
Many painters today are going digital,
because of the convenience and ease of

experimentation that painting software gives. Existing
software such as Corel Painter already effectively simu-
lates the effects of various art media, including chalk,
pencil, and oil. Add some after effects, such as emboss-
ing and lighting, and an untrained eye would find it dif-
ficult to distinguish between paintings created digitally
and those created conventionally. Nevertheless, tools for
creating digital Eastern brushwork are still lacking, as
some artists and researchers realize,1-4 primarily because
existing brush models can’t simulate the delicate real-
time brush deformations needed for this traditional art.

Our goal is to effectively simulate the process of brush
painting—particularly the dynam-
ics of a brush tuft—so that artists
can use a virtual brush to paint with
spirit—that is, in a lively, dynamic,
brisk way (see the “Eastern Brush-
work” sidebar). We’ve designed an
efficient deformable brush model
with spreading bristles that works in
real time with consumer-level hard-
ware. (The preliminary results of
this work are available elsewhere.5)
Our system renders realistic brush-
work in response to input data cap-
tured from a device with six degrees

of freedom (DOFs). Our research thus far focuses on
brush modeling and ink depositing from brush to paper.
The simulation of ink diffusion on paper, another impor-
tant feature of Eastern brushwork, is a future goal. Ulti-
mately, we expect a complete painting system to lead to
new graphics tools for

� creating digital brushwork with spontaneity and per-
sonal style,

� rendering high-resolution Eastern fonts with the aes-
thetic quality of real calligraphy, and

� rendering 3D objects in an Eastern painting style.

Why 3D?
It’s possible to draw any shape using a 2D mark-mak-

ing method by either dragging curve control points or
painting with variable dab size. Moreover, simulating

brush dynamics using a 3D brush model requires more
computational power. So why should we use a 3D brush
model rather than a 2D one?

In real-life brushwork, a stroke’s formation largely
depends on the constantly changing brush footprints
generated from the artist’s manipulation of the brush. A
3D brush model can generate realistic brush footprints
automatically from the brush posture. Without such a

Feature Article

A 3D virtual brush’s bristles

bend and spread realistically

like a real Eastern paint

brush. The tool lets artists

create digital brushwork

with spontaneity and spirit.

Nelson S.H. Chu and Chiew-Lan Tai
Hong Kong University of Science and Technology

Real-Time Painting
with an
Expressive Virtual
Chinese Brush

76 September/October 2004 Published by the IEEE Computer Society 0272-1716/04/$20.00 © 2004 IEEE

Eastern Brushwork
Eastern brushwork uses the brush to deliver

harmonious rhythm with varying brush posture,
speed, and pressure. The artist renders each
brush stroke in a continuous, rhythmic
movement so that the depicted subjects show
vitality and spirit.1 The artist always seeks
spiritual depiction rather than the outward
appearance of the painted subjects. Often, a few
deft strokes suffice for this purpose, and each
brush stroke can be appreciated individually.
This contrasts sharply with the traditional
Western painting style developed in the
Renaissance, which emphasizes realism. In that
style, artists carefully dab colors onto the canvas
to give a realistic look. Modern Western art
places less emphasis on realism, often
employing more stylish brush strokes. However,
this art still doesn’t emphasize subtle shape
formation as much as Eastern art does.

The tools and materials for Eastern brushwork,
along with the philosophies behind the art,
spread from China to neighboring countries,
such as Korea and Japan. In this article, we use
the term Chinese brush, and we use Chinese
characters for the calligraphy demonstration.
However, our brush model is also applicable to
creating other Eastern artwork of the same origin.

Reference
1. D.W. Kwo, Chinese Brushwork: Its History, Aesthetics,

and Techniques, George Prior, London, 1981.

model, it’s difficult to produce a stroke that looks like it
was painted in a bouncing rhythm with an elastic brush.
Rhythmic vitality, the essence of Eastern art, is lost in the
process of adjusting control points or parameters. This
is analogous to the need for a motion capture to provide
lively character motions in computer-generated anima-
tion. When executing spontaneous strokes with a real
brush, the brush’s elasticity completes the stroke vibran-
cy. Thus, the elastic brush’s response to the artist’s
motion plays an important part in producing the final
appearance. This is essentially why strokes made with
Chinese brushes can be so eloquent. Modeling the
brush’s physics lets us extend real elastic brushes’ exten-
sive power to the digital domain. Moreover, a 3D physi-

cal model allows visual feedback of the brush shape. Cou-
pled with an appropriate input device, such a brush
model makes a painting system intuitive to artists. In
view of these benefits, we designed a physically based
3D brush model. (The “Related Work” sidebar discusses
other brush models and related techniques.)

Brush modeling
Our challenge is to develop a model that can collec-

tively simulate the bristles in real time yet is flexible
enough to produce the effects that artists expect. Brush
deformation, which causes the ever-changing footprints,
plays a key role in producing convincing brushwork. Fig-
ure 1 compares the different brush deformations and the

IEEE Computer Graphics and Applications 77

1 Comparison of tuft deformation effects and the corresponding footprints of our brush model (a) in full gear, (b) without split map,
(c) without split map and lateral spreading, and (d) without brush–paper collision handling.

