
S E L F - A D A P T I V E S O F T W A R E

A Model-Based Approach to
Self-Adaptive Software

Gabor Karsai and Janos Sztipanovits, Institute for Software Integrated Systems, Vanderbilt University

IRONICALLY, THE TREMENDOUS
success of software-based solutions has grad-
ually made their fundamental lure—flexibil-
ity—less and less achievable. The rapid
increase in software system functionality,
particularly in real-time, embedded applica-
tions, has made software more and more
complex. This has complicated their design
process, increased expenses, and made appli-
cations more rigid. There is ample evidence
to suggest the downside of this trend. Soft-
ware systems have been suffocated by un-
managed complexity. Testing and retesting
of safety-critical systems are expensive. Ex-
cessive modification costs are a major imped-
iment to system upgrades.

The need to regain flexibility and adapt-
ability in complex software systems is clear,
and has become a fundamental challenge of
modern software engineering. Self-adaptive
software is a technology that brings back
flexibility and adaptability in information
systems. Embedded information systems in
particular show a clear need for self-adaptive
behavior. Such systems must be fault-toler-
ant, autonomous, and highly adaptive to react
to environmental changes while still provid-
ing acceptable performance. A common
challenge in embedded systems is the unpre-
dictable number and kind of environmental

events that fundamentally impact the soft-
ware architecture. In manipulator position
control, for example, the controller receives
the manipulator’s measured position and
speed, and calculates a control signal.1 If one
of the sensors breaks down, control can still
be maintained, but the controller architecture
must be changed. This change impacts the
signal flow and computational complexity,
which in turn requires changes in controller’s
software architecture.

Current software technology cannot meet
such challenges. The state of the art is to pre-
pare the software for all foreseeable opera-
tion-mode changes and verify the software
exhaustively. The simplest method to imple-
ment this limited adaptability in software is
to use alternative control paths and runtime

decisions. This solution quickly leads to an
unmanageable software structure that is dif-
ficult to design and impossible to debug.
Equally serious is the fact that preparing the
software for all possible circumstances leads
to overdesign, performance compromises,
and design errors. Adaptive systems provide
another solution: a feedback loop that mon-
itors system performance and changes the
structure accordingly.

Here we describe our model-based ap-
proach to building self-adaptive software sys-
tems. This work is part of our research in
Model-Integrated Computing (MIC) and struc-
turally adaptive signal processing2 and control
systems. In our model-based approach, do-
main-specific, multiple-view models3 repre-
sent the computer application, its environment,

THE AUTHORS’ MODEL-BASED APPROACH TO SELF

ADAPTIVE SOFTWARE SYSTEMS USES DOMAIN-SPECIFIC

MODELS AND COMPONENTS TO RESTORE FLEXIBILITY

AND ADAPTABILITY TO SOFTWARE SYSTEMS RUNNING IN

DYNAMIC ENVIRONMENTS.

46 1094-7167/99/$10.00 © 1999 IEEE IEEE INTELLIGENT SYSTEMS

and the relationship between them. We use
domain-specific components,called model
interpreters, to translate the abstract models
into the input languages of static- and dynam-
ic-analysis tools,and to synthesize and resyn-
thesize software applications running in a real-
time, dynamic, execution environment.

The model-integrated approach to self-
adaptive software decomposes the problem
into two major issues:the issues of repre-
sentation and that of the reconfiguration
mechanism. Representation deals with mod-
eling self-adaptive systems,including archi-
tectures and adaptation processes. The goal
is to find the appropriate abstraction level,
modeling constructs,and modeling para-
digms to create a manageable system design.
The reconfiguration mechanism maps the
models into executable systems and changes
the application’s dataflow and control struc-
ture in a safe, consistent manner.

Both the representation and reconfigura-
tion mechanism must be designed with eval-
uation in mind. That is, we must represent
how the system’s performance will be mon-
itored and evaluated, and how the evalua-
tion’s result will affect the system’s archi-
tecture. Also,the reconfiguration mechanism
should be capable of interacting with the
evaluator; it might be triggered by it and pos-
sibly reconfigure the evaluator.

The goal of our work is to facilitate a per-
formance → evaluation → architecture mod-
ification → modified performancecycle in
which the application’s performance is con-
tinuously monitored, with the results used to
modify the architectural model. The modifi-
cation is then followed by a partial or com-
plete regeneration of the executable system.
We have implemented and tested some
aspects of our approach in applications; other
aspects are part of our ongoing investigation
in various research projects.

Model-integrated computing

MIC is an approach for building com-
puter-based systems that extends models’
scope so that they serve as the backbone of
the system-development process in several
key ways.

