
0018-9162/00/$10.00 © 2000 IEEE72 Computer

APIs for Real-Time
Distributed Object
Programming

A
n ideal real-time distributed programming
method should be based on a general high-
level style that could be easily accommo-
dated by application programmers using
C++ and Java. If such a method were to

exist, these programmers could specify the interac-
tions among distributed components and the timing
requirements of various actions without expending
much effort. In an ideal world, this kind of program-
ming method would also allow system engineers who
deal with safety-critical applications to produce cer-
tifiable, real-time distributed computing systems. The
research and development efforts on new distributed
real-time programming tools have shown rapid
growth in recent years—with real-time CORBA, Java,
UML, TMO, and others serving as examples—but the
industry is still far from achieving these ideals.1-8

Consider, for example, complex real-time applica-
tions like intelligent ground transportation systems,
automated pilots, natural emergency management
systems, and widely distributed multisensor-based
defense systems. While improved methods for engi-
neering these kinds of real-time systems appear con-
tinuously these days, the state of the art remains
inadequate for producing applications that offer suf-
ficient reliability. Even so, research efforts geared
toward developing innovative approaches are steadily
intensifying.

For example, the time-triggered message-triggered
object (TMO) developed by this author and his col-
leagues is a syntactically simple and natural but seman-
tically powerful extension of the conventional object
structure.7-8 As such, its support tools can be based on

various well-established OO languages like C++ and
Java, and on commercial real-time operating system
kernels.

Facilitating high-level, high-precision, real-time
object programming by establishing some form of lan-
guage tools has become a subject of great interest to
the embedded systems community. This article focuses
on application programming interfaces (APIs) that
take the form of C++ and Java class libraries and sup-
port high-level, high-precision, real-time object pro-
gramming without requiring new language translators.
These APIs wrap the services of the real-time object
execution engines, which consist of hardware, node
OSs, and middleware; they enable convenient high-
level programming almost to the extent that a new
real-time object language can.

FUNDAMENTAL FEATURES
Any practical real-time distributed programming

facility must enable efficient specification and execu-
tion-control of the following:

• past, present, and future time-referencing;
• uniform method invocation of both local and

remote objects;
• deadline imposition for arrival of the results from

the invoked object method;
• time-triggered actions;
• concurrent object-method execution; and
• nonblocking invocation of object methods.

Several APIs let you specify and control the execu-
tion of each of these fundamental operations.

This article focuses on application programming interfaces (APIs) that
take the form of C++ and Java class libraries and support high-level, high-
precision, real-time object programming without requiring new language
translators.

K.H. (Kane)
Kim
University of
California,
Irvine

C O V E R F E A T U R E

Global time base
To engender efficient, distributed real-time com-

puting, you must establish a global time base that sup-
plies the time to distributed objects within computing
nodes. There are several ways of establishing global
time bases, each offering varying degrees of precision.
The global positioning system (GPS) is one example.9

A real-time API must include function “now()”,
which involves a call to the execution engine to obtain
the real-time value. This value must be sufficiently
close to the current real-time value kept by the authen-
tic sources such as GPS or the Universal Time
Coordinated (UTC) system. Otherwise, interactions
among the objects running on geographically dis-
persed object execution engines, each maintaining a
separate time base, can lead to unpredictable results.

The distributed computer system age (DCS_age)—
another useful time-related facility—is equivalent to
the number of microseconds past the distributed com-
puter system start time (DCS_start_time). Instead of
expressing a real-time value based on year, month,
day, hour, minute, second, millisecond, and microsec-
ond, you can express a real-time value in the conve-
nient form of DCS_age.

You can establish the DCS_start_time in many
ways. For example, the master node first confirms the
readiness of all the nodes belonging to the initial DCS
configuration and then announces to all worker nodes
the DCS_start_time. When the DCS_start_time
arrives, all the nodes belonging to the DCS configu-
ration start executing their parts of the program.

