (from WabaSoft,
http://www.wabasoft.com) as a
method of PDA integration. Waba is
a proper subset of Java; virtual
machines are available for PalmOS
and Windows CE devices. Waba
includes class files for common user-
interface widgets (menus, buttons,
and so on) and a class library that
lets Waba applications run on stan-
dard desktop PCs that include a Java
runtime. Because every legal Waba
application is a legal Java applica-
tion, applications written this way
also run in both desktop and PDA
environments.

Unfortunately, the memory and
CPU speed required to support on-
demand class loading and serializa-
tion in full generality—both
required for true Remote Method Invocation (RMI) sup-
port—exceed the resources of current-generation PDAs.
Our solution to this comes from another project explor-
ing infrastructure-based computing, the Ninja project8

at UC Berkeley. One software component from that pro-
ject is a lightweight (about 1,000 lines), stateless, active
proxy module and a lightweight (2,000 lines) client stub
that enable a client and proxy to exchange a limited
repertoire of messages using RMILite, a limited subset of
RMI. RMILite encodes only a few specific types of mes-
sages using a minimalist communication protocol and
marshalling rules, rather than providing a general class
loading and serialization facility. The proxy side of
RMILite parses the messages and converts them into
remote procedure calls for one of a small number of sys-
tems supported, including TSpaces. (The other remote
invocation systems supported are Jini and NinjaRMI, a
secure implementation of Java RMI.) It also converts
messages from TSpaces into RMILite messages and for-
wards them to the client.

The application designer writes arbitrary Waba code
that runs on the PDA and uses the RMILite client stub
(a Waba class) to make TSpaces calls via the RMILite
proxy to communicate with the event heap. The RMILite
stub is written to resemble the native Java RMI meth-
ods of its clients; the Waba source for communicating
with the event heap via RMILite is almost identical to
the Java source for communicating with the event heap
using normal Java RMI. One of the event heap infra-
structure machines always keeps a copy of the RMILite
proxy side running. The application designer then uses
the standard Java Development Kit (JDK), plus some
Waba tools provided with the distribution, to create a
runnable application then installed on the PDA.

Example: Smart PowerPoint. The SmartPPT
application described in the first section consists of two
distinct components: a presentation management/

authoring system and a PDA-based viewer/
annotation program. The individual pieces interact
with PowerPoint using Office Automation, a set of func-
tion calls that lets programmers control Microsoft
Office applications. See Figure 5.

The presentation management/authoring system
consists of a presentation manager running on the pre-
senter’s machine, a supervisor that tracks the available
displays in the room, and display controller daemons
that run on each large-screen display in the iRoom.
Specifically, at initialization the presentation outline
and a set of thumbnail slides is requested from Power-
Point and used by the presentation manager to create
an interface for choreographing the presentation. Dur-
ing the presentation, the various displays are directed
(via events) to update themselves to the slide requested
for that screen at that point in the presentation.

The StuPad-inspired, Waba-based PDA client runs on
palm-sized PCs. Users can view and annotate a copy of a
presentation, as well as exchange comments and ques-
tions with each other during a presentation. PDAs run-
ning the viewer application are notified via events from
the Presentation Manager of an available presentation,
in response to which they download the slide thumbnails,
presentation outline, and meta-information extracted by
the Presentation Manager. (See Figure 6, next page.) A
PDA user can then jump to any slide in the presentation
and make annotations (currently private and not visible
on the large display screens). Questions posted as events
through the event heap can be viewed and responded to
by other PDA users running the viewer application. Com-
munication between the PDA client and the event heap
is mediated using the RMILite architecture.

Discussion. Like the ProxiWeb proxy, the RMILite
proxy uses standard wide-area transports (TCP/IP-
based) for remote invocation on both the client and the
server side. It could in theory run on any machine in the

IEEE Computer Graphics and Applications 61

Event heap
Supervisor

SmartBoard

PPTd

PowerPoint

Automation

Authoring/
presentation tool

SmartPPT

PowerPoint

Automation

5 Event-heap
paths for the
SmartPPT pre-
sentation sys-
tem.

Internet infrastructure. For efficiency and simplicity,
and because the RMILite proxy is a small and light-
weight process, we run it on one of the iRoom infra-
structure machines. These machines include various
facilities to keep certain important daemons such as the
RMILite proxy and the event-heap server itself running
at all times, restart them automatically if they crash or
after a reboot, and so forth.