(a) (b) (c) (d)

Related Work
Earlier efforts in brushwork simulation focused on stroke

rendering. Strassmann swept a 1D texture to achieve varying
shades in a stroke.1 These strokes look artificial because of
inadequate modeling of the natural spreading of brush
bristles. Hsu and Lee proposed the skeletal stroke technique,
which deforms some predefined 2D strokes to produce
remarkable results.2 However, for Chinese brushwork, this
technique requires storing a large sample of stroke textures to
avoid appearing repetitive. The strokes also appear unrealistic
whenever there’s a self-intersection or high curvature.

Later research efforts incorporated physical behaviors or
physics theories into the brush models. Wong and Ip
modeled a calligraphy brush as an inverted cone.3 The bulk
of the cone must penetrate the paper while stroking, and its
footprint is the cone’s intersection with the paper plane.
Because this model ignores the brush tip while generating
the strokes, it fails to produce the biased-tip strokes (whereby
the tip travels along one side of a stroke rather than staying in
the middle) common in Eastern painting and calligraphy.
Based on the theory of elasticity, Lee modeled a brush as a
collection of rods.4 This model suffers from unnatural
bending because it assumes homogeneous elasticity. Saito
and Nakajima used a Bezier spine curve and a set of disks
centered along the curve to model the brush.5 However, this
model doesn’t consider brush flattening and spreading and
thus fails to generate a realistic footprint. Baxter et al.
modeled Western brushes as simple spring-mass systems,
emphasizing the recreation of the painting process.6 But they

paid no attention to bristle spreading or splitting. Compared
to Wong and Ip’s cone model, the first model of Xu et al. has
a more complex geometry and can split into smaller tufts,7

but the same problem of bulk penetration still leads to
unrealistic brush footprints. In their second design, Xu et al.
attempted to improve the brush dynamics by querying a
motion database prepared from real brush motion data,8 but
they didn’t describe the nontrivial data acquisition.

References
1. S. Strassmann, “Hairy Brushes,” Proc. 13th Siggraph, ACM Press,

1986, pp. 225-232.
2. S.C. Hsu and I.H.H. Lee, “Drawing and Animation Using Skeletal

Strokes,” Proc. 21st Siggraph, ACM Press, 1994, pp. 109-118.
3. H.T.F. Wong and H.H.S. Ip, “Virtual Brush: A Model-Based Syn-

thesis of Chinese Calligraphy,” Computers and Graphics, vol. 24,
no. 1, Feb. 2000, pp. 99-113.

4. J. Lee, “Simulating Oriental Black-Ink Painting,” IEEE Computer
Graphics and Applications, vol. 19, no. 3, May/June 1999, pp. 74-81.

5. S. Saito and M. Nakajima, “3D Physics-Based Brush Model for
Painting,” Proc. 26th Siggraph, ACM Press, 1999, p. 226.

6. B. Baxter et al., “DAB: Interactive Haptic Painting with 3D Virtu-
al Brushes,” Proc. 28th Siggraph, ACM Press, 2001, pp. 461-468.

7. S. Xu et al., “A Solid Model Based Virtual Hairy Brush,” Comput-
er Graphics Forum, vol. 21, no. 3, Sept. 2002, pp. 299-308.

8. S. Xu et al., “Advanced Design for a Realistic Virtual Brush,” Com-
puter Graphics Forum, vol. 22, no. 3, Sept. 2003, pp. 533-542.

corresponding footprints produced from our prototype
system when we turned off various modeling features.
Figure 1a shows a fully functioning tuft pressed against
the virtual paper. The bristles split and spread laterally to
produce a wider footprint. Figure 1b is the result of turn-
ing off the texture-based bristle-splitting effect. Further
removing lateral spreading gives the result in Figure 1c,
which is similar to the results of previous physical mod-
els.2,6 If the model doesn’t handle brush–paper collision,
the brush simply penetrates the paper (Figure 1d), and
the footprint is a cross section of the brush geometry,
which resembles the effect of other previous models.3,4

Our brush model includes four components: brush
geometry, brush dynamics, ink loading, and ink deposit-
ing. We now describe how we model the brush as a sin-
gle tuft. This single-tuft model also serves as a building
block for a hierarchical representation of split brushes.

Brush geometry
The brush geometry closely determines the brush

dynamics. We represent the geometry in two layers: the
skeleton and the surface.

Brush skeleton
The skeleton includes a spine and some lateral nodes,

as Figure 2 shows. The spine handles the general bend-
ing of the entire tuft; the lateral nodes model the tuft’s
lateral deformation and spreading. We represent the
spine using a connected sequence of line segments that
become progressively shorter toward the tip. We gave
the tip higher resolution because it’s softer, and usual-
ly an artist uses only the tip and the belly to paint. Each
joint between two segments has two DOFs in a spheri-
cal coordinate system’s latitude and longitude—called
the bend angle and the turn angle at that joint.

We denote the position of spine node Ni as Oi, i = 0,
…, n, where O0 is the brush root node’s position. Two
lateral nodes are attached to each spine node; these
nodes can move only along the spine node’s lateral line.