• Integrated multiple-view modelscapture
relevant system information. These mod-
els can explicitly represent the designer’s
understanding of the entire system,in-
cluding its information-processing archi-

tecture, its physical architecture, and the
operating environment. Integrated mod-
eling lets designers explicitl y represent
dependencies and constraints among the
different modeling views.

• Analysis toolsevaluate different but inter-
dependent system characteristics,such as
performance,safety,and reliability. Model
interpreters translate the captured infor-
mation into the input languages of the
analysis tools. This translation is required
because the modeling paradigm used in
the models can be very different from the
one used in the analysis tools. The mod-
eling paradigm of a dataflow diagram,for
example, is very different from that of a
stochastic Petri net.

• Integrated models are used in an auto-

matic software synthesisprocess in which
model interpreters translate the models
into executable specifications.

There are several efforts related to our
work on MIC, including domain-specific
software architecture,4 application genera-
tors,object-oriented design techniques,and
hardware-software codesign.5All but the last
of these approaches are restricted to software
design; as in codesign,MIC addresses a
broader area of computer-based systems.

Model-integrated system development
poses several challenges for system design-
ers. Multiple-view modeling of inherently
heterogeneous systems cuts across several
disciplines that use different terminology and
even different problem structuring and
decomposition methods. Support for do-
main-specific modeling paradigms is thus
crucial to making modeling tools acceptable
to end users.

Analysis methods and tools often preserve
their discipline-specific modeling perspec-

tives and techniques. Thus,to apply them in
different domains designers must translate
between domain-specific modeling para-
digms and the analysis tool formalisms. The
software that designers must synthesize is
also often heterogeneous,comprising several
different software applications with unique
relationships to the domain models.

The primary challenge in building a
reusable tool infrastructure for MIC is thus
finding an architecture that separates generic
and domain-specific components and lets
designers introduce and disseminate MIC in
widely different problem domains at a low
cost.

Model-integrated program synthesis re-
quires domain-specific tools for

• building, testing, and storing models;
• transforming the models into executable

applications or extracting information for
system-engineering analysis tools; and

• integrating applications on heterogeneous
parallel and distributed computing plat-
forms.2,6

The expense of developing such tools makes
their application prohibitive in many system
applications. We thus followed an architec-
ture-based approach that separates generic
and domain-specific components and defines
interfaces for expandability.

Multigraph Architecture

Figure 1 shows our Multigraph Architec-
ture (MGA), which has three levels of
abstraction:application level, model-inte-
grated program-synthesis (MIPS) level,and
metalevel.

Application level. The application level rep-
resents the synthesized software. In many
application domains,we use an intermediate
level of abstraction,and we design the system
according to the Multigraph Computational
Model. The MCM is a macro dataflow model
that represents the synthesized programs as an
attributed, directed graph,2 where processing
components (“actor”nodes) are connected
through buffering components (“data” nodes).
The Multigraph Kernel (MGK) is a runtime
system that provides a unified system-
integration layer above heterogeneous com-
puting environments including open-system
platforms; high-performance, parallel, and
distributed computers; and signal processors.6

MAY/JUNE 1999 47

MIC IS AN APPROACH FOR

BUILDING COMPUTER-BASED

SYSTEMS THAT EXTENDS

MODELS’ SCOPE SO THAT THEY

SERVE AS THE BACKBONE OF

THE SYSTEM DEVELOPMENT

PROCESS IN SEVERAL KEY WAYS.

MGK schedules elementary computations:
carefully defined, reusable code components
that are part of application-specific runtime
libraries. We implement the MGK as an over-
lay above standard operating and communi-
cation systems.

Model-integrated program-synthesis level.
The MIPS level includes generic, customiz-
able, domain-specific tools for model build-
ing and analysis,and application synthesis.
The architecture has two generic components:
a customizable graphical model builder3 and
an object-oriented database for storing and

accessing models. We customized the current
GMB version using a declarative language3

that defines the modeling paradigm and
related graphical notations. MGA’s domain-
specific components consist of internal and
external analysis tools,and model interpreters
that synthesize applications (executable mod-
els) or translate models into the analysis tool’s
input data structures (analysis models). Inter-
nal tools are designed for specific MGA-
MIPS environments,and typically include a

model interpreter, analysis algorithms,and a
user interface. External tools perform static
or dynamic analyses based on domain-inde-
pendent abstract models.

