
0018-9162/00/$10.00 © 2000 IEEE68 Computer

Generic Support
for Distributed
Applications

I
n the late 1980s, software designers introduced
middleware platforms to support distributed
computing systems. Since then, the rapid evolu-
tion of technology has caused an explosion of dis-
tributed-processing requirements. Application

developers now routinely expect to support multime-
dia systems and mobile users and computers. Timely
response to asynchronous events is crucial to such
applications, but current platforms do not adequately
meet this need.

Another need of existing and emerging applications
is the secure interoperability of independent services
in large-scale, widely distributed systems. Information
systems serving organizations such as universities, hos-
pitals, and government agencies require cross-domain
interaction. These systems must handle large numbers
of users and must be easy to use, internally efficient,
secure, reliable, and robust. Moreover, independently
developed services must work together with minimal
extensions to their basic software.

At the University of Cambridge, in the Computer
Laboratory’s Opera Research Group, we have devel-
oped middleware extensions to address these prob-
lems: the Cambridge Event Architecture for asynchro-
nous operation and Oasis, an open architecture for
secure interoperating services. Our work is wide in
scope, with applicability to many multiservice infor-
mation systems.

ESTABLISHED SUPPORT
Distributed applications must run on a variety of

hardware and operating systems. Middleware makes
this possible. Middleware is a layer of software that

runs above heterogeneous operating systems and com-
munications systems, providing a uniform interface to
distributed applications. Current middleware plat-
forms for distributed applications are based on the fol-
lowing software model and architecture.

Distributed-software model
Whatever the physical architecture of a distributed

system, we must establish a software model that
defines the entities that comprise the distributed sys-
tem, how they interoperate, and how to specify their
behavior. The object model, which underpins all recent
middleware platforms, is a realistic basis for software
design, including persistent-data management. An
object model gets its broad applicability from its sep-
aration of interface and implementation. Using a stan-
dard for specifying object interfaces, application
developers can compose systems from distributed,
independently developed, heterogeneous objects.

For example, the Object Management Group
(OMG) and the Object Data Management Group
(ODMG) provide widely accepted, compatible stan-
dards for both transmitted and stored data objects.1,2

The OMG Common Object Request Broker Archi-
tecture (CORBA) defines objects with a standard inter-
face definition language (IDL) that specifies object
names, method names, and their arguments in terms
of base types and constructors. The CORBA object
model does not provide a sufficiently rich set of con-
structors for database management, so the ODMG
has extended it to support object data. The ODMG
standard includes the data definition language ODL,
which extends OMG/IDL, and the strongly typed

Existing and emerging applications require timely response to
asynchronous events and secure interoperability of independent services
in large-scale, widely distributed systems. To meet these needs, Cambridge
University researchers developed middleware extensions that provide a
flexible, scalable approach to distributed-application development.

Jean Bacon
Ken Moody
John Bates
Richard
Hayton
Chaoying Ma
Andrew
McNeil
Oliver Seidel
Mark Spiteri
University of
Cambridge

R E S E A R C H F E A T U R E

functional query language OQL. The CORBA and
ODMG standards support many programming-
language bindings, allowing software components
written in different programming languages to inter-
operate. Douglas Barry and Torsten Stanienda3 show
how an ODMG binding for Java supports persistent
Java objects.

Distributed-software architecture
The software architecture defines how the commu-

nicating entities in the distributed-software model are
named, located, and protected, as follows:

Principal. Principals are entities that can initiate
actions and to which access rights can be assigned.
The general term includes an authenticated, logged-
in user, a process acting on behalf of such a user, and
a process executing a named program.

Service. A service is offered by one or more servers.
A server is an object that carries out operations in
response to requests from principals (its clients). A
service can function as an object manager for objects
of a specified type.

Naming and name-to-location binding. A system can pro-
vide a core middleware function—name-to-location
binding—transparently as part of platform services or
as a specific system service. A service must name the
principals that can use it. Each domain in a distrib-
uted system is likely to register its users and allocate
them identifiers. In many systems, logged-in users,
named by user IDs, are the only principals. More
generally, services can define names specific to the roles
of their clients.

System services. Some services have generic roles in
a system. For example, a name server (sometimes
called an interface trader) can publish a service’s inter-
face specification. A system can provide an authenti-
cation service based on encrypted passwords associ-
ated with persistent principals. Specific services can
be associated with applications such as banking.