The lateral line of Ni passes through Oi and is initially
perpendicular to the two adjacent spine segments. It has
one rotational DOF on the spine node’s joint-bisecting
plane (the plane passing through Oi and bisecting the
angle between the two adjacent spine segments).

The two lateral nodes attached to a spine node rep-
resent two groups of bristles on both sides of the spine.
This design can effectively capture the essence of tuft
deformation. Because the brush interacts with only a
planar painting surface, tuft flattening, controlled by
the bending and lateral drag, largely determines the
brush footprint. With the lateral lines having one DOF,
the nonpenetration constraints in our dynamics model
tend to keep the lateral lines of the spine nodes that
touch the paper parallel to the paper. Consequently,
when the artist presses the brush against the paper, the
lateral nodes’ loci lie on the painting surface, thus effec-
tively modeling horizontal deformation and the lateral
spreading of the bristles.

Brush surface
We represent the brush surface as a swept surface

defined by the spine and a varying elliptic cross section.
When the brushes are moistened and unbent, the cross
sections are circles along the entire spine. We predefine
these initial tuft radii for various types of brushes. In
general, the cross section comprises two half ellipses,
with possibly different major radii but a common minor
radius, as Figure 3 shows. This simple representation is
computationally efficient and doesn’t differ much from
real brush tufts. Cross section Ωi at spine node Ni lies on
the joint-bisecting plane, and its major axis coincides
with the lateral line of Ni. Let a and b be the distances
between Ni and its lateral nodes. The major radii for Wi

are (a + rlat) and (b + rlat), where rlat is the effective radii
for the two lateral nodes. We then use the conservation
of area to compute the common minor radius, c, as c =
r2/[1/2(a + b) + rlat], where r is the initial tuft radius
at Ni.

Fine bristle effect
To obtain footprints with the bristle-level brush-split-

ting effect while using a single tuft, we define an alpha
map, named the split map, to make part of the tuft sur-
face transparent. We can either prepare the split map
from a scanned image of real bristles or have the system
automatically generate it by patching some mask prim-
itives on the fly, as Figure 4 shows. A static split map
applied on a single tuft, along with brush flattening, is
sufficient to simulate convincing bristle splitting as long
as the brush is not pressed too hard (see Figure 1a). To
simulate the effect of wider spreading, we propose mul-
tiple tufts that work in a hierarchy, with split maps still
applied for a fine-bristle effect. Split maps increase the
modeling efficiency dramatically. They are an inexpen-
sive feature supported by graphics hardware, and they
produce ink streaks that look very natural.

Brush dynamics
Modeling the brush as a spring-mass system and solv-

ing its motion equations using a vectorial method is one
possible way to simulate brush dynamics. However, to

Feature Article

78 September/October 2004

a b

spine node
c

r lat

c = rspLateral nodes

r lat

Ωi

Φi

3 Tuft cross section.

Lateral
nodes

Spine
nodes

Lateral line

2 Geometric
model of a
brush tuft.

avoid unrealistically bouncy or slack
motion, the spring coefficients must
be fairly large relative to the node
masses. This makes it difficult to pro-
duce a tractable real-time system
using this approach: The simulation
time step must be very small or the
stiff spring force will cause instabili-
ty. Baxter et al. cope with instability
by employing first-order dynamics
and an approximated implicit integrator.6 However, the
approximated integrator has the drawback of modeling
the brush’s internal forces using only stretch springs
rather than bend springs. Bend springs let us model bris-
tles with nonstretchable constraints far more effectively.

We handle brush dynamics using a variational
approach,7 which lets us avoid dealing with stiff differ-
ential equations. Brush dynamics involves both conser-
vative and dissipative forces. We apply the minimum
principle of incremental potential energy, described by
Pandolfi et al.,8 to predict brush motion. At each time
step (equal to the output refresh time), the system
updates the brush state by choosing the incremental
deformation of the brush skeleton from among those
satisfying all external constraints. This update mini-
mizes the sum of strain energy and incremental energy
dissipation.

Energy minimization problems
We formulate the brush dynamics as a series of stat-

ic constrained minimization problems. The objective
functions are the dynamic system’s current incremen-
tal potential energy, and the constraint is that the brush
geometry must be above the paper. The set of variables
Ψ in the minimization comprises all the joint angles and
stretches of the lateral nodes. Our incremental poten-
tial energy has three components: strain energy, inter-
nal frictional energy, and external frictional energy. We
don’t include a component accounting for inertia
because real brushes reach equilibrium almost instan-
taneously as an artist presses them against or lifts them
from the paper. The strain energy accounts for the
potential energy stored in the brush due to deformation
from its unstrained state. The internal frictional energy
refers to the work done against the internal friction
between water and bristle molecules during tuft defor-
mation. The external friction energy refers to the work
done against the frictional force between the brush and
the paper surface. We derive the brush’s strain energy
using a spring system. Imposing bend and twist springs
on the bend angles and the turn angles at the spine
nodes serves to model the tuft’s general deformation.
Stretch springs between the spine nodes and their lat-
eral nodes model lateral deformation. Finally, bend
springs between consecutive lateral nodes account for
the stiffness of the bristles on the brush’s sides. The
“Energy Functions” sidebar (next page) presents the for-
mulations of these spring energies as well as the fric-
tional energy. Such behavior functions suffice for
producing plausible brush movements.