As Figure 1 shows, the MIPS-level com-
ponents are modular and connected through
standard interfaces. We adopted various
industry standards for interfacing the model
database to the GMB and the model inter-
preters, which lets us use object-oriented
database packages as model databases. The

48 IEEE INTELLIGENT SYSTEMS

Model interpreter-A Model interpreter-B

MGK MGK

Model interpreter-II

Object-
definition
language

Metaprogramming interface

Motif/X11

GMB core

Electronic
data-

interface-
specific

Graphical model
builder

Metalevel
Paradigm-specific
Interpreter-specific

MIPS level
Domain-specific
Model building
Model verification
Analysis
Program synthesis
Tools

Application level
Maintaining
diagnostic
control, etc.

Metadata

Model
data

Object-oriented
database

Analyzer
and user
interface

Model interpreter-I

Multigraph architecture
tool

Computing platform Computing platform

Synthesized application

Application A Application B

External tool

External
standard
interface

CORBA ODMG-93 Comon-mode
interface

Figure 1. Abstraction levels in the Multigraph Architecture.

Model
database

Database access
Crea

te

builder o
bject

s

Builder-object
network

Multigraph
kernel

Macro-dataflow
processing network

Model interpreters
Create

execution
objects

Figure 2. Model interpretation in the MGA using a single interpreter.

Terms

FSM Finite-state machine

GMB Graphical model builder

MCM Multigraph computational model

MGA Multigraph architecture

MGK Multigraph kernel

MIC Model-integrated computing

MIPS Model-integrated program
synthesis

ODMG-93 Object data management group
standard

Common Model Interface (CMI) specifies
the object types in the modeling paradigm,
forming a unified Tool-Software-Bus. The
MGA gives the GMB and various analysis
and program-synthesis tools concurrent
access to the model database. This is required
in large-scale engineering problems,where
several engineering groups work concur-
rently on different system parts. From the
operational viewpoint,the MIPS-level archi-
tecture is designed as a distributed object sys-
tem, where the communicating “macro”
objects are GMB, the object-oriented data-
base, and the model interpreters. For inter-
tool communication, we use the COM and
CORBA standards.

The domain-specific instances of the gen-
eral MIPS environment architecture are inte-
grated tool suites supporting model building,
model analysis,and program synthesis. In
our experience, computer-based systems,
such as those used in aerospace or chemical
manufacturing systems,are often dominated
by some mature engineering discipline such
as aerospace or chemical engineering. Thus,
the modeling paradigms we use for repre-
senting the system’s structural and behav-
ioral aspects are nonnegotiable. The model-
ing tools must accommodate the domain;
otherwise they lose relevance and customers.

Domain-specific MIPS environments can
thus vary widely. Modeling paradigms consist
of concepts,relationships,model-composition
principles,and model-integrity constraints. A
modeling paradigm for fault detection,isola-
tion, and recovery in the International Space
Station Alpha (ISSA) is completely different
from one used in modeling chemical plants,
processes,and problem-solving activities.7

Similarly, the model interpreter used for syn-
thesizing real-time diagnostic systems is quite
different from the one for synthesizing an
embedded-process simulation.

MIPS environments differ not only among
different domains; they must evolve within
a given domain as well. For example, as the
ISSA program’s modeling effort progressed,
designers’ accumulated insight,and this in-
creased understanding triggered several
major modeling-paradigm revisions. The
environment and its models represent a sig-
nificant investment,so they must evolve as
these concepts change. Our challenge has
been to create a software infrastructure that
enables designers to both inexpensively build
and synthesize reliable, domain-specific
MIPS environments and to efficiently sup-
port their evolution.

Metalevel. The MGA metalevel consists of
representations and tools that formally describe
and generate domain-specific modeling para-
digms and model interpreters (generators).
This metaprogramming interface provides

• support for specifying domain-specific
modeling paradigms and model inter-
preters using a declarative language,

• metalevel translators to generate config-
uration files for the GMB and object-ori-
ented database from the modeling para-
digm specification, and

• tools for writing model interpreters.

The metaprogramming interface introduces
another level of abstraction in MGA. The cen-
tral concepts are metamodels (models of mod-
els) that specify modeling paradigms and

model interpreters. The metamodels define
the semantics of the domain-specific model-
ing language.3,8The metamodel of a domain
contains concepts,relations,model-composi-
tion principles,and domain-specific integrity
constraints. In the metalevel approach,appli-
cations are executable instances of domain
models,which in turn are instances of meta-
models.

Our current implementation of MGA has
a simple, preliminary version of the metapro-
gramming interface, which has several prob-
lems. First,we use a declarative language for
defining modeling paradigms. This language
is not rich enough to provide a rigorous,con-
cise specification for complex model seman-
tics. Second, the formalism is not supported
by tools to validate complex modeling para-
digms. Finally, there is no support for for-
mally specifying the semantics of the model
interpreters and execution environments.
Consequently, validating and verifying the
model interpreters and execution environ-
ments is nontrivial and requires in-depth

knowledge of the technology. We are actively
researching solutions to these problems.