Access control and authentication. Access control is
important to individual services. Each service must
specify the principals that can use it and how they can
use it. This assumes that the service can identify named
principals and associate them securely with persistent
agents. Communications between principals and ser-
vices must be securely signed. If the service is an object
manager, it must ensure protected access to objects
and provide a means of expressing and enforcing
access policy.

Independent administrative domains. Distributed sys-
tems are partitioned into domains that reflect admin-
istrative and management responsibility. Domains
also provide the means for managing scale. The
Domain Name System, which defines nested man-
agement domains, manages the communications ser-
vices that support distributed-systems platforms. A

distributed application such as an automated
room-booking system operates only for a sin-
gle university department—that is, a single
domain. More often, an application operates
across multiple domains—for example, the
Web’s information system.

Heterogeneity and open interoperability. Because
the world will not restrict itself to using a single
hardware platform, operating system, or pro-
gramming language, middleware platforms are
designed to cope with heterogeneity. It is unre-
alistic to assume that a single middleware plat-
form will dominate the market, so the major
middleware players are committed, in theory, to
supporting interoperability. However, exten-
sions to proprietary systems such as DCOM, ActiveX,
Java, and JavaBeans are subject to change without
notice, making their interoperability problematic.

SUPPORT FOR EMERGING APPLICATIONS
To support emerging applications, today’s middle-

ware platforms require extension in two areas: asyn-
chronous operation and secure interoperability.

Asynchronous operation: events
The model for existing platforms is synchronous

method invocation: An object remains passive until a
principal performs an operation on it. This is inade-
quate for many applications in which asynchronously
occurring events should trigger an immediate system
response. For example, a credit card cancellation oper-
ation by a banking service invalidates the record asso-
ciated with the card at that service and adds the card
to a list of “hot” (invalid) cards. If a thief is using the
card, the banking service must invalidate it immedi-
ately and notify all affected services automatically.

If synchronous method invocation is all that’s avail-
able, the options are periodic polling and synchronous
callback. Frequent polling to learn whether events
have occurred overloads communications. Infrequent
polling delays the response to individual events so that
users perceive the application as sluggish and inade-
quate, or even open to hostile attack—by observing
the polling rate, an enemy might identify a time slot
in which to do damage. Event notification by syn-
chronous callback from source to clients carries the
risk of delaying the caller if any of the called clients
fails or is slow to respond.

Asynchronous operation supports the following
application types:

• Group interaction. Suppose an online-conference
participant draws on a shared whiteboard object.
The other conference members should be able to
see the drawing immediately.

• Multimedia support. The control of multimedia

March 2000 69

To support emerging
applications, today’s

middleware
platforms require
extension in two

areas: asynchronous
operation and

secure
interoperability.

70 Computer

objects is synchronous, by means of methods
such as pause, restart, and fast-forward. At the
application level, asynchronous events can trigger
these invocations through rules. When a user
clicks on the image of a person on screen as a film
runs, the system invokes the pause method on the
video object and shows details of the person in a
new window.

• Mobility. Mobile users and computers detach
from networked systems and reattach later at
other locations. An office system tracks users by
means of an active badge or a similar infrastruc-
ture. Another system locates tourists as they
move about a radio-networked city. The detec-
tion of a mobile user or computer is an event that
may require a system response.

• Alarms and exceptions. A security violation, an
access control check failure, a system overload, a
patient’s emergency medical condition, a network
component failure, a stock market crash, an
imminent nuclear reactor meltdown—all are
events requiring rapid system response.

• Management. When faults, heavy loading, or
resource allocation problems occur, network and
system management servers must receive instant
notification so that they can take immediate action.

Security
An access control scheme based on an access

matrix, in which each entry specifies a given user’s
rights to invoke a particular object’s methods, is inad-
equate. It neither scales for large numbers of objects
and users nor captures the relationships of services.
For example, any student known to the student reg-
istration service can be a reader of the university
library service, which specifies access permissions for
broad categories of documents. Independently devel-
oped and managed services must cooperate, but

mutual trust must be limited. An access control archi-
tecture should impose as little as possible on each ser-
vice while allowing secure interaction between
services. Services running in different management
domains need mechanisms that allow them to negoti-
ate and interoperate. A student registration service,
the local campus library service, and a remote library
service at a research institute may all be involved in
negotiating access rights for broad categories of users.