We introduce inequality constraints in the minimiza-
tion to account for the paper’s normal reaction force on

the brush. If the paper plane is at y = 0, we can express
the constraints as gi (Ψ) = yi > 0, where yi is the lowest
point of an ellipsoid generated by rotating Ωi about its
major axis. However, to generate the brush footprint,
we let part of the brush surface penetrate the paper; this
penetration also makes the brush appear to have a flat
bottom when pressed against the paper. Hence, for col-
lision detection, we use a shrunked version of Ωi, denot-
ed by Φi (see Figure 3).

We solve energy minimization problems using local
sequential quadratic programming (SQP) due to its fast
convergence. There are a few points we need to take care
of when applying gradient-based optimization tech-
niques such as SQP. While a user drags a brush on paper,
minimizing the external frictional energy means mini-
mizing the number of nodes that are in contact with the
paper, thus causing the brush to be lifted. To avoid this
unphysical lifting, we don’t allow the change of the
touching state of the brush nodes during the search for
the minimum; that is, throughout each time step, we
use the touching state evaluated on the first iteration.

Minimization algorithms have difficulty evaluating
gradients at the point where the initial joint angles are
all zero (that is, a straight skeleton). We adopt a simple
solution of assigning some minimal values to a few of
the joint angles whenever the system or the users
straighten the brush.

In general, we should also try to avoid discontinuity
in the energy functions when formulating them so that
the minimization can converge more easily.

Brush plasticity
When a wet brush is pressed and deformed, energy is

lost due to the friction between the bristles and the
water within them. When the artist releases the brush,
the restoring spring force must overcome this friction’s
resistance to revert the brush to its original shape. Fail-
ing to do so makes the brush appear plastic.

We use a simple method to model this plasticity. The
idea is to make the brush have a high tendency to remain
in the skeleton configuration of the last time frame. To
achieve this, we simply shift the spring energy functions
so that the lowest energy is at the position correspond-
ing to the last skeleton configuration. To avoid having
the brush appear overly deformed, we also clamp the
shifted distance against a user-adjustable plasticity para-
meter, α. Suppose the original bending energy function
is E(θ) = k|θ|m. If θ ′ is the bend-angle from the previ-
ous time frame, the new bending energy is then E(θ) =
k|θ – ρ|m, where ρ = clamp(θ ′, –α, α). This simple but
effective method significantly improves the brush’s real-
ism, producing the plastic behavior that users expect

IEEE Computer Graphics and Applications 79

Split map Dry map

×

Patching with
affine transform

Dynamic
thresholding

Scale and shift texture
horizontally to adjust

splitting effect

Visualized on tuft surface

4 Texture-based ink-depositing effects.

from real brushes. Brush plasticity affects the rhythmic
movement made by artists and thus indirectly deter-
mines the ink traces. In real-life Chinese painting,

reshaping the brush tip to a sharp
point is often necessary before
drawing a new stroke. Users can set
the plasticity to 0 so that tip reshap-
ing is eliminated altogether. Our
implementation enables reverting
the brush to its original shape at any
time through a user command.

Pore resistance
Most types of paper for painting

are full of pores. When the tip of a
slanted brush touches the paper, the
pores act like a fence impeding slid-
ing. If the artist pushes the brush
toward the direction pointed to by
the tip, these pores continue to exert
considerable resistance, as Figure 5
shows, producing the rough texture
seen in pushed strokes employed in
many paintings.9 To simulate such
brush behavior and a painting effect,
we also model paper pore resistance.
We add an extra constraint in the
minimization problem in the form of
a blocking plane in front of the tip.
This constraint is active only when
the tip touches the paper. The block-
ing plane is vertical and normal to
the projected spine segment of the
brush tip onto the paper surface. To
adjust the blocking effect, we
increase the lead distance, L,
between the plane and the brush tip,
as L = at + bu + c. In this equation,
a, b, and c are user-adjustable para-
meters; t = max(|β| – γ, 0), where β
is the angle that the spine tip seg-
ment makes with the paper plane’s
normal vector, γ is the critical tilt
angle within which the pores trap
the tip; and u is the pressure experi-
enced by the tip.

A soft brush might be too plastic
to spring back to form a tip needed
for making a bladelike stroke end-
ing. Calligraphers cope with this by
using pore resistance to straighten
the brush. Mimicking pore resis-

tance in our simulation lets us reproduce such defor-
mation, which experienced artists expect.

Ink loading
In real-life Chinese color painting, artists usually mix

ink, water, and colors within the brush by loading dif-
ferent colors up to different lengths of the brush and
then gently stroking to blend the colors. Allowing color
loading and blending using similar brush motions in a
virtual brush system would be the most intuitive. How-
ever, our current system employs a loading method that
allows more precise control. Users define a color gradi-
ent by assigning colors ramps along the gradient, which

Feature Article

80 September/October 2004

5 Pore resistance deforming the
brush. The red arrow indicates
brush motion. The cyan line indi-
cates the blocking constraint; this
line turns orange when the con-
straint is active.