Model-based program synthesis. In MGA,
the model interpreters synthesize programs.
Figure 2 shows the model-interpretation
process with a single interpreter. Complex
systems with multiple model interpreters
work similarly; they generate multiple, inte-
grated applications but use the same inte-
grated model set.

During application synthesis,the model
interpreter traverses the model database,
beginning at the root of the model hierarchy
and incrementally building the executable
system in the MGK environment using the
MGK’s builder API. The model interpreter
creates and connects the actor and data nodes
of the MGK processing network.6 Also, in
parallel with the executable system,the model
interpreter creates a “builder object network.”
The relationship between this network and
the models is determined by model compo-
sition principles,such as hierarchy or mod-
ule interconnectivity. For example, in mod-
eling paradigms that use a hierarchical
module-interconnection composition method,
there is one builder object for each compound
and primitive module in the model hierarchy.
The builder objects have three roles:

• store references to the appropriate
objects and levels in the model database;

• store references to all the components
of the MGK processing network (actor
and data nodes) that are relevant to the
given level of the hierarchy; and

• maintain connections to the processing
network for receiving events that can
trigger reconfiguration.

In most of our applications,the model data-
base, model interpreters,and builder object
network are in a single process and computing
node; the component applications are synthe-
sized in separate processes that can run on one
or more computing nodes. To maintain real-
time behavior,we decouple the execution and
modeling environments. The model inter-
preter accesses the model database through
the object-oriented database’s access mecha-
nisms,as defined by such standards as the
Object data management group standard,
ODMG ’93.9

After the synthesized application starts,it
runs under MGK control. The MGK sched-
ules the elementary computations according
to the graph topology and the control princi-

MAY/JUNE 1999 49

MIPS ENVIRONMENTS DIFFER

NOT ONLY AMONG DIFFERENT

DOMAINS; THEY MUST EVOLVE

WITHIN A GIVEN DOMAIN AS

WELL.

ple (IfAll or IfAny) of the elementary
nodes. That is,a processing node is executed
if data produced by upstream nodes is avail-
able for processing on any or all of its inputs.2

Some of the processing nodes are special,
real-time nodes that are synchronized to exe-
cute with external events,such as a software
signal or interrupt.

Representation issues

Representation in self-adaptive software
faces two primary challenges:

• separating the software’s time-variant and
time-invariant elements,and

• formalizing the time-variant component
representation.

The justification for decomposing self-
adaptive software into “time-variant” and
“time-invariant” components deserves some
consideration. Because software—self-adap-
tive or not—defines behaviors and trajecto-
ries in an infinite state-space, why not simply
use existing technology? The argument is
similar to that used in the theory of adaptive
dynamic systems. Adaptive dynamic systems
are time-variant, nonlinear systems. How-
ever, they are conceptualized as an adapted
system (time-variant component) and an
adaptation algorithm (time-invariant com-
ponent) to make their design manageable. To
our knowledge, this conceptual framework
is not widely applied in software engineer-
ing; we use it to formulate self-adaptive soft-
ware design,and gain similar theoretical and
practical advantages.

Selecting an adapted system’s time-vari-
ant characteristics is another fundamental
issue. The most frequently used method in
building adaptive signal-processing or con-
trol systems is to adapt selected parameters
of the adapted system’s dynamic models. The
goal in self-adaptive software is to change
system behavior through adapting the com-
position of a running system. Accordingly,
the representation in self-adaptive software
must formalize the description of the adapted
system’s time-variant composition and pro-
vide constructs for expressing the adaptation
process in terms of composition changes. It is
interesting to note that self-adaptive software
and adaptive dynamic systems are comple-
mentary aspects of adaptation. Thus,design-
ers can implement an adaptive dynamic
system using a nonadaptive software archi-

tecture and implement nonadaptive dynamics
using self-adaptive software.

Metalevel semantics. Research in dynamic
object technology represents one of the most
important directions in self-adaptive com-
puting. Dynamic object technology, by
extending object-oriented programming
with dynamic-linking and object-updating
capabilities,creates an excellent foundation
for self-adaptive software construction.
From a representation viewpoint, the key
concept applied toward achieving self-adapt-
able behavior is support for embedding
metalevel semantics in an application.
Metaobject protocols developed for object-
oriented languages,such as Common Lisp

Object System (CLOS),10 let the implemen-
tation adjust during program execution.
This,in turn, results in changing application
behavior over time without changing the
code.11 In this approach, the adapting soft-
ware component is the metaprogram,which
assigns a changing interpretation to the
application code. The metaprogram allows
the time-variant selection of time-invariant
application code, and is typically written in
the same language as the application. The
time invariant element is the application
code, which necessaril y limits the level of
adaptability, but greatly simplifies the design
and implementation of self-adaptive soft-
ware in interesting system categories.