Distributable software component
While conventional C++ objects are nondistrib-

utable passive units, distributed real-time objects such
as TMOs are active. Moreover, some applications
must be capable of adapting to dynamic changes in
network configurations. The real-time objects that
make up such applications need to be dynamically
migrated across node boundaries. This means that
each real-time object and each of its service methods
(SvMs)—methods of the object that can be called from
outside it—must have a unique, logical, systemwide
name. Cooperating execution engines should be capa-
ble of locating the SvM that corresponds to the sym-
bolic ID presented by the client (the main function or
a method of another real-time object).

One cost-effective arrangement for avoiding or min-
imizing the overhead incurred in calling SvMs by their
symbolic names works like this: When a real-time
object is instantiated, the symbolic name for the object,
say “RTO1,” and the symbolic name for each SvM in
that object, should be registered with the execution
engine. Suppose the real-time object has only one SvM
for which the registered name is “SvM7.” Then a gate
object corresponding to “SvM7” should be created in

every potential host node of a client real-time object.
The gate is an entry point to the efficient call-path lead-
ing to the associated SvM. When a gate is instantiated,
the symbolic name of the associated SvM is used as a
parameter for the constructor. Thereafter, client objects
can just use the gate’s name in calling the SvM, with-
out using the symbolic name, as shown in Figure 1.

To enable easy gate creation, the API can contain a
class named GateClass. Then the gate for the SvM
named “SvM7” can be created like this:

GateClass G1 (
"RTO1", "SvM7", /*service-start-
time*/ t_DCS_age (3x1000x1000)).

Gate G1 should be used after the service-start-time,
which is three seconds past the DCS_start_time. The
sevice_start_time should be chosen so that, by the start
time, the execution engine will be able to establish an
efficient call-path to SvM7. Establishing the call path
may involve locating the node hosting RTO1, identi-
fying the address or the numeric ID of RTO1.SvM7,
or identifying an efficient message route to the node.
This gate can also be extended to incorporate secu-
rity-enforcement capabilities.

Structuring of component parameters
It is sensible to provide the parameter structure’s

definition for the SvM as a companion to the gate-cre-
ation statement. For example, the gate-creation state-
ment may have the following companion:

struct ParamStruct_RTO1class_SvM7
{ int a; float b; } ;

A client real-time object may then contain an
instantiation such as ParamStruct_RTO1class_
SvM7 param1. If you’re not going to use a new lan-

June 2000 73

RTO2 RTO1
SvM7 RTO3

3
5

1
2

Middleware Middleware

Construct gate
with (RTO1”, Svm7”)
as the parameter

Gate object G1

SvM path table

Node OS
Hardware

1
2

Node OS
Hardware

1 obj name
SvM name

Node address/route
ptr SvM

2

Figure 1. A gate
object providing an
efficient call path.
The gate object G1 is
a front-end interface
of an automatically
created call-path to
remote object method
RTO1.SvM7.

74 Computer

guage translator, then you must group all parameters
into a single structured variable and let the client pass
a pointer to the execution engine along with the infor-
mation on the size of the variable’s memory area. The
client engine then transfers the structured parameter
as a single message across the network.

This restriction can be removed in the CORBA that
uses an IDL translator.6 The programmer of a CORBA
object class produces an IDL specification that contains,
in addition to the class, the method names and method
parameters. An IDL translator then takes the IDL spec-
ification as an input and produces two program mod-
ules—one called the stub, for use by the client objects,
and the other called the skeleton, for use by the server
object. The stub-skeleton pair takes care of parameter
transfer across the network and may perform multiple
message exchanges to handle a large set of parameters.

To facilitate calls to SvMs, you can place various types
of call operations as methods inside the GateClass.
Among several methods for such calls, the most basic is
a blocking service request method, BlockingSR1. For
example, you can use G1.BlockingSR1 (¶m1,
sizeof(Param-Struct), 50x1000) to call the
SvM named “SvM7,” with param1 as the parameter
and the deadline for result return set as 50 milliseconds
after the calling time.