Energy Functions
Here, we describe the formulations of energy functions we use to derive the brush’s

incremental potential energy.

Strain energy
The energy stored in a bend or twist spring has the form,

E(Ψ) = κiθim

where θi is the bend angle (or turn angle, for a twist spring) at the spine node, κ is
the spring coefficient, and m is another parameter that controls the spring’s strength.
Our current implementation uses m = 2 or 3. In general, we can determine spring
coefficients empirically, assuming the brush root is stiffer than the tip. We omit a
twist spring at the root so that the tuft has no preference for bending in any
particular direction.

We take the distance of a lateral node from its spine node as ri + δi
2, where ri is the

sum of the spine node’s initial tuft radius and the lateral node’s effective radius, and
δi is the variable in the minimization that models the stretch degree of freedom. The
energy function for a stretch spring attached to a lateral node has the form,

E(Ψ) = κiδi
2 – S(θi, pi)m

where pi is the proportion of the associated tuft segment under the paper, and S is a
heuristic function of θi and pi that increases the spring’s rest length as the artist
presses the brush against the paper.

Internal frictional energy
We derive this energy by applying the same form of energy functions used for the

bend energy to the joint angle and lateral displacement changes since the last frame.

External frictional energy
For every node contacting the paper, we calculate its frictional energy as

E(Ψ) = µRixi

where xi is the dragged distance, Ri is the normal reaction force, and µ is the friction
coefficient. We consider a node as contacting the paper if its height minus its
effective radius is below the paper. We denote a spine node’s effective radius as rsp,
and its lateral nodes’ effective radius as rlat. We set rsp equal to minor radius c of cross
section Ωi from the previous time frame, and we take rlat as a fraction of rsp.

Real wet bristles slightly adhere to the paper because of moisture. In our simulation,
we also want the brush tip to experience some friction even when its normal force is
zero. So, for each wet node, we also add to its Ri a small value proportional to its pi.

Because the hair on a brush is generally aligned, it tends to experience a larger
resistance when dragged sideways. To control this anisotropic behavior, we modulate
µ with the spine segment’s direction.

the system then maps to the brush surface axially. Such
an interface is common in existing illustration software.
We intend to implement the intuitive color-loading inter-
face as an option, along with the simulation of ink dif-
fusion within the brush.

Ink depositing
Ink depositing involves determining which parts of the

paper are receiving ink and how ink transfers from the
brush to the paper. The first step is to determine the cur-
rent brush footprint. Similar to Baxter et al.,6 we let part
of the brush surface intersect with the paper plane, and
we consider the orthogonal projection of the penetrat-
ing portion onto the paper plane as the footprint. After
obtaining the footprint, the system updates the ink work
(stored as a texture for the paper) with the footprint’s
ink values. Users can either have the system automati-
cally subtract the ink values from the brush or maintain
the ink level to allow continuous painting without reload-
ing. To apply transparent colors atop existing colors, the
system uses alpha blending. The generation of the foot-
print and the blending of the deposited ink both occur
on the graphics processing unit (GPU) using OpenGL,
thus minimizing data transfer and leaving more of the
CPU for the physics simulation. To produce more realis-
tic ink traces, we model three ink-depositing effects: a
dry brush, a soaked brush, and grain texture.

Dry brush
We can regard bristles as forming a height field on the

brush surface. When a brush is rather dry, only the peaks
deposit ink. In addition to the split map, we define
another alpha map called the dry map for the tuft sur-
face. The system dynamically generates the dry map by
thresholding a predefined gray-scale image (see Figure
4), mimicking the gradual drying of the brush. We pre-
pared this gray-scale image from real dry-brush prints to
give a natural feel. The threshold varies across the entire
map, reflecting the moisture level and the pressure at
the brush nodes. Using the multitexturing function of
OpenGL, the final alpha texture applied onto the tuft
surface is the split map modulated by the dry map.

Soaked brush
The tip of a soaked brush expands a little because of

excess moisture, so ink streaks don’t appear even if the
tip splits slightly. To mimic this effect, we simply expand
the tip geometry slightly and dilate the opaque regions
on the split map. As the excess moisture drains, the tip
geometry shrinks back, and the opaque regions on the
split map contract back to their original shapes. Our
implementation effectively achieves dilation and con-
traction by scaling and shifting the split map down the
length of the spine without dynamic texture generation.

Grain texture
Paper grain texture emerges only when the brush is

rather dry. We use a gray-scale image to represent the
paper height field. The system dynamically thresholds
the height field according to the brush’s current wetness
and pressure to produce an alpha mask to apply on the
resulting brush footprint.

Simulation with multiple tufts
A thoroughly moistened brush forms a single tuft. The

interaction of the brush with the paper surface and the
reduced moisture, however, causes the brush tuft to
break into smaller tufts during painting. When splitting
begins, certain types of brushes tend to have some
unruly bristles at the outer layer sprouted outward,
forming thin tufts acting like satellites (see the “Chinese
Brushes” sidebar). Other types of brushes with even
bristle distribution tend to split into tufts of even sizes.
All brushes finally become bushy when they are really
dry. When a brush splits, it draws multiple lines simul-
taneously, and the small tufts can go through slightly
different paths, producing subtle ink streaks.