Our approach
The Cambridge Event Architecture (CEA) supports

asynchronous operation by means of events, event
classes, and event occurrences as object instances. For
example, an active badge event of type seen has the
data attributes person and location and methods that
allow these attributes to be read. CEA follows a pub-
lish-register-notify paradigm with event object classes
and source-side filtering based on parameter tem-
plates. It incorporates standard platform technology:
IDL for publishing events and automatic stub gener-
ation for event notification. Asynchronous notifica-
tion allows a system to respond immediately to
events—for example, the detection of a mobile user
or the withdrawal of an individual’s access rights.
Developers can also use asynchronous event notifica-
tion to compose applications from independently
developed components.

Oasis provides the secure interoperability of inde-
pendently developed services. For scalability, an Oasis
server can name its many users in terms of roles with
associated access rights. Entry to a role is restricted to
users who can prove they belong to other roles of this
or other services. Although Oasis can run above a syn-
chronous platform, asynchronous operation allows
immediate response to events.

The term “event” describes asynchronous occur-
rences of interest within applications—for example,
within programs to manage user interfaces and sen-
sor systems. Toolkits that help manage event-based
systems have been developed on a system-specific
basis. In JavaBeans, for example, a listener can regis-
ter interest with an event raiser as in CEA. However,
JavaBeans is a proprietary, single-language system,
and, when a distributed implementation is required,
notification is built above synchronous Java RMI
(remote method invocation). In contrast, CEA is an
asynchronous, language-independent, interapplica-
tion platform in an open distributed world. We have
integrated Oasis access control with CEA.

CEA
Our work has shown how any widely used plat-

form, such as CORBA, Java RMI, or DCOM, can be
extended very simply to support asynchronous oper-
ation. The extension enables any object to publish in

Event client
Event

source object

Synchronous
interface

Registration
interface

Notification
interface

NotifyAction
Asynchronous

notification(s) of
matching event(s)

Register interest
in event

Synchronous method
invocation

Figure 1. A publish-register-notify event architecture. The object publishes its interface,
specified in IDL in the usual way, including the events it will notify. A client invokes the
object synchronously, as usual, and can also register interest in events indicating para-
meters or wild cards. The object asynchronously notifies the client of events that match
the registration template, subject to access restrictions.

IDL the events it will notify to clients if asked, in addi-
tion to publishing its interface in the standard way.

Registration
In CEA, such an object has a register method in its

interface, and interested parties can register interest
in any event class, specifying a value or wild card for
each parameter. CEA defines event occurrences as
objects of a specified type. Therefore, CEA users can
name and parameterize events at a fine granularity,
using the full range of IDL types, with event notifica-
tion at this granularity.

Access control comes into play at event registration.
The service does not allow a client without appropriate
authority to register, and events that the service will
notify are subject to restriction by parameter value.
When an event occurs, the service matches it against a
stored template associated with each registration.
Subject to access restrictions, each client whose tem-
plate matches is notified of the event. Figure 1 shows the
publish-register-notify scheme. (Chaoying Ma and Jean
Bacon describe how this event extension was added to
a CORBA implementation.4) CEA provides event func-
tionality as part of any object’s interface, whereas other
event schemes are independent services.5,6

The publish-register-notify paradigm facilitates
direct source-to-client event notification. Clients can
request sources to filter events by supplying parame-
ter values on registration. In addition, application
developers can define intermediate services, sometimes
called event mediators. Figure 2 shows the two forms
of event notification. This flexible architecture allows
developers to build any service structure.

Mediation
One use of a mediator is to remove the filtering

function from a primitive event source by providing an
indirection between the source and its potential clients.
A source that cannot afford the overhead of template

matching can notify such a mediator of all its detected
events. An example is an active badge sensor, which
detects badge identifiers and notifies all sightings to a
higher level, the active badge service (in the mediator
role). Instead of presenting clients an interface with
parameters such as badge-id and sensor-id, the active
badge service notifies events such as seen(person,
room).

A mediator can also prevent a mobile user from
missing events of interest while disconnected from the
networked systems. The mediator registers interest
with the required event sources on behalf of the
mobile client and buffers the event notifications it
receives from these sources. It also registers interest
in the mobile client’s location, and notification of an
attach event (detecting the mobile user) triggers deliv-
ery of the accumulated events to the user at the new
location. Another way to program this delivery is for
the reconnected user to poll the mediator via its syn-
chronous interface.