All of the limitations of the Web front-end approach
vanish with the Waba approach. Arbitrary behaviors can
be coded, including the ability to be asynchronously noti-
fied of (subscribe to) specific events. The applications can
be ported to any Java environment or to any platform that
supports a Waba VM (currently only Palm and Windows
CE). This method affords tremendous flexibility, but at
the cost of significantly more work: the programmer must
be familiar with Java, and the compile/install/run cycle
for Waba, while not complicated, is tedious.

Approach 3: PDA native code
Many types of interaction require low-level control

over both the user interface and communication
method used. Our initial projector control application
required performance and user interface flexibility not
possible with a PPP network connection and standard
PalmOS widgets. For example, the center slider in the
projector user interface (see Figure 7) can control sev-
eral possible projector attributes. The projector control
application consists of more than 30,000 lines of client
source code to handle low-level serial communications,
manage the complex on-screen widgets including the
sophisticated slider widget, and (on the server side)
receive incoming serial packets from the PalmPilot and
send commands to the projectors.

We have begun work on a second version of the pro-
jector controller using the Waba approach, connecting
the client and server via the event heap, and using the

RMILite proxy and PPP for communication. Figure 8
shows screen shots from the second version, which cur-
rently has very limited functionality compared to the
first version. So far, however, the basic controls and con-
nection to the server work with only around 500 lines
of Waba source code, much of it dedicated to position-
ing widgets on the display. On the other hand, user
interface rendering is detectably slower (precise mea-
surements have not yet been made). Moreover, the flex-
ible slider widget is not available in the standard Waba
widget set, so simpler and perhaps less intuitive wid-
gets must suffice. The two projector controllers illus-
trate the fundamental trade-off we made: flexibility and
some performance for greatly simplified application
development.

Initial evaluation
The two non-PDA-specific approaches discussed

above—Web front-end applications and custom Waba
applications—implicitly assume that the device enjoys
a relatively fast and always-up Internet connection. Cur-
rently we rely on a combination of WaveLAN and PPP
over serial cables to achieve this. (We are investigating
infrared and Bluetooth.) Note that neither type of appli-
cation is designed to recover from sustained network
outages. Like network computers, these applications
can’t deal with disconnection in any graceful way.

This fundamental design decision reverberates
throughout the design of the software infrastructure.
We believe it’s justified because

■ from a hardware perspective, inexpensive and reli-
able wireless communication is already real and get-
ting better, and

■ from a software perspective, we prefer to concentrate
on providing robust and highly available software
infrastructure in the iRoom precisely because of the

Information Appliances

62 May/June 2000

Event heap

PPT server

PPT processor

PowerPoint
presentation

Presentation
information
(thumbnails,
outline,
and so on)

Presentation information

Current
presentation event

Current
presentation event

PDA

Question
events

6 Event-heap
paths for the
SmartPPT PDA
viewer
application.

tremendous simplification it
affords in architecting solutions
to problems such as PDA access.

Note that there exists substantial
technology to facilitate operation of
sporadically connected (actually,
mostly disconnected) PDAs. This
holds particularly true in the com-
mercial world, where the vast
majority of PDA applications to date
(even those that feature Internet
access or synchronization against
desktop applications) are explicitly based on a “syn-
chronize-then-disconnect” usage model. We haven’t yet
explored the utility of such applications in the iRoom,
but we believe that truly interactive applications, in
which the PDAs are essentially always connected, lie
closer to the research goals of the Interactive Workspace
project as a whole.

Lessons and experience so far
In evaluating what we’ve learned from our experi-

ence so far, we need to consider robustness of the infra-
structure, the success of an infrastructure-centric
approach, and implementation.