To better simulate the splitting of real brushes, we
introduce multiple tufts in a hierarchy so that a geo-
metric split is feasible, as Figure 6 (next page) shows.
Child tuft Tj is associated with a parent node, which is
spine node Nij of its parent tuft. The root of child tuft Tj

lies on the joint-bisecting plane of Nij and is confined
within elliptic cross section Ωi j. Its exact location is
denoted by lateral displacement rj = (rxj, ryj) from Oij,
defined along and normalized by the lengths of the
major and minor radii of Ωi j. Several factors cause
sprouting to occur: displacement of lateral nodes, pore
resistance, and bending or drying of the brush. Apply-
ing simple heuristics on the parent tuft’s friction, bend
angles, and wetness, the system can decide when to

IEEE Computer Graphics and Applications 81

Chinese Brushes
With a development history of 3,000 years,

Chinese brushes are designed to make
expressive lines.1 Deft manipulation is necessary
to effectively use them. A typical brush has layers
of different animal hairs to provide balance
between absorbency and springiness (see Figure
A). Some artists regard the brush’s tip as the part
that gives it its spirit—that is, its character, or
ability to produce artwork with vitality. The artist
often makes sure the tip is sharp before
approaching the paper. As the ink on the brush
is gradually consumed, the brush breaks into
smaller tufts. The artist can also split the brush
tip deliberately to draw multiple lines with a
single stroke.

Reference
1. S.K. Ng, Brushstrokes: Styles and Techniques of Chi-

nese Painting, Asian Art Museum of San Francisco,
1992.

Reservoir

Kernel
Mantle Outer layer

Belly

Tip

Handle

Root

Figure A. Anatomy of a typical brush.

sprout child tufts and identify their parent nodes. The
lateral displacements derive from the factors that cause
the sprouting:

� displacement of a lateral node (rj lies in the vicinity of
that lateral node),

� pore resistance (rj lies in the vicinity of the minor axis
of Ωij), and

� bending or drying (rj is randomized within Ωij).

For efficiency, we let the parent and its child tufts
intersect. We don’t enforce conservation of total tuft vol-
ume, because a split brush can become bushy. To model
thin child tufts sprouted from the outer hair layer, we
let the child tufts have default flattened shapes. To
model brushes that split into evenly sized tufts, we
replace the main tuft by several smaller tufts without
any parent–child relationship.

A new tuft has the same spine structure as its parent,
from the tip to its parent node, and the system initially
assigns it the same bend and turn angles. Upon creation
of a new tuft, its lateral displacement is fixed, but the tuft
can split further upwards—the parent node can become
Nij−1. The child tuft then grows by one segment at its root.
A simple reset reverts a split brush to a single tuft.

Currently, we solve for a child tuft’s skeletal configu-
ration using a separate energy minimization problem
after finding its parent’s configuration. We can reduce
the computational demand of simulating many child
tufts by eliminating lateral nodes of thin tufts. These
thin tufts can still exhibit flattening, which only its

spine’s bend angles control. A few tufts (at most five)
suffice for most painting purposes; more are necessary
only when applying special painting effects such as rub-
bing with a bushy brush to produce rough texture. In
such cases, it might not be worthwhile to simulate
dozens of tufts with accurate physics, because the
essence of such strokes lies in the controlled random-
ness rather than in the brush elasticity.

Real-time simulation
We solve energy minimization using SQP. There are

several ways to speed up the simulation. SQP con-
verges quickly if the initial estimate is close to the solu-
tion. In this application, the brush state from the last
time frame serves as a good initial estimate. The first
time an unbent brush touches the paper, the system
gets a good initial estimate of the turn angle at the
brush root, φ0, by initializing φ0 such that the lateral
lines are horizontal. If the user holds the brush exact-
ly vertical when it touches the paper (which is rare),
the system simply sets φ0 to 0, because the angle does-
n’t matter in this case.

The speedup largely depends on the correlation of
successive minimization problems in our simulation.
The SQP method has many variations; our current
energy minimizer is based on a common implemen-
tation that iteratively updates a Hessian matrix, Lxx,
from which we derive the solution’s search direction.
We modified the basic algorithm to use the resulting
Lxx from the previous time step, rather than the iden-
tity matrix, as the initial Lxx. Exploiting the similarity
of these matrices reduces the number of iterations
needed by up to 50 percent. This speedup over our pre-
vious implementation,5 along with improved code effi-
ciency, has made multiple tufts practical in our current
prototype.

We limit the number of iterations q in each search
process to a maximum value, qmax, to maintain a reason-
able frame rate. In our current prototype, we set qmax to
about 20 iterations for each tuft of six segments. If the
prescribed accuracy is not reached when q exceeds qmax in
the current frame, the search process effectively contin-
ues in the next time step because the Hessian Lxx is passed
on. Table 1 compares the performance of our painting
system with various dynamics simulation settings.

It’s important not to waste computation on excessive
accuracy. Unlike scientific applications, our brush sim-
ulation doesn’t need to be very accurate for the brush to
work well. Single-word precision is sufficient, and the

Feature Article

82 September/October 2004

(a) (b)

6 Multiple tufts in a hierarchy: (a) schematic; (b) a brush with two child
tufts sprouted.

Table 1. Overall frame rates for various dynamics simulation settings based on experiments performed on a 2.26-GHz
Pentium-4 PC with a Nvidia GeForce 4 graphics card, where q is the number of iterations in a search process.