The separation of metalevel semantics from
program-level code is also a key element in
achieving dynamic behavior. However, the
abstraction level and underlying mechanisms
are quite different. In the MIC architecture,
the metalevel semantics includes two main
components. The declarative components are
domain models of a domain-specific modeling
paradigm. For example, in the structurally
adaptive control-system design we describe,
domain models capture the controller’s struc-

ture as signal-flow models containing pro-
cessing blocks and signals. The model inter-
preters that map the domain models into exe-
cutable models assign execution semantics to
the domain models. The signal-flow models
can also configure a simulation tool,such as
Matlab, to validate the design. In heteroge-
neous applications,there are typically multi-
ple execution semantics assigned to the same
integrated model set.

Executing applications adapt through the
evaluation → domain-model change → rein-
terpretation (regeneration) → application
modification mechanism. Accordingly, in our
approach, the metalevel abstractions are
domain-specific. Unlike the metaobject pro-
tocols,we shift the invariant in our approach
from the application code to the model inter-
preters,which assign execution semantics to
the domain models. This shift has important
consequences in the category of embedded,
real-time applications,as we discuss below.

Reflection. Another fundamental represen-
tation concept and technique for self-adap-
tive systems is reflection.12Reflection,which
is closely related to metaobject protocols,10

is a form of self-representation, and thus is
central for self-adaptive systems in that it
allows a program to be self-aware and con-
trol its own behavior.

We support reflection using reflective
domain models. MIC tools give us flexibility
in designing the modeling paradigm,which
we can tailor according to the domain. This
also lets us use explicit architectural models
and use, for example, Architecture Descrip-
tion Language technology.4 Explicit archi-
tecture models available at runtime facilitate
the reflection. The reflective models can also
be implicit, which lets us shift the focus of
domain models from explicit application
modeling to modeling the information that
determines the application structure.

We designed flexible self-representation
into MIC for two reasons. First, finding the
right abstraction level to characterize a
dynamic artifact is a major difficulty in the
self-adaptive system design. In our experi-
ence, offering designers domain-specific rep-
resentations is helpful.2,6 Second, designers
must find the right abstraction level for
describing the dynamic application’s con-
straints. This is particularly important for
real-time embedded systems,where much of
the natural modeling context for represent-
ing constraints—such as structure, time, and
resource—is architectural.

50 IEEE INTELLIGENT SYSTEMS

MIC TOOLS GIVE US

FLEXIBILITY IN DESIGNING THE

MODELING PARADIGM, WHICH

WE CAN TAILOR ACCORDING TO

THE DOMAIN.

Runtime support

In MIC, the two key components of the
runtime support for self-adaptive computing
are reconfigurable execution environments
and embeddable generators.

Reconfigurable execution envir onments.
Achieving dynamic behavior through recon-
figurable execution environmentshas long
been an objective in software engineering and
is well-understood. Work in this area gener-
ally falls under two categories:dynamic object
languages and real-time data- and event-
driven applications. Well-known examples of
dynamic object languages include CLOS,10

Dylan (www.dylanpro.com/dylan-faq.html),
and, to a lesser degree ML13 and Haskell.14

In real-time, data- and event-driven appli-
cations (primarily signal processing and con-
trol systems),researchers seek computa-
tional-model support for reconfigurable data
flows and schedulers. One mature system
here is Chimera,15 in which dynamic behav-
ior is achieved by introducing a novel,recon-
figurable computational model.

Our reconfigurable execution environment
belongs to this second category. The under-
lying computational model is a macro-
dataflow model that has capabilities similar
to those in Chimera. We have ported the lat-
est version of the underlying runtime-system,

the Multigraph Kernel,2 to parallel architec-
tures and evaluated it for reconfiguration
overhead.

In an MGK-based application,the user can
trigger resynthesis after changing the model;
the application can trigger it after detecting
a significant event that requires changes to
the executing system’s structure. User-initi -
ated changes are typically the result of incre-
mental changes in the models,and therefore
correspond to evolutionary system behavior.
The changes triggered by events in the exe-
cution system are typically fast reactions to
detected changes in the environment,such as
sensor failure. We categorize this behavior
as structural adaptation.2

During application resynthesis,the model
interpretation restarts at a level of the model
hierarchy identified by a builder object. The
interpreter uses the builder interface and the
builder object network to construct a new
version of the processing network without
suspending the rest of the application. The
interpreter uses an MGK control protocol6 to
switch from the old processing network to
the new computational structure.