Design for robustness. The event heap as the cen-
tral abstraction in the software infrastructure came
directly from our desire to promote infrastructure soft-
ware robustness as a first-class goal. The event heap
enables improved robustness through decoupling of
communicating applications. Rather than establishing
tight client-server bindings (or bindings of a number of
peer components into a tight group), we prefer indirect
communication through the event heap for the follow-
ing reasons:

■ Although applications must still deal with situations
such as server failures at the application level, they
can make stronger assumptions about lower-level
communication mechanisms because the event heap
is always available. In particular, it’s generally easier
to write code to handle the case in which a desired
recipient has not responded to a posted event than to

write code to handle the case in which the event can-
not be posted at all due to a lower level failure.

■ The event heap enables the broadcast-style commu-
nication required for many group applications, with-
out requiring clients to engineer group
communication explicitly. Conventional communi-
cation mechanisms, including Active Messages,
client-server remote procedure call, and strong group
membership with explicit joins and leaves, can all be
implemented on top of the event heap if needed,
albeit with some efficiency cost.

The decoupling provided by the event heap promotes
better fault containment and more robust applications
by default. It’s still possible to write brittle code using
the event heap, but it’s more difficult to do so. We have
observed this resilience in action during visitor demos:
most of the applications being demonstrated are by
nature multidisplay applications, typically with
autonomous components running on various machines.
We have watched a visitor manually kill some of these
components (often unwittingly, such as by tapping the
close box of a window to get it out of the way), yet the
remaining components continue to function gracefully.
Specifically, they don’t freeze, lock up the machine, or
stop responding to user input. We feel we have a good
start on providing the tools for building distributed mul-
tidisplay applications that actually work and robustly
coexist with legacy applications and novice users.

Infrastructure-centric approach. Our PDA
programming strategies reflect our infrastructure-cen-

IEEE Computer Graphics and Applications 63

7 Screen shots from C/C++ native-code version of the projector control application for a Palm Pilot. The slider
appears as a tick (left), a gray box (middle), or an “X” (right) depending on whether a particular attribute is set-
table for a single projector, settable for a group of projectors, or not settable at all.

8 New projec-
tor controller
written in Waba
running on a
PalmPilot.

tric computing philosophy: the ProxiWeb proxy,
although not even on Stanford premises, is effectively a
critical part of the PDA-enabling infrastructure. We’re
working on deploying a multibrowsing proxy that will
transparently intercept and rewrite existing Web pages
to make them browsable across the multiple displays in
the room. The high-level mechanisms we take advan-
tage of, in particular exploiting HTTP as a transport for
simple events, have made prototyping very fast.

Choose a few simple mechanisms and imple-

ment them carefully. Using the Web and URL-pass-
ing has certainly paid off in trying to get the room
running. Still, the real reason for success is the simplic-
ity of the event mechanism itself: unidirectional by
nature (though bidirectional mechanisms can be built
on top of it), it lends itself to a simple HTML-forms-based
instantiation. Since events are self-describing, embed-
ding them in URLs isn’t difficult. Similar arguments
apply in constructing the “glue” connecting Microsoft
Office Automation to the event heap, as we did for the
SmartPPT application. Clearly, the benefit of reusing
simple mechanisms is the ability to use widely deployed
tools (Netscape Navigator, Microsoft PowerPoint) to
experiment with new collaborative behaviors. We
expect that this will enhance the impact and usefulness
of our work to other researchers in this area.

Although this is very early work, so far we have found
the event heap to be a reasonable conceptual model,
implementable in a robust way. In addition to the appli-
cations described in this article, six student projects used
the event heap despite a lack of thorough documenta-
tion or example code. The students easily grasped both
the conceptual programming model and the gateway
mechanisms to the event heap, such as the usher (Web
interface) or MS Office.

Our overall experience, then, has been that keeping
the conceptual vocabulary for programming deliber-
ately limited (the simple event-heap model) has brought
real benefits: robustness, a straightforward program-
ming model, portability, and the ability to leverage
widely deployed tools and protocols such as MS Office
and the Web. The infrastructure-centric part of our
approach is key because it moves much of the pro-
gramming complexity into the infrastructure, which
tends to be more stable and change much more slowly
than device technology.

