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RONICALLY, THE TREMENDOUS THE AUTHORS’ MODEL-BASED APPROACH TO SELF
success of software-based solutions has grad-

ually made their fundamental lure—flexibil- ADAPTIVE SOFTWARE SYSTEMS USES DOMAIN=-SPECIFIC

lty—less and less achievable. The rapid MODELS AND COMPONENTS TO RESTORE FLEXIBILITY
increase in software system functionality,
particularly in real-time, embedded applica- AND ADAPTABILITY TO SOFTWARE SYSTEMS RUNNING IN

tions, has made software more and more
complex. This has complicated their design
process, increased expenses, and made appli-
cations more rigid. There is ample evidence
to suggest the downside of this trend. Soft-
ware systems have been suffocated by un-
managed complexity. Testing and retestingvents that fundamentally impact the sdftdecisions. This solution quickly leads to a
of safety-critical systems are expensive. Exware architecture. In manipulator positionunmanageable software structure that is di
cessive modification costs are a major impedzontrol, for example, the controller receivedicult to design and impossible to debug.
iment to system upgrades. the manipulator's measured position andequally serious is the fact that preparing th
The need to regain flexibility and adapt-speed, and calculates a control sigriibne | software for all possible circumstances leads
ability in complex software systems is clearpf the sensors breaks down, control can stitb overdesign, performance compromise
and has become a fundamental challenge b& maintained, but the controller architecturand design errors. Adaptive systems provide
modern software engineering. Self-adaptjvenust be changed. This change impacts ttenother solution: a feedback loop that mon-
software is a technology that brings baclsignal flow and computational complexity,itors system performance and changes the
flexibility and adaptability in information which in turn requires changes in controllef’'structure accordingly.
systems. Embedded information systems isoftware architecture. Here we describe our model-based ap-
particular show a clear need for self-adaptive Current software technology cannot megproach to building self-adaptive software sys-
behavior. Such systems must be fault-toleisuch challenges. The state of the artis to preems. This work is part of our research i
ant, autonomous, and highly adaptive to reagtare the software for all foreseeable operaviodel-Integrated Computing (MIC) and struc+
to environmental changes while still provid-tion-mode changes and verify the softwaréurally adaptive signal processfrand control
ing acceptable performance. A commorexhaustively. The simplest method to implesystems. In our model-based approach, dp
challenge in embedded systems is the unprasent this limited adaptability in software ismain-specific, multiple-view modélsepre-
dictable number and kind of environmentato use alternative control paths and runtimeent the computer application, its environment,

DYNAMIC ENVIRONMENTS.
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and the elaionship betveen themWe use
domain-speci€ componentscalled model
interpretess, to translde the astract models
into the input languges of stéic- and gnam
ic-anaysis toolsand to synthes&zand esyn
thesiz softvare gplicaions unning in aeal-
time, dynamig execution emironment.

The model-intgrated gproad to self-
adaptive software decomposes thegiiem
into two major issuesthe issues ofepre-
sentdion and tha of the reconfguration
medanismRepresentéion deals with mod
eling self-adative systemsdncluding axchi-
tectues and adaaion processesThe gal
is to find the @propriate éstraction level,
modeling consticts,and modeling pa

digms to cede a mangeale system design.

The reconfguration medanism mas the
models into gecutdle systems andhanges
the gplicaion’s ddaaflow and contol struc-

ture in a sad, consistent manner

Both the epresenttion and econfgura-
tion medanism nust be designed witwal-
uation in mind. Tha is, we must represent
how the systens perbrmance will be mon
itored and ealuaed, and hov the evalua
tion’s result will afect the systers’acchi-
tectue. Also, the leconfguration mehanism
should be cpable of intemacting with the
evaluaor; it might be tiggered ty it and pos
sibly reconfgure the galuéor.

The gral of our vork is to facilitate aper-
formance- evaluation — architectue mod
ification — modifed perbrmancecycle in
which the gplication’s perbrmance is con
tinuousy monitored, with the lesults used tg
modify the achitectual model The modif-
cation is then dllowed ty a patial or com
plete egenestion of the &ecutdle system.
We hae implemented and tested son
aspects of ourgproad in gplicaions; other
aspects a& pat of our onging investiggtion
in various leseach projects.

Model-integrated computing

MIC is an gproad for huilding com
puterbased systems thaxtends models’
scope so thahey sewve as the badone of
the system-deelopment pocess in seeral

key ways.

» Integrated nultiple-vien modelscgpture
relevant system irdrmation. These mod
els can eplicitly represent the designer’
undestanding of the entr systemin-
cluding its inormaion-processing ahi-

tectue, its physical achitectue, and the
opewting ervironment. Intgrated mod
eling lets designaerexplicitly represent
dependencies and conaitnts among the
different modeling viess.