A mediator can provide functionality equivalent to
the CORBA event service,1 which registers interest in
all notifiable events with event sources and provides
its clients both a synchronous “pull” interface and an
asynchronous “push” interface. OMG’s recently spec-
ified notification service enhances the event service by
defining structured events and providing filtering at
the event service.5 Implementing the notification ser-
vice over CEA would be relatively easy, but making it
efficient and scalable would require significant effort.

Our scheme scales well because it allows source-
side filtering rather than requiring filtering at a cen-
tralized server or at the client. Other schemes multicast
events and filter them at the client,7 putting an unnec-
essary load on the communications infrastructure and
clients. Consider the example of tracking users world-
wide. It is unacceptable for all clients to receive noti-
fication of every event about every user, even from a
single domain. With source-side filtering, only clients

March 2000 71

Event client Event source object

Notification
interface

Event client

Notification
interface

Notify

Event mediator

Notify

Primitive
event source

Notify

Asynchronous notification(s)
of matching event(s)

Asynchronous
notification(s)

of matching event(s)

Asynchronous
notification(s)

of matching event(s)

(a)

(b)

Notification
interface

Figure 2. Event notification: (a) direct and (b) mediated. The event mediator can provide a higher level interface than the primi-
tive event source(s), and it can register with any number of event sources on behalf of any number of event clients.

72 Computer

that have registered interest in a specific, parameter-
ized event receive notification of that event. This fine-
grained registration is the only way to keep network
costs and client filtering at an acceptable level. The
search complexity of template matching is limited by
the number of parameters and therefore scales well
with the number of subscribers, as well as minimizing
the use of communications bandwidth.

Composite events
An extension of the simple, basic event paradigm

combines primitive events into composite events. With
this extension, developers can build composite-event
services that will register their clients’ interest with
appropriate event sources and notify clients of com-
posite events. A composite-event server is an event
mediator that can perform filtering across events of
different types from different sources.

There are many possible application scenarios for
composite-event services. For example, a medical prac-
titioner can ask to be notified if a patient’s tempera-
ture rises by more than one degree within 24 hours of
the administration of a new drug. Researchers can ask
an active badge server to notify them when two or
more members of their group are in any of the lab’s
meeting rooms on any Friday after 11 a.m. A com-
posite-event service can detect faults across different
component types in a communications network.

In CEA, we have defined composition operators and
provided a language for specifying composite events. We
use stream semantics to model event arrival from the var-
ious sources that make up distributed systems. Figure 3
illustrates the composite-event detection process.

OASIS
Oasis allows each service to define access rights for

categories of users. A service can refer to both its own
categories and those of other services. While using a
service dynamically, a client holds a certificate that
proves its right to do so, which the issuing service can

revoke at any instant as a result of interservice notifi-
cation.

Each Oasis service is responsible for classifying its
clients into named roles:

• A login service defines the logged-in-user role
with parameters such as user-id and machine-
name.

• A patient-monitoring service defines roles such
as surgeon, doctor, nurse, and patient with
appropriate parameters.

• An examinations service defines roles such as can-
didate, examiner, and chief-examiner.

• A digital library service defines roles such as
reader, librarian, and administrator.

Oasis provides a role definition language (RDL) in
which services can specify precise conditions for clients
to enter each role. RDL is a formal logic based on Horn
clauses. A client gains authentication from a service by
presenting it credentials that prove the client conforms
to its policy for entry to a particular role. For exam-
ple, to access an online examination in computing, you
must certify securely that you are registered in the
computing course, have paid your fees, and are logged
in at a computer in the correct location at the correct
time. Figure 4 shows the authentication process.

A service issues an authenticated client a role mem-
bership certificate (RMC), which the client presents
with subsequent requests to use that service. An RMC,
shown in Figure 5, is an encryption-protected capabil-
ity that includes the role name, any parameters associ-
ated with that role, and a reference to the issuing service.