Open issues
So far the iRoom is an open environment. An open

mechanism, the event heap doesn’t enforce authentica-
tion of its own. Applications can certainly provide authen-
tication and secure connections at the application level,
but this still leaves the event heap open to attacks such as
denial of service (perhaps by flooding it with irrelevant
events). Worse, if application-level security is too cum-
bersome to provide, experience in other arenas suggests
that programmers might simply ignore it. We’re investi-
gating using UC Berkeley’s Ninja infrastructure to host
some of the iRoom services (it already hosts the RMILite
proxy used in the Waba programming scenario). Ninja
services can be accessed via secure and authenticated

remote procedure calls based on a public key and certifi-
cate authority infrastructure, with authentication tokens
distributed by a separate key distribution center.

Some relatively mundane issues involving PDA wire-
less communications have hampered us. In particular,
getting fast local-area wireless networking (such as
WaveLAN) working with Palm devices and Windows CE
palm-sized PCs has been a nightmare. However, our
portable-software approaches have allowed us to deploy
some of our PS/PC-targeted applications on the Jupiter-
class Clio’s as well as Wintel laptops, both of which can
be easily equipped with WaveLAN. For this same reason,
as wireless connectivity for palm-sized devices improves,
our portable approach should allow us to migrate easi-
ly. A new initiative within the Computer Science Depart-
ment at Stanford aims to aggressively adopt Bluetooth
short-range wireless technology in a variety of projects.
We expect to participate in this initiative as it gains
momentum and hope to have some experience inte-
grating Bluetooth by the time this issue reaches print.

The event heap’s performance for low-level events
such as pointer tracking is currently unacceptable, with
event-post-to-event-handling latencies of 30 to 100 ms.
We know the TSpaces group at IBM Almaden Research
Center is working on improving the performance of
TSpaces, so we have chosen not to concentrate effort on
this problem right now. Furthermore, we have written
our own optimized “event fast path” code, currently
used to handle low-level events with latency well below
the perception threshold.

Conclusions
Even though the iRoom was “booted” for the first time

about six months ago, our initial experience with it has
been both encouraging and fun. The event heap has so
far proven a capable and flexible abstraction for inter-
entity communication. The ability to access it via a Web
front-end or from the reduced subset of Java called
Waba has helped us quickly prototype applications that
integrate existing room entities and PDAs—a task that
has traditionally ranged from awkward to technically
daunting. Now that our basic infrastructure is in place,
we expect the pace of research to accelerate. We look
forward to further testing and validating our architec-
tural choices. ■

Acknowledgments
The Interactive Workspaces project is the result of

efforts by too many students to name here; see
http://graphics.stanford.edu/projects/iwork for an
exhaustive list and more complete project information.
Thanks to the following students for contributions to
this article: Henry Berg, Martin Jonsson, Shankar Pon-
nekanti, and Ranganath Rao. Thanks also to John Gerth
and Susan Shepard for the staff support that keeps the
project running, Maureen Stone for persuading us to
describe our ideas in this submission despite the very
early stage of the work, the designers and implementors
of SmartPPT (Janak Bhalodia, Rustan Eklund, Hui
Huang, Toli Kuznets, Rama Ranganath, Stephen Sorkin,
and Krishna Yeshwant), Roy Want for his patience, and
the referees and the editorial staff of IEEE CG&A for their

Information Appliances

64 May/June 2000

helpful suggestions. The work described here is sup-
ported by DoE grant B504665, by NSF Graduate Fel-
lowships, and by donations of equipment and software
from Intel, InFocus, IBM, and Microsoft.

References
1. T. Winograd, “Towards a Human-Centered Interaction

Architecture,” to appear in Human-Computer Interaction
in the New Millennium, J. Carroll, ed., Addison-Wesley,
Reading, Mass., 2000, in press; available as a working
paper at http://graphics.stanford.EDU/projects/iwork/
papers/humcent/.

2. G. Abowd, “Classroom 2000: An Experiment with the
Instrumentation of a Living Educational Environment,”
IBM Systems J., Vol. 38, No. 4, Oct. 1999, pp. 508-530.

3. K.N. Truong, G.D. Abowd, and J.A. Brotherton, “Person-
alizing the Capture of Public Experiences,” Proc. 12th Ann.
ACM Symp. on User Interface Software and Technology (ACM
UIST 99), ACM Press, New York, Nov. 1999, pp. 121-130.