Concurrency in SvM executions
Within a real-time object, you can facilitate concur-

rency in executions in several ways. One approach that
offers great flexibility in concurrency control while still
yielding a relatively easy procedure for analyzing
worst-case timing behavior is to explicitly indicate the
needs of SvMs for accessing the set of object data vari-
ables, collectively called the object data store (ODS).

The ODS segment (ODSS) is a basic unit of data stor-
age—a group of variables—that can be reserved for
exclusive access by a real-time object method. If you

explicitly indicate the group of ODSSs that may be
accessed by each SvM, even the object execution engine
can easily check whether two SvM executions may
interfere with each other or not. Recall that when a dis-
tributed real-time object’s SvM is created, its symbolic
name must be registered with the execution engine. The
ODSS-based concurrency control approach suggests
that the set of ODSSs to be accessed by the SvM must
also be registered with the execution engine so that the
latter may use the registered information in effecting
concurrent SvM executions. More specifically, when a
distributed real-time object’s SvM is created and ini-
tialized, the following (at the very least) must be regis-
tered with the object execution engine:

• the symbolic name, such as SvM1 or
Update_Speed, and

• the set of ODSS-name-access-mode-indicator
pairs, such as { (ODSS1, read-write),
(ODSS2, read-only) }.

A desirable API must therefore include a class, say
ODSSBaseClass, that defines basic operations asso-
ciated with an ODSS, including registration of the
ODSS with the execution engine and locking the
ODSS for read-only or read-write access. An applica-
tion-specific ODSS, say ODSS1, can then be defined as
a derived class of ODSSBaseClass. When instantiated,
it is automatically registered with the engine.

Guaranteed completion times
To enable systematic modular construction of reli-

able applications, real-time objects must offer guaran-
teed timely services. By advertising the guaranteed
completion time (GCT) of each SvM, the server object’s
designer guarantees the object’s timely services. As
shown in Figure 2, the GCT of an SvM is the upper
bound on the time duration, from the instant at which
the service request message arrives at the node hosting
the server object to the instant at which both the SvM
execution and the preparation of a message contain-
ing the return parameter become complete. Before
determining GCTs, the server object designer must
make sure that with the available object execution
engine the server object can be implemented such that
its SvMs are always executed within the GCTs.

On the other hand, as shown in Figure 2, the client
imposes a deadline for returning results. The client
execution engine receives this deadline as one of the
parameters associated with the remote method call;
the engine checks whether or not the result comes back
within the client’s deadline. Three sources can create
a fault, causing a client’s deadline to be violated:

• the client object’s resources, which are basically
node facility (hardware plus OS);

Object data store

Deadline for
result arrival

(client's deadline)

Domain of
communication
infrastructure

Guaranteed completion
time (GCT) (server's

self-imposed deadline)

Client object

Method 1

Object data store

Server object

Method 2

Method 7

Figure 2. The client’s
deadline for result
arrival is set by the
programmer with the
understanding of the
server’s GCT and the
transmission times to
be consumed by the
communication infra-
structure.

• the communication infrastructure; and
• the server object’s resources, which include not

only node facility but also the object code.

Thus, while the server is responsible for finishing a
service within the GCT, the following relationship
must hold between the GCT and the client’s deadline:

(deadline for result arrival minus call initiation time)
> (maximum transmission time imposed on the com-
munication infrastructure plus GCT of SvM)

The GCT of an SvM is inherently subject to the con-
dition that the aggregate arrival rate of calls from all
possible clients to the SvM does not exceed the max-
imum invocation rate (MIR). When an SvM is created
and initialized, the GCT and the MIR must also be
registered with the engine.

Time-triggered action and method
Time-triggered (TT) computations distinguish real-

time programming from non-real-time programming.
In principle, the TT computation unit can be any one
of the following:

• a simple statement, such as an assignment state-
ment with the right-side expression restricted to an
arithmetic logical expression type that involves nei-
ther a control flow expression nor a function call;

• a compound statement like if-then-else or while-
do;

• a statement block;
• a function and procedure; or
• an object method.