To become a candidate for the online computing
exam, you must acquire an RMC for the named role
candidate. The examinations service specifies in RDL
that to achieve this you must present your registered
student certificate issued by the registry, your fees-paid
RMC issued by the accounts service, and your logged-
in-user (user-id, machine-name) RMC issued by the

Composite
event service

Client

Action
Notification

Composite
event fires

Distributed
event sources

Streams of
event notifications

Composition operator

Figure 3. Composite-event detection: The client registers interest in a composite event with the composite event service (CES).
The CES registers with the individual event sources, which then notify streams of events to the CES. The CES detects when the
required event combinations occur and notifies the client of each composite event occurrence.

login service. The examinations service can check the
local time. You are then ready to take the online exam.
You present your candidate RMC with your request
to see the exam questions.

An Oasis service maintains a credential record asso-
ciated with each RMC it issues. The service uses the
credential record reference (CRR) in an RMC (Figure
5) to locate the corresponding credential record. A
proof rule of one service can refer to an authenticated
user of another; that is, an RMC issued by one service
may be required as a credential during authentication
by another. The authentication process sets up a data
structure embodying the proof. This data structure
spans the services involved, linking the related cre-
dential records. The data structure is a dynamically
maintained proof tree that exhibits, among other
things, the trust relationships between the services in
which the client has entered named roles. An earlier
publication specifies RDL and describes the data struc-
tures that maintain the dynamic proof tree in detail.8

Comparison with other capability schemes
There are many encryption-protected capability

schemes for use in distributed systems. The basic idea
of these schemes is like the scheme we’ve described
for Oasis—the issuing service computes and checks a
signature to include as a field of a capability.

The Oasis scheme differs from traditional capability-
based access control in several ways. RMCs are capa-
bilities that implement role-based access control; the
role is a protected field. Oasis is principal-specific; that
is, the signature depends on the principal’s identity as
well as on the protected RMC fields. The RMC is there-
fore protected from theft by other principals—through
network tapping, for example. Li Gong proposed that
a persistent principal name, such as a user ID, should
be a protected field of a capability.9 Using a session-
based principal ID, assigned at login, gives greater secu-
rity than using a persistent principal name. Some
applications require that the principal using a certificate
be anonymous. Oasis achieves this simply by omitting
the principal ID as an argument of the encryption func-
tion on certificate issuing and checking, since it is role
membership that conveys access rights.

A more novel difference is that Oasis maintains
RMCs dynamically. The RDL specification for acquir-

March 2000 73

CR

Service A

Service C

Credential record
representing validity

of this RMC

RMC

Role membership
certificate for

principal P issued
by service A

CR

Service B

RMC

Role membership
certificate for

principal P issued
by service B

Role membership
certificate for

principal P issued
by service C

New role membership
certificate for

principal P issued
by service C

CRRMC

CRRMC

Event channels
for revocation

Figure 4. Entering a
role. P presents cre-
dentials for entering a
role of service C.
These credentials are
RMCs for specified
roles of services A
and B and an RMC for
a different role of ser-
vice C. C verifies the
RMCs with services A
and B and registers
with them in order to
be notified on revoca-
tion. C then issues P
an RMC for the new
role.

Role name L1 L2 Signature

L2L1

Param CRRParam •••

Figure 5. Role membership certificate (RMC). An Oasis service computes the signature field by applying an encryption function
to the RMC fields that must be protected from tampering, the identity of the principal to which it was issued, and a secret ran-
dom number held by the issuing service. The CRR is the credential record reference to the issuing service and the credential
record within that service.

74 Computer

ing an RMC also indicates which conditions
must remain true for the RMC to remain valid.
Should such a condition become false, this fact
is signaled immediately to the RMC-issuing ser-
vice, which instantly invalidates the RMC.
Figure 4 shows the event channels set up to sig-
nal such violations. Thus, returning to our exam
example, let’s say you have been sent down in
disgrace and are no longer a registered student.
The registration service not only revokes your
registered-student certificate, it also signals the
examinations service, which immediately
revokes your candidate RMC and your access
to the exam questions.

Other capability schemes have not achieved this
selective and immediate revocation at the granularity
of a single capability. Revocation at the granularity of
individual certificates makes sense primarily for prin-
cipal-specific capabilities, and such schemes are
uncommon. Immediate revocation requires a callback
mechanism that includes failure detection, such as that
provided by Oasis’s heartbeat event management,
which we describe later. Lightweight and selective
revocation is possible only for appropriate architec-
tures with system support in place.