4. T.D. Hodes et al., “Composable Ad-Hoc Mobile Services for
Universal Interaction,” Proc. Third Int’l Symp. on Mobile
Computing and Communication (ACM MobiCom 97), ACM
Press, New York, Sept. 1997, pp. 1-12.

5. N.A. Streitz et al., “i-Land: An interactive Landscape for
Creativity and Innovation,” Proc. ACM Conf. on Human Fac-
tors in Computing Systems (CHI 99), ACM Press, New York,
1999, pp. 120-127.

6. N. Adams et al., “An Infrared Network for Mobile Com-
puters,” Proc. First Usenix Symp. on Mobile and Location-
Independent Computing, Usenix Assoc., Berkeley, Calif.,
Aug. 1994.

7. A. Fox et al., “Adapting to Network and Client Variation
Using Active Proxies: Lessons and Perspectives,” IEEE Per-
sonal Communications (invited submission), Vol. 5, No. 4,
Aug. 1998, pp. 10-19.

8. S.D. Gribble et al., “The MultiSpace: An Evolutionary Plat-
form for Infrastructural Services,” Proc. 1999 Usenix Ann.
Tech. Conf., Usenix Assoc. Berkeley, Calif., June 1999, pp.
157-170, http://ninja.cs.berkeley.edu/pubs/pubs.html.

9. P. Wyckoff et al., “TSpaces,” IBM Systems J., Vol. 37, No. 3,
Aug. 1998, pp. 454-474, http://www.almaden.ibm.com/
cs/TSpaces.

10. A. Fox et al., “Experience With Top Gun Wingman, A Proxy-
Based Graphical Web Browser for the USR PalmPilot,” Proc.
IFIP Middleware 98, Springer, London, UK, Sept. 1998, pp.
407-425.

Armando Fox joined the Stanford
faculty as an assistant professor in
January 1999, after getting his PhD
from the University of California,
Berkeley as a researcher in the
Daedalus wireless and mobile com-
puting project. His research interests

include the design of robust Internet-scale software infra-
structure, particularly as it relates to the support of mobile
and ubiquitous computing, and user interface issues relat-

ed to mobile and ubiquitous computing. Fox received a
BSEE from Massachusetts Institute of Technology and an
MSEE from the University of Illinois. He is an ACM mem-
ber and a founder of ProxiNet (now a division of Puma
Technology).

Brad Johanson is a PhD candi-
date in the Department of Electrical
Engineering at Stanford University.
He holds Bachelors degrees in elec-
trical engineering and computer sci-
ence from Cornell University, a
masters degree in computer science

from the University of Birmingham in England, and a mas-
ters degree in electrical engineering from Stanford Uni-
versity. In the past he has done research on genetic
programming and computer networking, and is current-
ly one of the student leads in the Interactive Workspaces
project at Stanford.

Terry Winograd is a professor of
computer science at Stanford Uni-
versity. He has done extensive
research and writing on the design of
human-computer interaction. Wino-
grad directs the Project on People,
Computers, and Design, and the

teaching and research program on Human-Computer
Interaction Design. He is one of the principal investigators
in the Stanford Digital Libraries project and the Interactive
Workspaces Project. He was a founder of Action Technolo-
gies and a founding member of Computer Professionals for
Social Responsibility, of which he is a past national presi-
dent. He is also a consultant to Interval Research Corpora-
tion and on the editorial board of several journals,
including Human-Computer Interaction, Personal Tech-
nologies, and Information Technology, and People.

Pat Hanrahan is the Canon USA
Professor of Computer Science and
Electrical Engineering at Stanford
University, where he teaches comput-
er graphics. His current research
involves visualization, image synthe-
sis, and graphics systems and archi-

tectures. While at Pixar he developed volume-rendering
software and was the chief architect of the RenderMan Inter-
face. He has received three university teaching awards and
in 1993 received an Academy Award for Science and Tech-
nology, the Spirit of America Creativity Award, and the Sig-
graph Computer Graphics Achievement Award. He was
recently elected to the National Academy of Engineering.

Readers may contact Fox at fox@cs.stanford.edu.

IEEE Computer Graphics and Applications 65