TT actions associated with a computation unit may
include TT initiation of the computation unit, timely
completion of the computation unit, and periodic exe-
cution. In any practical real-time programming lan-
guage, it is desirable to have the following type of a
construct, called the autonomous activation condition
(AAC):

" for <time-var> = from <activation-
time> to <deactivation-time>

[every <period>]
start-during (<earliest-start-time>,
<latest-start-time>)

finish-by <guaranteedcompletion time> "

For example, consider the following case:

"for t = from 10am to 10:50am
every 30min

start-during (t, t+5min) finish-
by t+10min"

This case specifies that the associated com-
putation unit must be executed every 30 min-
utes, starting at 10 AM and running until 10:50
AM, and that each execution must start at any
time within the 5-minute interval (t, t +5min)
and must be completed by t + 10min. So it has
the same effect as

{"start-during (10am, 10:05am)
finish-by 10:10am",

"start-during (10:30am, 10:35am)
finish-by 10:40am"}.

Of the five types of computation units mentioned here,
the object method is the most important, feasible unit for
TT initiations and completion time checks. The only exe-
cution engines built so far that fully allow the specifica-
tions of TT initiations, completion deadlines, and periodic
executions to be associated with object methods are the
TMO execution engines.10-11 This situation holds mainly
because developers discovered the importance of TT
methods in high-level real-time distributed programming
only a few years ago. However, support for TT methods
will likely appear in an increasing number of major indus-
trial real-time tools. At the same time, it is important to
use TT methods in well-structured and disciplined ways
since, otherwise, you’ll produce difficult-to-analyze error-
prone real-time programs. The TMO programming
scheme best illustrates the proper way to use TT methods.

Object structure with time-triggered methods
The basic structure of the TMO model consists of

four parts:

• object-data-store section (ODS-sec): the list of
object-data-store segments (ODSSs);

• environment-access-capability section (EAC-sec):
the list of gate objects, logical communication
channels, and I/O device interfaces;

• spontaneous-method section (SpM-sec): the list
of spontaneous methods; and

• service-method section (SvM-sec).

Figure 3 depicts TMO, a distributed computing
component that offers unique extensions to conven-
tional objects. These extensions include the sponta-
neous method (clearly separated from the service
method) and basic concurrency constraint.

Spontaneous method. The TMO may contain sponta-
neous methods (SpMs), which are TT methods clearly
separated from the conventional SvMs. The SpM exe-
cutions trigger upon reaching the real-time clock at spe-
cific values determined at design time. The SvM
executions, on the other hand, are triggered by service
request messages from clients. Moreover, actions to be
taken at real times, which can be determined at the

June 2000 75

The object method
is the most

important, feasible
unit for time-

triggered initiations
and completion
time checks.

76 Computer

design time, can appear only in SpMs. Triggering times
for SpMs must be fully specified as constants during
the design time. Those real-time constants appear in
the first clause of an SpM specification, the autonomous
activation condition (AAC) section.

Basic concurrency constraint. The BCC rule prevents
potential conflicts between SpMs and SvMs and
reduces the designer’s efforts in guaranteeing timely ser-
vice capabilities of TMOs. Basically, activation of an
SvM triggered by a message from an external client is
allowed only when potentially conflicting SpM execu-
tions are not in place. An SvM may execute only if no
SpM that accesses the same ODSSs to be accessed by
this SvM has an execution time window that will over-
lap with the execution time window of this SvM. The
BCC does not reduce the programming power of TMO.

APIs for time-triggered actions
Although the TMO execution engines built so far

completely support TT methods, they support TT exe-

cutions of object-method-segments only to a limited
extent: Object methods are about the only basic schedu-
lable computation units fully supported so far. This con-
straint does not seriously limit the programming power
and flexibility offered to real-time programmers, and
it greatly simplifies the job of constructing reliable and
efficient execution engines. Supporting TT method-seg-
ments just requires construction of object execution
engines capable of accurately scheduling finer-grain
real-time computation units.