* Analysis toolsvaluge different tut inter
dependent systenhaacteistics,sud as
performancesakty, and eliability. Model
interpretess translde the catured infor-
mation into the input languges of the
anaysis toolsThis transldion is required
because the modeling paiigm used in
the models can beaw different fom the
one used in the analis toolsThe mod
eling pamdigm of a d&flow diagram,for
example is very different fom tha of a
stohastic Rtii net.

* Integrated models & used in amuto

MIC 1s AN APPROACH FOR
BUILDING COMPUTER-BASED
SYSTEMS THAT EXTENDS
MODELS’ SCOPE SO THAT THEY
SERVE AS THE BACKBONE OF
THE SYSTEM DEVELOPMENT
PROCESS IN SEVERAL KEY WAYS.

maic software synthesiprocess in wich
model intepreters translde the models
into executdle specifcations.

There ae seeral eforts related to our
nevork on MIC, including domain-spedcié
software achitectue,* applicaion genee-
tors, object-orented design témiquesand
hardware-software codesigrt All but the last
of these pproades ae resticted to softvare
design; as in codesigMIC addresses a
broader aga of computebased systems.

Model-integrated system deslopment
poses seeral challenges br system design
ers. Multiple-viev modeling of inhegntly
hetepgeneous systems cuts ass seeral
disciplines thause diferent teminology and
even diferent poblem stuctuing and
decomposition methods. Suppdor do
main-speciit modeling paadigms is thusg
crucial to making modeling tools agueble
to end uses.

Analysis methods and tools ofterepeve
their discipline-specit modeling pespec

tives and teaniquesThus,to gply them in
different domains designeirust tanslde

between domain-spec¢d modeling paa-

digms and the angdis tool brmalismsThe

software thd designes must synthesiz is
also often hetegeneousgcompising seeral

different software gplicaions with unique
reldionships to the domain models.

The pimary challeng in huilding a
reusdle tool infrastucture for MIC is thus
finding an achitectue tha searates gneic
and domain-spedif components and lets
designes intoduce and dissemiteaMIC in
widely different poblem domains aa low
cost.

Model-intggrated piogram synthesiser
quires domain-sped tools or

 building, testing and stoing models;

¢ transbrming the models intoxecutdle

applicaions or etracting inbrmation for

system-engpeeing anaysis tools; and

integrating goplications on hetexgeneous
pamllel and distibuted computing pla

forms26

The expense of deeloping sub tools maks
their goplicaion prohibitive in mary system
applications.We thus 6llowed an achitec

ture-based pproac tha separtes gneic

and domain-spedif components and deés
interfaces 6r expanddility.

Multigraph Architecture

Figure 1 shavs our Multigaph Architec
ture (MGA), which has thee levels of
abstraction:application level, model-inte
grated pogram-synthesis (MIPS)Vel, and
metaleel.

Application level. The goplicaion level rep-
resents the synthesid softvare. In mary
applicaion domainswe use an intenedide
level of ébstraction,and we design the system
accoding to the Multigaph Computtonal
Model. The MCM is a maa daaflow model
that represents the synthesid pograms as an
attributed directed gaph?2 where piocessing
components (“actorhodes) a& connected
through luffering components (“da” nodes).
The Multigraph Kemel (MGK) is a untime
system tha provides a unied system-
integration layer ébove heteogeneous com
puting erironments intuding open-system
platforms; high-perdrmance parmallel, and
distiibuted computey; and signal prcessas8
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Figure 1. Abstraction levels in the Multigraph Architecture.
Terms Model
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standad execution
; Macro-dataflow
objects .
processing network

MGK schedulesslementay computéions
carefully defned reus#le code components
that are pat of goplicaion-specifc runtime
libraiies.We implement the MGK as aner-
lay above standat opegting and commani-
cation systems.

Model-integrated program-synthesis lgel.
The MIPS leel indudes gneic, customiz
able, domain-specit tools for model lild-
ing and analsis,and gplicaion synthesis.
The achitectue has tw geneic components:
a customizble graphical model bilder® and
an object-aoented d#abase 6r stoing and

Figure 2. Model interpretation in the MGA using a single interpreter.

accessing modeld/e customied the cuent
GMB version using a déarative languge®
that deines the modeling padigm and
relaed gaphical notéions. MGAs domain-
specifc components consist of inteal and
extemal anaysis toolsand model intgaretes
tha synthesie gplicaions (xecutdle mod
els) or tanslae models into the anis tools
input dda stuctures (analsis models). Inter
nal tools ae designeddr specifc MGA-
MIPS ewironmentsand typicaly include a

model intepreter anaysis algrithms,and a
user interbce Extenal tools perdrm stdic
or dynamic anatses based on domain-inde
pendent bstract models.