The programming language for imple-
menting the elementary computation mod-
ules—the runtime library for the execution
environment—affects the system’s reconfig-
uration capabilities. With static languages
such as C and C++,the MGK and all relevant
low-level computation primitives are linked
together to form an MGK-C or MGK-C++
process. Through the builder interface, the
model interpreters use prelinked primitives to
modify data structures and the graph topol-
ogy, but cannot dynamically add computa-
tional primitives. In dynamic languages that
support late binding and dynamic linking and
loading, designers could create MGK pro-
cesses that upgrade low-level primitives as
well. In earlier MGA implementations,we
provided this capability in LISP environments.
One of our goals is to create and evaluate
MGK environment performance using a mod-
ern dynamic language, such as Java or Dylan.

Embeddable generators.Software genera-
tors,such as Multi-GEN, JTS, and our MGA
generators, provide synthesis capabilities.
However, the requirements of real-time, self-
adaptive applications demand a different
approach. Because traditional software gener-
ators are used at compile time (usually before
the actual compilation), they are rarely con-
cerned with their own performance. In a self-
adaptive system,reconfiguration uses runtime

MAY/JUNE 1999 51

X_d

f

X_m
dX_m

dX_d

ddX_d

Controller

X_d
dX_d
ddX_d
f
X_m
dX_m

Desired position
Desired velocity
Desired acceleration
Control signal
Measured position
Measured velocity

Partitioned
servo

control
Manipulator

X_d

f

X_m

dX_d

ddX_d

Controller

Proportional-
Intergrative-
Language

Manipulator

Figure 3: The two alternatives for a reconfigurable control system. The top architecture is used when both the position
and velocity sensors are working; the bottom is used if the velocity sensor fails.

X_d C1 data flow
C2 data flow

X_m

dX_d

ddX_d
C1-1 C1-2

f

dX_m

dX_m
fails

dX_m
OK

C2

C1

C2

Evaluator

Figure 4: Reconfigurable controller architecture. The finite state machine is in the C1 state. If the evaluator (EVAL)
detects a problem with the dX_m signal, it triggers a state transition and switches to the C2 state.

resources,and therefore affects the system’s
timing characteristics. Thus,generators used
in this context must satisfy stringent constraints
on resource usage, including processor cycles.

A reconfigurable controller
architecture

Reliable position control of mechanical
devices such as robot manipulators and air-
craft control surfaces is an important appli-
cation problem.1 Such control is achieved by
a controller structure that receives inputs from
position and velocity sensors,and calculates
actuator control signals (determining, for
example, the torques to be applied). In high-
reliability systems,control must be main-
tained even in the face of sensor failures.

Using control theory, we can show that if
the velocity sensor breaks down, for exam-
ple, the system can still be controlled, albeit
with degraded performance. However, to
accomplish this,the controller architecture
has to change:a different structure is needed
for the single-sensor case. Figure 3 shows a
control-system architecture without the con-
troller details. The top part of the figure
shows the architecture used when both the
position and velocity sensors are working.
The lower architecture is used when only the
position sensor is working. If the controller
is implemented in software as a set of algo-
rithmic blocks or communicating objects,
switching from the upper to the lower archi-
tecture requires controller reconfiguration.
(To replace the velocity signal with a con-
stant value will lead to incorrect control sig-
nals,and thus failure.)

Sample architecture. Figure 4 shows an
example of a reconfigurable controller archi-
tecture using a popular domain-specific
visual notation—the signal-flow diagram.
The upper part of the figure shows the con-
trol-architecture variant,which uses the posi-
tion and velocity-sensor signals to calculate
the control signal. This alternative is based
on two objects:C1-1 and C1-2. The lower
part shows a controller alternative that uses
only the C2 block, which uses only the posi-
tion signal. The evaluator component
(EVAL) detects problems with the velocity
sensor. The evaluator output triggers the
reconfiguration process. Reconfiguration is
represented by a finite-state machine (FSM),
which has a state for each possible configu-
ration. Each state has an associated set of

controller objects. Transitions among states
are controlled by the evaluator output.

Initially, the FSM is in the C1 state. In this
state, the controller uses the C1-1 and C1-2
blocks. If the evaluator detects a problem
with the dX_m signal,it triggers a state tran-
sition,which triggers a switch to the C2 state.
When this happens,the controller configu-
ration will contain the C2 block. When the
velocity sensor resumes operation,the archi-
tecture switches back to the original C1 con-
figuration. The controller blocks are the
architecture’s time-variant portion; the eval-
uator and FSM are time-invariant.