To support TT executions of method-segments in a
limited form, a TT method in a high-level program-
ming language may contain the following statements:

"at global-time-constant do S" and
"after global-time-constant do S"

Global-time-constant must be a real-time instance pre-
ceding the completion deadline of the TT method.
Such statements can be supported by the execution

Capabilities for accessing
other TMOs. Network
environment includes logical
multicast channels and
I/O devices

Name of TMO

Object data store (ODS)

Time-triggered (TT)
Spontaneous methods (SpMs)

Message-triggered
service methods (SvMs)

"Absolute time
domain"

"Relative time
domain"

✂

ODDS1

SpM 1

ODDS2 EAC

AAC

SpM 2

SvM 1

AAC

Reservation Q

From SvMs, SpMs Deadlines

✂

✂

✂

SvM 2

Concurrency
control

Client
TMOs

Service request
queues

Figure 3. Structure of
the time-triggered,
message-triggered
object (TMO). The
TMO structure results
from adding time-
triggered methods
and deadline-
imposed remote
object call
mechanisms to the
C++/Java object
structure.

engine in several ways. API components approximat-
ing such constructs include "wait_for (microsec
x1)" and "wait_until (r_tm t1)"where r_tm
denotes the type “real-time.”

In the case of the TMO programming scheme, SvMs
deal with the relative time domain only; they use only
the elapsed intervals since the method was started by
an invocation message from an object client. This use
is natural since the arrival time of a service request from
an object client cannot be predicted by the SvM’s
designer in general, especially when that designer did
not design the client object. The wait_until function
should therefore not be used in SvMs.

A provision should also be made for making the AAC
section of a TT method contain only candidate trigger-
ing times, not actual triggering times, so that a subset of
the candidate triggering times indicated in the AAC sec-
tion may be dynamically chosen for actual triggering.
Such a dynamic selection occurs when an SvM or TT
method within the same real-time object makes a reser-
vation for future executions of a specific TT method.

An easy-to-use API-style approximation toward the
AAC is the class AACclass, of which the constructor
registers with the execution engine the parameters
such as AAC activation-time, deactivation-time,
period between TT executions, earliest start-time of
each TT execution, latest start-time of each execution,
and GCT for an execution. One more parameter used
here indicates whether the constructed object is a per-
manent AAC or a candidate AAC with a name.

When a TT method is created, there is no symbolic
name to be registered with the execution engine but as
in the case of an SvM, the set of ODSSs to be accessed
by the TT method must be registered with the execu-
tion engine.

INTERACTION AMONG REAL-TIME OBJECTS
Any practical real-time object language must sup-

port multiple types of service requests. The API for
service requests can be structured most naturally using
the gate methods described previously, since the gate
provides an access path to the server object methods.

Blocking call
After calling an SvM, the client waits until the SvM

returns a result message. For this basic type of service
request, the following two API functions (which dif-
fer only in the type of a return deadline imposed) are
most desirable:

int BlockingSR1 (void *ParamPtr, int
ParamSize, microsec ResponsePeriod);

int BlockingSR2 (void *ParamPtr, int
ParamSize, r_tm RTDeadline);

BlockingSR1 is used by a client that imposes a dead-
line of the type “within 20 milliseconds.” Any client
can make this type of blocking call. On the other
hand, BlockingSR2 imposes a deadline of the type “by
10 AM” and thus should ideally be used only by a
client operating in the absolute time domain.

If the result does not return to the client by the dead-
line, then the execution engine for the client sets the
result value of the API call to “1,” indicating the dead-
line miss, and then raises an exception signal. How
such an exception signal is handled depends on factors
such as

• whether the execution engine was set to handle
such an exception signal in a generic manner, and

• whether the client program provided an exception
handler to be invoked in response to the signal.

The client program can also check the result value; if
the value is “1,” it can branch to an appropriate
exception handler code segment.12

Nonblocking call
After calling an SvM, the client can proceed to fol-

low-on steps and then wait for a result message from
the SvM. The four API functions shown in Figure 4
support this method. When the client needs to
ensure—by execution of one of three GetResult API
functions—the arrival of the results returned from the
earlier NonBlockingSR for the SvM, the variable
Timestamp, containing the time stamp associated with
the subject call, must be supplied as a parameter. The
time stamp type, tmsp, is usually implemented as the
real-time value suffixed by the node ID. When a client
makes multiple nonblocking calls for SvMs before
executing a GetResult API function, the time stamp
unambiguously indicates to the execution engine
which nonblocking call is referenced.