No. of six- Without continuous Hessian updates With continuous Hessian updates
segment tufts qmax Average q Frames/s Average q Frames/s

1 20 14.6 60.5 7.4 62.6
3 20 14.6 30.4 7.4 44.6
3 25 15.4 28.8 8.2 43.3
3 30 16.7 28.0 9.7 42.6
5 20 14.6 18.9 7.4 28.5

SQP adopts empirically determined threshold values
(for example, convergence criteria).

System prototype
We’ve built a prototype painting system based on our

brush model (see Figure 7). The current version uses
programmable shader units for ink depositing and uses
floating-point textures to store the ink information
(needed for ink diffusion, not discussed in this article).
Therefore, this version requires an NV30-level graphics
card. An earlier version that doesn’t use the above hard-
ware features can run on an NV20-level card. In both
cases, the overall frame rate can be as high as 60 frames
per second (see Table 1).

To drive the virtual brush, we built a 6-DOF input
device by combining affordable sensor components. We
use an ultrasonic device and miniature gyroscopes to
detect the brush position and orientation, respectively.
These sensors are attached to a real brush or a brush-
like object, which the user manipulates to drive the vir-
tual brush in real time. Users can calibrate the input
device to map a real supporting surface to the virtual
one, so that the real surface gives them some tangible
feeling when they press the brush on the paper. How-
ever, one drawback of this approach is that current gyro-
scopes are still too heavy to allow a burden-free
manipulation.

As an alternative, our system also supports pressure-
and tilt-sensitive graphics tablets. The sensed pressure
controls the brush’s height above the paper, whereas
the tilt controls its orientation. The best tablet model
commonly available today is a 5-DOF device that does-
n’t track the rotation about the stylus’ own axis.
Although this approach doesn’t control the brush
height as directly as a true 3D positional device and
doesn’t sense brush twisting, the wide availability of
tablet products makes our system more accessible to
today’s digital artists. The graphics tablet is also more
convenient to use because a supporting ground already
exists without calibration.

We’ve also experimented with an affordable 6-DOF
glove-like controller that uses optical tracking technol-
ogy. One drawback of this option is its bulkiness, which
prevents us from delicately controlling the virtual brush
with our fingers. Other alternatives include a robot-
arm-based haptic device, which Baxter et al. discuss.6 In
our opinion, a suitable and affordable 6-DOF input
device needs to be developed before common artists
can enjoy a true-to-life digital painting experience. (The
cheap ones aren’t good enough, and the good ones are
way too expensive.)

Visual feedback of the brush shape is important dur-
ing the painting process. In our system, a user can
choose either an orthogonal view or some other per-
spective of the 3D painting scene. Rendering the brush
shadow lets the user judge the virtual brush’s position.
A common way to suggest the tuft’s shape is to shade it.
However, some users might prefer to see the ink color
loaded on the tuft unmodulated. In this case, the sys-
tem can outline the tuft for legibility, as Figure 8 shows.
The contrasting outline also avoids camouflaging the
tuft when it’s held over a ground of the same color as

the ink loading, which is often the case. Finally, users
can render the brush as transparent to avoid blocking
their view of the painting itself.

The system also allows brush movement to be record-
ed for later playback. Figure 9 shows a snapshot of play-
ing back some recorded movement. This playback
illustrates that we can produce slightly different strokes
from the same brush movement by having a different
initial brush skeletal state.

IEEE Computer Graphics and Applications 83

7 Using sensors to capture brush motion.

8 Tuft outlined
by the system
for legibility.

9 Playing back
strokes created
with multiple
tufts. Original
strokes are in
black; played-
back strokes are
in red and
green.

Our prototype also implements other features, such
as stroke undo, image saving, and image loading. We
have yet to incorporate ink diffusion on absorbent
paper; thus, all simulated paintings act as if the paper is
sized (treated with alum).

Sample results
Figures 10, 11, and 12 show some sample artwork,

strokes, and calligraphy from our prototype system. In
Figure 11b, a geometric brush split caused the rough
edges. A quickly drying brush tip (belly still wet) made
the stroke in Figure 11d, creating white streaks near the
beginning of the stroke, which are not easy to get with
a real brush. In Figure 11f, our brush dynamics naturally

simulated the breakup at the top of the lower petal. We
used a flattened singe-tuft brush to make the stroke in
Figure 11g, which is similar to those used for painting
bamboo trunks. (Video demos and additional color
images are available at http://www.cs.ust.hk/
~cpegnel/VCB/.)

Conclusion
Our brush model certainly can’t mimic every way real

brushes respond to artists’ manipulations. However, one
possible way to improve the modeling accuracy is to

Feature Article

84 September/October 2004

10 Sample
artwork from
our prototype
system: (a)
rocks painted
with a single-
tuft brush; (b)
flower painted
with color
gradients using
a single-tuft
brush.