This example contains the architecture’s
time-variant elements (the controller blocks)
and the time-invariant components (the eval-

uator and FSM). It thus represents a recon-
figurable software architecture by showing
all the alternatives,explicitl y modeling an
evaluator component that triggers reconfig-
uration, and capturing the architecture’s
dynamic aspect in the FSM by associating an
alternative with each state.

Implementation. We implement the recon-
figurable architecture in several steps. First,
assuming the models are built using a model-
ing environment,model interpreters must gen-
erate the runtime system containing the eval-
uator and the FSM. The FSM’s initial state
specifies which architectural variant to create
first. Thus,the FSM must execute an initial
transition to create the C1-1/C1-2 variant.

Next, the system starts and provides con-
trol signals. At each activation, the evaluator
is triggered to check the velocity sensor’s sta-
tus. If a discrepancy is detected, the evalua-
tor triggers a transition on the FSM object,
which leads to a new configuration. The

switch between configurations deactivates
and removes the old architecture and creates
and activates a new one. Because this process
is also model-based, it triggers the model
interpreter to restart and interpret the new
architecture’s model and build runtime
objects for it; it then connects those objects
into the system data flows and resumes pro-
gram execution. This reconfiguration process
dynamically synthesizes a running system
from predefined components.

Obviously, our sample architecture can be
implemented by building all the architectural
variants and using a simple “if-then-else”
switch. However, in large systems this is not
a suitable solution for two reasons:there might
not be enough resources to pregenerate all
alternatives,and the alternatives that are gen-
erated might result from a complex decision-
making process with a multilevel hierarchy.
In such cases,the approach offered in Figure
4 is a more general and powerful solution.

Outstanding challenge. Our scheme pre-
sents one difficult problem:When one con-
troller is taken out and a new controller is
switched in,the system generates a huge
transient. The problem is caused by the state-
space discontinuities introduced by the
switching action. These transients are unde-
sired side effects of any abrupt architectural
change. However, there are ways to mitigate
these effects. Initial research2,16 shows that
if enough information is available, designers
can prepare a reconfiguration strategy to
smooth the transition. One such approach
uses a tapered switch that gradually moves
the control signal from one controller to the
other. The reconfiguration thus occurs over
a number of steps,greatly reducing the tran-
sient effect.

Research issues

There are many interesting research issues
in reconfigurable software architectures. Some
of these are domain-specific, such as the issue
of transients; others are related to technology
required to support the overall approach.

For example, our reconfigurable controller
architecture has distinct variants related to par-
ticular situations. This corresponds to an “if-
then-else”structure (or “switch-case”for mul-
tiple variants). There also might be a need for
architectures in which the configuration is
described using a repetitive pattern, possibly
with dynamically changing components as a

52 IEEE INTELLIGENT SYSTEMS

MODEL INTERPRETATION

STRATEGIES ARE NEEDED THAT

LEAD TO SMALL-FOOTPRINT,
EMBEDDABLE MODEL INTER-

PRETERS THAT OPERATE ON

THE TRANSLATED MODELS AND

IMPLEMENT RECONFIGURATION

STRATEGIES.

function of the evaluation. For example, if the
evaluator determines the number of consecu-
tive filtering operations on a data stream,the
reconfiguration might consist of evaluating a
script that describes how to wire the compo-
nents together, and thus how to generate the
architecture. This approach,called generative
modeling, requires the use of algorithms to
describe architectures. These algorithms can
be executed at runtime to generate a new
architecture. Research issues here include for-
malisms and implementing interpreters that
can perform algorithmic generation.

Another issue is related to the actual recon-
figuration execution. In the approach we
describe here, the model interpreters retrieve
models from the model database and create
the new architecture. For efficiency reasons,
and for configurations such as embedded sys-
tems,we must compile the models into a con-
cise form to fit a small system. Thus,the mod-
els are transformed into embedded models
that contain all the information needed at run-
time without the overhead required by a
sophisticated database. Research issues here
include how to compile the models,what is
needed at runtime, and how to minimize the
embedded models’footprint.

A related issue concerns model interpreters.
Certain applications requiring reconfigurable
architectures cannot tolerate the resource
requirements of large-grain model interpreta-
tion. Model-interpretation strategies are
needed that lead to small-footprint, embedda-
ble model interpreters that operate on the trans-
lated models and implement reconfiguration
strategies. These interpreters should also
smoothly integrate with runtime-system com-
ponents and provide all required functionality.

THE TECHNOLOGY OF SELF-ADAP-
tivesystems is new. Here, we identified some
of its key ingredients,including the need to
separate and explicitly represent time-vari-
ant and time-invariant aspects,embedded
models and model interpreters, evaluator
components,and so on. Self-adaptation also
requires embedding a program that can spec-
ify the structures to be generated during
reconfiguration. This program must be exe-
cuted at runtime and the changes applied in
the running system. These requirements raise

issues related to those in adaptive-control-
systems theory, such as adaptation time con-
stants and overall system stability.