Of the three GetResult functions listed in Figure 4,
the first one, NonBlockingGetResultOfNonBlockingSR,
is of the nonblocking type, which means that if the
results have not been returned, the client can imme-
diately proceed to follow-on steps. The other two
GetResult functions are of the blocking type, differing

June 2000 77

int NonBlockingSR (void *ParamPtr, int ParamSize, tmsp &Timestamp);
intNonBlockingGetResultOfNonBlockingSR (tmsp Timestamp);
int BlockingGetResultOfNonBlockingSR1 (tmsp Timestamp,
microsec ResponsePeriod);

int BlockingGetResultOfNonBlockingSR2 (tmsp Timestamp, r_tm RTDeadline);

Figure 4. When a
client calls an SvM via
NonBlockingSR, the
execution engine
records a time stamp
into the variable Time-
stamp. The time
stamp uniquely identi-
fies this particular call
for the SvM as distinct
from other (past or
future) calls for the
same SvM from this
client.

78 Computer

only in the type of deadlines imposed. If the results
have not been returned at the time of executing one
of the two BlockingGetResult functions, the execu-
tion engine keeps the client in the waiting mode until
the arrival of the results is recognized.

A nonblocking call thus creates concurrency
between a client method (TT method or SvM) and an
SvM in a server object. The concurrency lasts until the
execution of the corresponding BlockingGetResult
function. Most industrial real-time programming tools
will offer support for this kind of concurrency.

Client-transfer call
An SvM in a real-time object can pass a client

request to another SvM by using a client-transfer call.
The latter SvM can again pass the client request to
another SvM. This chaining sequence can repeat until
the last SvM in the chain returns the results to the
client. The main motivation behind such a client-trans-
fer call stems from BCC, which requires an execution
of an SvM to be made only if a sufficiently large time
window opens up between executions of TT methods
that might conflict with the SvM.

In certain situations a time-consuming SvM may
never be executed due to the lack of a wide-enough
time window. This problem can be avoided by divid-
ing the SvM into multiple smaller SvMs. A client can
then call smaller SvMs in sequence. Calling each
smaller SvM incurs the communication overhead of
transmitting a request to the smaller SvM and obtain-
ing the results. The substantial reduction of such
communication overhead is the motivation behind an
arrangement in which the client calls the first SvM and
the latter passes the service contract with the client to
another SvM. The process repeats until the last SvM
of the chain returns the results to the client.

As a part of executing this client-transfer call for an
SvM, the execution engine terminates the caller SvM,
places a request for execution of the called SvM into

the service request queue for the called SvM, and
establishes the return connection from the called SvM
to the client of the caller SvM just terminated. The
port or channel ID through which the initial client of
the client-transfer call chain is prepared to receive
return results is passed by the execution engine onto
the execution support record of the SvM being called.
When the system executes the return statement in the
called SvM, the results return through the established
return connection. Since the initial client of the client-
transfer call chain cannot predict from which SvM it
will receive returned results, it is implemented to
accept results without having to know from which
SvM the results originated.

The following API function can facilitate this client-
transfer call:

int ClientTransferSR (void
*OrigParamPtr, int OrigParamSize,
void *AddedParamPtr, int
AddedParamSize);

Here OrigParam is the parameter structure that the
initial client of the client-transfer call chain supplied.
The system passes the parameter through the chain.
In addition, the caller of each client-transfer call passes
an additional parameter structure, AddedParam,
which contains intermediate results produced by the
caller but not included in OrigParam.

The recipient SvM of a client-transfer call may be an
SvM in the same real-time object to which the caller
belongs; it can also be an SvM in another real-time
object, although it is more often than not an SvM in
the same object.