Oasis-aware services
Some services (Oasis role-servers) define Oasis roles,

and some do not but are Oasis-aware, or Oasis-con-
forming. A service of the latter type may wish to con-
trol which principals can use it in terms of RMCs
issued by Oasis role-servers. This applies to both syn-
chronous invocation and asynchronous registration
and notification. Any service can specify that a princi-
pal present an RMC as a parameter of synchronous
method invocation. It can also specify that a principal
present an RMC as a parameter of the register invo-
cation. For example, the active badge service can
ensure that the vice-chancellor’s whereabouts is
revealed only to administration members who hold the
role secretary.

A service can impose access control at both regis-
tration and notification. For example, if you register
seen(*,conference-room), which means “Tell
me everyone who enters the conference room,” the ser-
vice might allow you notification of some matching
instances but not others. A service can ask an RMC-
issuing service for an RMC validity check at any time.

The format of RMCs (Figure 5) is quite general
because they are intended for use by many interwork-
ing services that require different numbers and types
of parameters. Each service is free to use a different
mechanism for signing its certificates. This allows ser-
vice designers to make appropriate trade-offs in sig-
nature length, computational cost, and security.

An Oasis-aware service wishing to verify an RMC

must present it to the issuing service. To ensure that
the certificate has not been tampered with, the issu-
ing service checks the principal’s identity, in a secure
manner, and then validates the signature. Next, the
issuing service follows the credential record reference,
which identifies a record that indicates whether the
certificate has been revoked. Finally the issuing service
informs the Oasis-aware service of its decision.

The integrity and revocation checks use different
techniques. An Oasis-aware service can cache the fact
that the cryptographic check at the issuing service was
successful. If the client presents the same certificate
later, the service need only validate the credential
record. Indeed, it can instead ask the issuing service
to notify it of any state change, provided that the
application runs on an asynchronous platform. This
approach considerably reduces network traffic, as well
as the access latency of authorization checks. The
reduction is particularly significant when two Oasis
servers communicate—for example, when certificates
issued by one service depend on the validity of certifi-
cates issued by another.

Auxiliary credentials
Clients present RMCs on behalf of authenticated

principals, typically processes associated with logged-
in users. In many cases, the right to enter a role is long-
lived; for example, a student might attend a university
for several years. For this reason, Oasis also supports
auxiliary credentials, which, like traditional capabil-
ities, can persist across sessions. Oasis manages aux-
iliary credentials with two additional classes of
certificate, the auxiliary credential certificate (ACC)
and the revocation certificate. Role entry policy
expressed in RDL can require the presentation of an
ACC in addition to one or more RMCs. The ACC
may give details of the additional RMCs required and
the constraints on their parameters. An ACC can
therefore extend the role entry policy stored at the
Oasis issuing server.

A service can issue an ACC to a principal that pre-
sents appropriate credentials. For example, a student
taking an online examination must present a registered
student ACC. To obtain an ACC for the student, some
principal must enter the role registrar. The principal
can then apply for an ACC specific to the student’s reg-
istration number. The service issues the ACC and cre-
ates a credential record. In addition to the ACC, the
principal receives a revocation certificate, which con-
tains a CRR for the registered student ACC and the
role name registrar that created it. The principal now
hands over the ACC to the student. Subsequently, any
principal holding the role registrar can use this revo-
cation certificate to invalidate the ACC that it refer-
ences. In a recent paper, John H. Hine et al. describe the
use of auxiliary credentials in more detail.10

The format of RMCs
is quite general,
since they are

intended for use by
many interworking

services that require
different numbers

and types of
parameters.

DISTRIBUTED IMPLEMENTATION ISSUES
A fundamental characteristic of distributed systems

is that nodes and links can fail at any time.
Components of a distributed software system may fail
or become unreachable but continue to work, and we
cannot be certain which is the case.

Recall that Oasis servers cooperate dynamically to
prove that authentication conditions remain true. The
absence of a condition violation notification from one
Oasis server to another means either that the condition
is still true (all is well) or that a failure has occurred in
the relevant service or its connection. In that case, the
condition might have become false, but notification
cannot be sent or received. For this reason, we use a
heartbeat protocol between the Oasis servers involved.
In the absence of an expected heartbeat, each server
can specify its own policy. A server with high security
requirements might suspend the affected RMCs until
heartbeats resume.