Software that can change its architecture at
runtime offers new opportunities. Although
it can increase system complexity, dynamic
architectures can also create reliable, perfor-
mance-conscious,and, eventually, more
usable systems.

Acknowledgment
This work is supported by the US Defense

Advanced Research Projects Agency/ITO EDCS
program (F30602-96-2-0227),the US Air Force
Arnold Engineering Development Center, the Boe-
ing Company, and Saturn Corporation.

References
1. J. Craig, Introduction to Robotics:Mechan-

ics and Control, Addison Wesley Longman,
Reading, Mass.,1986.

2. J. Sztipanovits, “The Multigraph and Struc-
tural Adaptivity,” IEEE Trans. Signal Pro-
cessing, Vol. 41,No. 8,1993,pp. 2695–2716.

3. G. Karsai,“A Visual Programming Environ-
ment for Domain Specific Model-Based Pro-
gramming,” Computer, Vol. 28,No. 3,Mar.
1995,pp. 36–44.

4. L. Bass et al.,Software Architecture in Prac-
tice, Addison Wesley Longman,1997.

5. J. Rozenblit and K. Buchenrieder, Codesign,
IEEE Computer Society Press,Los Alamitos,
Calif., 1995.

6. B. Abbott et al.,“Model-Based Approach for
Software Synthesis,” IEEE Software, Vol. 10,
No. 3,May 1993,pp. 42–53.

7. J. Sztipanovits et al.,“Multig raph:An Archi-
tecture for Model-Integrated Computing,”
Proc. Int’l Conf. Eng. Complex Computer
Systems, IEEE CS Press,1995,pp. 361–368.

8. G. Nordstron,Metamodeling—Rapid Design
and Evolution of Domain-Specific Modeling
Environments,PhD dissertation, Vanderbilt
Univ. Nashville, Tenn.,1999.

9. R. Cattell, ed., The Object Database Stan-
dard: ODMG 2.0,Morgan-Kaufmann,San
Francisco,1997.

10. G. Kiczales and J. des Rivieres,The Art of the
Meta-Object Protocol, MIT Press, Cam-
bridge, Mass.,1993.

11. P. Robertson,“On Reflection and Refraction,”
Proc. 1992 Int’l Workshop on New Models for
Software Architecture,ACM Press,New York,
1992.

12. R. Laddaga and J. Veitch, “Dynamic Object
Technology,” Comm. ACM, Vol. 40,No. 5,
1997,pp. 37–38.

13. L. Paulson,ML for the Working Programmer,
Cambridge Univ. Press,Cambridge, UK,
1996.

14. S. Thompson,Haskell: The Craft of Func-
tional Programming, Addison Wesley Long-
man,1996.

15. P. Oreizy, Issues in the Runtime Modification
of Software Architectures, Tech. Report UCI-
ICS-96-35,Dept. of Information and Com-
puter Science, Univ. of California, Irvine,
1996.

16. W. Blokland and J. Sztipanovits, “Knowl-
edge-Based Approach to Reconfigurable
Control Systems,” Proc. 1988 American Con-
trol Conf., IEEE Press,Piscataway, N.J.,
1998,pp. 1623–1628.

Gabor Kar sai is associate professor of electrical
and computer engineering at Vanderbilt Univer-
sity. His research interests are in model-integrated
computing, integrated techniques for software and
systems engineering, and automatic synthesis of
embedded software systems. He received his BSc
and MSc from the Technical University of
Budapest,Hungary, and his PhD from Vanderbilt
University, all in electrical engineering. He is a
member of the IEEE Computer Society. Contact
him at the Inst. for Software-Integrated Systems,
Vanderbilt Univ.,1500 21st Ave. South,Nashville,
TN 37212; gabor@mailhost.vuse.vanderbilt.edu.

Janos Sztipanovits is a professor of electrical and
computer engineering at Vanderbilt University,
where he is director of the Institute for Software
Integrated Systems. He has more than 25 years’
experience in the design and design technology of
embedded information systems. His research inter-
est are model-integrated computing methods,par-
allel and distributed computing, automatic soft-
ware synthesis,structurally adaptive systems,
real-time diagnostics,and the use of formal meth-
ods in modeling. He is senior member of the IEEE,
chair of the IEEE R&A Society’s IIMS technical
committee, and chair of the IEEE Computer Soci-
ety’s ECBS TC’s Tools Working Group.

MAY/JUNE 1999 53