MULTICAST CHANNELS
In addition to the interaction mode based on remote

method invocations, distributed real-time objects can
use another interaction mode in which messages can
be exchanged over logical message channels explicitly
specified as data members of involved objects. One of
the most advanced types of such channels is called the
real-time multicast and memory-replication channel
(RMMC), previously called the programmable data
field channel. While Figure 3 depicts such data mem-
bers in abstract forms, Figure 5 depicts RMMCs and
real-time object methods that access them in more
detailed forms.

For example, access gates for two RMMCs
(RMMC1 and RMMC2) can be declared as data
members of each of the three remotely cooperating
real-time objects (TMO1, TMO2, and TMO3) during
the design time. Once TMO1 sends a message over
RMMC1, the message will be delivered to the buffer
allocated inside the execution engine for each of the
three real-time objects. Later during their execution,

ODSS

RMMC1

RMMC2

Event
message
State
message

SV8

SV2E-msg
Buffer RMMC1_g

RMMC2-g

RMMC1_g

ODSS

SV8

SV2

Figure 5. RMMC
channels connecting
real-time objects.
Real-time objects
connected to an
RMMC can announce
via multicasts, read
event messages, and
globally update and
read distributed repli-
cated state message
variables.

certain methods in TMO2 and TMO3 can pick up
those messages by sending the requests through their
RMMC1 gates to their execution engines. In many
applications, this interaction mode leads to better effi-
ciency than the interaction mode based on remote
method invocations. An RMMC can be implemented
over point-to-point networks as well as over broad-
cast-enabled bus networks.

The RMMC scheme supports not only conven-
tional event messages but also state messages based
on distributed replicated memory semantics. A state
message carries information to be stored in a fixed
memory location in each receiver corresponding to
the ID of the state message.

A state message’s ID represents a group of replicated
memory units, each capable of holding the informa-
tion carried in the state message and belonging to a
different receiver. A state message producer time-
stamps the message at message-production time. Each
receiver reads the content of its state message mem-
ory through a relevant gate at a convenient time. This
means that the producer may update the contents of
the state message memory units at a higher frequency
than the frequency at which a certain receiver reads
the content of its state message memory. A state mes-
sage is thus typically used to share the periodically
observed state information about a dynamic state-
varying item, like a car’s position.

REAL-TIME MULTICAST API
The API related to RMMCs must include operations

both for connecting and disconnecting an RMMC gate
(declared in the ODS of a real-time object) to an
RMMC. This API can take the form of a class
RMMCgateClass, which plays a role similar to that of
GateClass in construction of call-paths. As shown in
Figure 6, RMMCgateClass provides four basic meth-
ods for message communication over an RMMC.

Any method of a real-time object connected to an
RMMC can perform an announce operation that
results in the delivery of the message to all other real-
time objects connected to the RMMC. The official
release time is the time at which Msg should become
accessible to the methods in all the real-time objects.

A real-time object can perform the receive operation
to pick an officially released event message from its
buffer inside the execution engine and put it in the mem-
ory area Msg. Real-time objects pick event messages
one at a time in the order of their official release times.

Any method of a real-time object connected to an
RMMC can perform the global update operation
SM_update. This operation updates all SM replicas
allocated inside execution engines of all the real-time
objects (connected to the RMMC) with NewData.
During the execution of this SM_update, the execution
engine creates a time stamp and attaches it to the SM

being replicated over the group of real-time objects.
A real-time object can perform the SM_read oper-

ation to read the most recent officially released value
contained in its replica of SM into NewSM.

These RMMCs can serve as an alternative mecha-
nism for interaction among distributed real-time
objects. They can also complement the remote method
call mechanism.

N ew languages supported by new compilers will
continue to emerge in ever more compelling
forms, but it will be a while before we have

ideal language tools for real-time distributed object
programming. Analysis tools are also needed. The
analysis tools most highly desired but unavailable at
this time are those that would assist the distributed
real-time object designer in the process of determin-
ing guaranteed response times.