Oasis uses service-to-service communication chan-
nels. For scalability, we can batch RMC validation
requests at times of high client activity. This is a stan-
dard trade-off between system bandwidth demands
and client-side latency. Another factor affecting the
number of interdependent services that Oasis can sup-
port is the problem of managing application com-
plexity. Interdependent services use one another’s
certificates, so their access control policies are inter-
dependent and must be coordinated. The structure of
certificates issued by service X does not concern ser-
vice Y—only the role and possibly the parameter val-
ues. Because the dictates of simple design and security
restrict the number of links for a given service, Oasis
can realize the advantages of batching validations for
large numbers of clients.

We determine the pulse rate of heartbeats on a ser-
vice-to-service basis. We use a fast heartbeat when
detecting failure quickly is important. Messages that
assert continuing life are necessary only when there is
no other communication between two services, and
we can avoid the overhead of maintaining a heartbeat
at times of high-bandwidth interaction.

Server failure can cause the loss of events waiting
in main memory for transmission. Heartbeats alert
the application to this possibility. If an application
requires reliable transmission, the system must store
events persistently so that it can recover them on
restart. ODL-based automatic stub generation facili-
tates event storage in addition to transmission.

W e continue our work on support for distributed
applications in several areas: event storage and
retrieval, composition, interoperability, and

automation of access control policy specification.
Within CEA, it is easy to arrange that events be

logged to an event store. The event store manager can

register interest with event sources as described
earlier and receive event notifications.11 We have
made transmitted and stored data types com-
patible by using CORBA IDL for transmitted
data and ODL for stored data.

Clients can query the event store to retrieve
events and event patterns. The problem of
defining queries has much in common with that
of defining composite events. Both involve
applying a filter defined by a pattern to a col-
lection of event occurrences. For example, a
client wishing to replay aspects of a specified
meeting asks, “Show me the whiteboard dur-
ing the time when we paused the (name) video.” We
are also working on ways to add visualization to event
replay. For example, in our laboratory, we have
replayed active badge events by showing avatars mov-
ing through a Virtual Reality Modeling Language rep-
resentation. We plan to use OQL for querying our
ODMG-based event store and a commercial, ODMG-
compliant database management system.

The practice of composing applications from
reusable components is increasing. Developers need
a mechanism that allows independently developed
components to interoperate. Components must make
their interface specifications available to clients, either
by publishing them in a name server or by allowing
clients to interrogate them. The ODMG object meta-
data interface allows a component to provide such
a service. Current standards adequately support
synchronous invocation, but applications such as
the active home, the active office, and virtual and
augmented reality will also require asynchronous noti-
fication. Event classification, publication, and notifi-
cation provide a plug-and-play mechanism for the
construction of distributed applications. John Bates
et al. describe initial work on this style of active pro-
gramming.12

Applications that function over a wide area will
require systems to interoperate. Researchers are devel-
oping special-purpose protocols to achieve cross-
domain and cross-platform interoperability. We see
object and event class hierarchies as central to achiev-
ing interoperability. We are using ODL to specify event
classes and generate the ODMG standard metaobject
representation, including class specialization. For
example, suppose we wish to track the movements of
someone worldwide. All domains must agree that there
is a class called locate. In some domains, this class spe-
cializes as login detection only; in others, it specializes
as active-badge-locate; in still another, it specializes as
iris recognition technology. We expect that registering
interest at a high level will be sufficient to register inter-
est at the specialized levels. Such a scheme would allow
dynamic integration of new technology without
wholesale recompilation of existing systems.

March 2000 75

Current standards
adequately support

synchronous
invocation, but some

applications will
also require

asynchronous
notification.

76 Computer

Nonexpert users of computer systems specify access
control policy in natural language, whereas Oasis uses
logical notation. It is vital that policy can evolve over
time in a controlled way. We are investigating ways to
express policy precisely and to check policies ex-
pressed at different services for consistency. We are
evaluating Oasis through a case study involving net-
worked electronic health records. ✸

Acknowledgments
We acknowledge the support of the UK Engineering

and Physical Science Research Council (EPSRC)
through grants GR/J42007 (interactive multimedia
presentation support) and GR/K77068 (active sys-
tems), the latter in collaboration with Nortel
Technology. Thanks also to ICL for supporting our
research. Thanks to past and present members of the
University of Cambridge Computer Laboratory Opera
Research Group and to John Hine for their contribu-
tions. We are in debt to the anonymous reviewers who
encouraged us to sharpen the discussion of several sys-
tems issues.