11 Sample
strokes: (a)
central tip; (b)
pushed (the
arrow indicates
the direction of
the stroke); (c)
biased tip; (d)
blade-like calli-
graphic; (e)
rubbing with a
dry brush; (f)
petals made
with gradient
loaded; (h)
made with a
flattened brush;
(i) calligraphic
dots; (j) made
with a drying
brush.

(a)

(b)

(c) (d)

(e) (f) (g)

(i)

(h) (j)

(a)

(b)

12 Sample calligraphy done with (a) a single tuft, and
(b) multiple tufts.

(a) (b)

devise more subtle behavior functions. A good behavior
function should include parameters that the user can
adjust intuitively to derive brush variants. We could also
improve modeling efficiency by using arcs rather than
line segments for the spine; such a smooth spine needs
fewer deformation parameters to attain comparable accu-
racy, thus reducing the optimization problem’s size.

We are trying to couple ink diffusion simulation with
our brush model.10 To further improve speedup, we plan
to investigate matrix-updating techniques. We will also
try to better balance the CPU and GPU workloads for
higher performance.

Although we’ve focused on modeling Eastern brush-
es, it should be easy to extend our brush model to repre-
sent other kinds of brushes as well. Since the
introduction of the first natural-media painting system,
digital artists have been mixing different simulated
media to explore new effects. As computer technology
advances, more real-time effects will become feasible.
We believe that using computers can lead the way to new
heights in the continual development of this ancient East-
ern art form, as well as other art traditions. �

Acknowledgments
We thank Kwan-Wah Ng for his generous help in

building the input hardware, and Rui-Duo Yang for his
help in hardware interfacing. The rapid software pro-
totyping wouldn’t be possible without various free soft-
ware libraries or components, and we are grateful to
their authors—particularly Eric Grange, Mike Lischke,
Alex Denisov, Mattias Andersson, and Dejan Crnila. We
also thank Xavier Granier and the anonymous reviewers
for their constructive comments. Finally, Sino Software
Research Institute grants SSRI00/01.EG08 and
SSRI01/02.EG16 supported this work.

References
1. J. Lee, “Simulating Oriental Black-Ink Painting,” IEEE Com-

puter Graphics and Applications, vol. 19, no. 3, May/June
1999, pp. 74-81.

2. S. Saito and M. Nakajima, “3D Physics-Based Brush Model
for Painting,” Proc. 26th Siggraph, ACM Press, 1999, p. 226.

3. H.T.F. Wong and H.H.S. Ip, “Virtual Brush: A Model-Based
Synthesis of Chinese Calligraphy,” Computers and Graph-
ics, vol. 24, no. 1, Feb. 2000, pp. 99-113.

4. S. Xu et al., “A Solid Model Based Virtual Hairy Brush,”
Computer Graphics Forum, vol. 21, no. 3, Sept. 2002, pp.
299-308.

5. N.S.-H. Chu and C.-L. Tai, “An Efficient Brush Model for
Physically-Based 3D Painting,” Proc. 10th Pacific Conf. Com-

puter Graphics (PG 02), IEEE CS Press, 2002, pp. 413-421.
6. B. Baxter et al., “DAB: Interactive Haptic Painting with 3D

Virtual Brushes,” Proc. 28th Siggraph, ACM Press, 2001,
pp. 461-468.

7. B. Tabarrok and F.P.J. Rimrott, Variational Methods and
Complementary Formulations in Dynamics, Kluwer Acade-
mic, 1994.

8. A. Pandolfi et al., “Time-Discretized Variational Formula-
tion of Non-Smooth Frictional Contact,” Int’l J. Numerical
Methods in Eng., vol. 53, 2002, pp. 1801-1829.

9. D.W. Kwo, Chinese Brushwork: Its History, Aesthetics, and
Techniques, George Prior, London, 1981.

10. T.L. Kunii, G.V. Nosovskij, and T. Hayashi, “A Diffusion Model
for Computer Animation of Diffuse Ink Painting,” Comput-
er Animation (CA 95), IEEE CS Press, 1995, pp. 98-102.

Nelson S.H. Chu is a research assis-
tant in the Computer Vision and
Graphics Group at the Hong Kong
University of Science and Technology.
His research interests include non-
photorealistic rendering, image-based
rendering, and the development of

new tools for digital artists. Chu has a BEng in computer
engineering and an MPhil in computer science, both from
the Hong Kong University of Science and Technology.

Chiew-Lan Tai is an assistant pro-
fessor of computer science at the
Hong Kong University of Science and
Technology. Her research interests
include geometric modeling and
nonphotorealistic rendering. Tai has
a BSc and an MSc in mathematics

from the University of Malaya, an MSc in computer and
information sciences from the National University of Sin-
gapore, and a DSc in information science from the Uni-
versity of Tokyo. She is a member of the ACM.

Readers may contact Nelson Chu or Chiew-Lan Tai at
Computer Vision and Graphics Group, Dept. of Computer
Science, Hong Kong Univ. of Science and Technology, Clear
Water Bay, Hong Kong; cpegnel@ust.hk or taicl@ust.hk.

For more information on this or any other computing topic,
please visit our Digital Library at http://www.computer.
org/publications/dlib.

IEEE Computer Graphics and Applications 85