At the minimum, such tools must be capable of mak-
ing good estimates for worst-case execution times of
various object-method segments. An even more pow-
erful tool could provide a useful aid in checking the
execution feasibility of real-time objects—checking,
for example, whether a group of real-time objects can
be loaded onto a network of nodes without introduc-
ing the possibility of any timing-constraint violations.

Until ideal language tools arrive, a pragmatic
approach to enabling high-level real-time object pro-
gramming today is to provide abstract APIs. ✸

Acknowledgments
The research work reported here was supported in

part by the US Defense Advanced Research Project
Agency under Contract N66001-97-C-8516 moni-
tored by SPAWAR, and in part by the NSF Next-
Generation Software program under Grant 99-75053.

References
1. Object Management Group, “Realtime CORBA Joint

Revised Submission,” OMG Document orbos/99-02-
12, Mar. 1999.

2. Java Consortium, “Real-Time Core Extensions for the
Java Platform,” Specification No. T1-00-01, Rev. 1.0.10,
Feb. 2000, http://www.j-consortium.org/.

June 2000 79

void announce (void *MsgPtr, int MsgSize, r_tm
Official-release-time, int &Result_code)

int receive (void *MsgPtr, int &MsgSize)
void SM_update (int SM_ID, void *NewDataPtr, r_tm
Official-release-time, int &Result_code)

int SM_read (int SM_ID, void *NewSMptr, tmsp
&Timestamp)

Figure 6. RMMCgate-
Class contains as
member functions
the two basic opera-
tions on event mes-
sages, announce and
receive, and the two
basic operations on
state messages,
SM_update and SM-
read.

80 Computer

3. Real-Time for Java Experts Group, “Real-time Specifi-
cation for Java, Version 0.9.2,” 29 Mar. 2000, http://
www.rtj.org/public.

4. J. Rumbaugh et al., The Unified Modeling Language
Reference Manual, Addison Wesley Longman, Reading,
Mass., 1999.

5. B. Selic, “Turning Clockwise: Using UML in the Real-
Time Domain,” CACM, Oct. 1999, pp. 46-54.

6. R. Soley, ed., Object Management Architecture Guide,
John Wiley & Sons, New York, 1995.

7. K.H. Kim, “Object Structures for Real-Time Systems and
Simulators,” Computer, Aug. 1997, pp. 62-70. This and
other articles on the TMO scheme are also available from
http://dream.eng.uci.edu/TMO/TMO.htm.

8. K.H. Kim, “Real-Time Object-Oriented Distributed
Software Engineering and theTMO Scheme,” Int’l J.
Software Eng. & Knowledge Eng., Apr. 1999, pp. 251-
276.

9. H. Kopetz, Real-Time Systems, Kluwer Academic, New
York, 1997.

10. K.H. Kim and C. Subbaraman, “Principles of Con-
structing a Timeliness-Guaranteed Kernel and the Time-
Triggered Message-Triggered Object Support Mech-

anism,” Proc. ISORC 98, IEEE CS Press, Los Alamitos,
Calif., 1998, pp. 80-89.

11. K.H. Kim, M. Ishida, and J. Liu, “An Efficient Middle-
ware Architecture Supporting Time-Triggered Message-
Triggered Objects and an NT-based Implementation,”
Proc. ISORC 99, IEEE CS Press, Los Alamitos, Calif.,
1999, pp. 54-63.

12. K.H. Kim, J. Liu, and M.H. Kim, “Deadline Handling in
Real-Time Distributed Objects,” Proc. ISORC 2000, IEEE
CS Press, Los Alamitos, Calif., Mar. 2000, pp. 7-15.

K.H. (Kane) Kim is a professor in the Department of
Electrical and Computer Engineering at the Univer-
sity of California, Irvine. He is a recipient of the 1998
IEEE CS Technical Achievement Award for his con-
tributions to the scientific foundation for both real-
time fault-tolerant computing and real-time object-
oriented distributed computing. He received a PhD
from the Computer Science Division of the University
of California, Berkeley. Contact him at Khkim@
uci.edu.

COMING SOON

c o m p u t e r . o r g / c h a n n e l s / d s

June
2000

Distributed Systems Online