References
1. The Common Object Request Broker: Architecture and

Specification, Revision 2.0, Object Management Group,
http://www.omg.com, July 1995.

2. R.G.G. Cattell, The Object Data Standard ODMG 3.0,
Morgan Kaufmann, San Mateo, Calif., 2000.

3. D. Barry and T. Stanienda, “Solving the Java Object Stor-
age Problem,” Computer, Nov. 1998, pp. 33-40.

4. C. Ma and J. Bacon, “COBEA: A CORBA-Based Event
Architecture,” Proc. 4th Usenix Conf. Object-Oriented
Technologies and Systems (COOTS 98), Usenix, Berke-
ley, Calif., June 1998, pp. 117-131.

5. Notification Service, OMG TC Document Telecom/98-
06-15, Object Management Group, Framingham, Mass.,
June 1998.

6. R.E. Gruber, B. Krishnamurthy, and E. Panagos,
READY: A Notification Service for Atlas, tech. report,
AT&T Labs-Research, Florham Park, N.J., 1997.

7. K. O’Connell and V. Cahill, “System Support for Scal-
able Distributed Virtual Worlds,” Proc. ACM Symp. Vir-
tual Reality Software and Technology, ACM Press, New
York, 1996, pp. 141-142.

8. R. Hayton, J. Bacon, and K. Moody, “OASIS: Access
Control in an Open, Distributed Environment,” Proc.
IEEE Symp. Security and Privacy, IEEE CS Press, Los
Alamitos, Calif., 1998, pp. 3-14.

9. L. Gong, “A Secure, Identity-Based Capability System,”
Proc. IEEE Symp. Security and Privacy, IEEE CS Press,
Los Alamitos, Calif., 1989, pp. 56-63.

10. J.H. Hine et al., “An Architecture for Distributed OASIS
Services,” Proc. Middleware 2000, Lecture Notes in

Computer Science, Vol. 1795, Springer-Verlag, Heidel-
berg and New York, 2000, pp. 107-123.

11. M. Spiteri and J. Bates, “An Architecture to Support
Storage and Retrieval of Events,” Proc. Middleware
1998, IFIP Int’l Conf. Distributed Systems Platforms
and Open Distributed Processing, Int’l Federation for
Information Processing, Geneva, 1998, pp. 443-458.

12. J. Bates et al., “Integrating Real-World and Computer-
Supported Collaboration in the Presence of Mobility,”
Proc. IEEE Workshops on Emerging Technologies in
Collaborative Environments 1998, Workshop on Col-
laboration in the Presence of Mobility, IEEE Press, Pis-
cataway, N.J., 1998, pp. 256-261.

Jean Bacon is a reader in distributed systems at the
University of Cambridge Computer Laboratory. She
also leads the Opera Research Group with colleague
Ken Moody. Contact her at jmb@cl.cam.ac.uk. For
information about the Opera Group, see http://www.cl.
cam.ac.uk/Research/SRG/opera/.

Ken Moody is a lecturer in computer science at Cam-
bridge University and co-leader of Opera. Contact
him at km@cl.cam.ac.uk.

John Bates is a lecturer in the Laboratory for Com-
munications Engineering, University of Cambridge,
Department of Engineering. During the work
described in this article, he was a member of Opera.
Contact him at jb141@eng.cam.ac.uk.

Richard Hayton now works at Citrix Systems, Cam-
bridge. He was previously a member of Opera at the
University of Cambridge. Contact him at richard.
hayton@eu.citrix.com.

Chaoying Ma is a research associate in the Opera
Group at the University of Cambridge. Contact her
at cm@cl.cam.ac.uk.

Andrew McNeil is a PhD candidate in the University
of Cambridge Computer Laboratory and contributed
to the Opera work described here. Contact him at
aam1005@cl.cam.ac.uk.

Oliver Seidel is a PhD candidate in the University of
Cambridge Computer Laboratory and participated in
the Opera project described here. Contact him at
os10000@cl.cam.ac.uk.

Mark Spiteri now works in the Laboratory for Com-
munications Engineering, University of Cambridge,
Department of Engineering. He was formerly in the
Opera Group. Contact him at mds24@cam.ac.uk.