As Fgure 1 shavs,the MIPS-leel com
ponents a& modular and connected dligh
standad interfaces.We adopted arious
industy standads for interfacing the model
database to the GMB and the model inter
pretess, which lets us use objectiented
daabase pakages as model dabasesThe
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Common Model Intedce (CMI) speciés
the object types in the modeling pdigm,
forming a unifed Tool-Software-Bus.The
MGA gives the GMB andafious anafsis
and pogram-synthesis tools conagent
access to the modeltdbaseThis is equired
in large-scale engeeing problems,where
several endgneeling groups wrk concur

rently on different system pas. Fom the
opemtional vievpoint,the MIPS-leel archi-

tectue is designed as a dibtited object sys
tem, where the commnicaing “macro”

objects a8 GMB, the object-oiented dée-

base and the model intereters. For inter

tool comnunicaion, we use the COM and
CORBA standads.

The domain-spedif instances of theegr
eral MIPS enironment athitectue ae inte
grated tool suites suppiimg model loilding,
model analsis,and pogram synthesis. |
our pelience computerbased system:
such as those used in @aspace orteemical
marufactuing systemsare often dominted
by some mture engneeing discipline sulb
as aeospace orleemical enteeing. Thus,
the modeling paadigms ve use 6r repre-
senting the system’stuctural and beha
ioral aspects arnonngotiable. The model
ing tools nust accommoda the domain
otherwise thglose elevance and custone!

Domain-specit MIPS ewironments cal
thus \ary widely. Modeling paadigms consis
of concepts, relaionshipsmodel-compositior
principles,and model-intgrity constaints.A
modeling paadigm br fault detectionisola
tion, and ecovery in the Intendional Space
Staion Alpha (ISSA) is completgldifferent
from one used in modelindnemical plants,
processesand poblem-solving actiities.”
Similarly, the model intgureter useddr syn
thesizing eatime diggnostic systems is quit
different fom the onedr synthesizing an
embeded-pocess simlation.

MIPS ewironments differ not ony among
different domains; themust e/olve within
a gven domain as ®ll. For example as the
ISSA piogram’s modeling €brt progressed
designes’ accunulated insightand this in
creased undstanding tiggered seeral
major modeling-padigm evisions. The
ervironment and its modelspresent a sig
nificant investmentso thg must eolve as
these congets dhange. Our dallenge has
been to cede a softvare infrastucture tha
endles designerto both ingpensvely build
and synthesi reliable, domain-specit
MIPS ewironments and to Biently sup
port their evolution.

Metalevel. The MGA metalgel consists of
representtions and tools thdormally descibe
and geneete domain-spedif modeling paa
digms and model intpretes (genegtors).
This metgrogramming interfice povides

* suppot for specifying domairspecifc
modeling paadigms and model inter
pretes using a ddarative languae,
metalevel transldors to ggeneete confg-
uration files for the GMB and object-or
ented debase fom the modeling pa¥
digm specifcation, and

 tools for writing model intepreters.

The metarogramming interfice intoduces
another lgel of bstiaction in MGA.The cen
tral concgts ae metamodels (models of mo
els) tha specify modeling padigms and

MIPS ENVIRONMENTS DIFFER
NOT ONLY AMONG DIFFERENT
DOMAINS; THEY MUST EVOLVE
WITHIN A GIVEN DOMAIN AS
WELL.

model intepretess. The metamodels diele
the semantics of the domain-spiecihodet
ing languge.®8 The metamodel of a domai
contains congas,reldions,model-composi
tion principles,and domain-speaif integrity
constaints. In the metalel gpproad, appli-
cations ae eecutdle instances of domai
modelswhich in tum ae instances of meta
models.

Our curent implementigon of MGA has
a simplepreliminaly version of the metaro-
gramming interice which has seeral prob-
lems. Rrst,we use a ddarative languge for
defining modeling padigmsThis languge
is not ich enough to mvide a igorous,cort
cise specitation for complex model seman
tics. Secongthe formalism is not suppted
by tools to alidate compl& modeling paa-
digms. Rnally, there is no supparfor for-
mally specifying the semantics of the mod
intempretels and gecution emironments.
Consequenyl, validating and \erifying the
model intepretess and &ecution emiron-
ments is nontwvial and equires in-deth

d

>

N

eDDMG '93°

knowledge of the tehinolagy. We ae actiely
reseaching solutions to these @iems.

Model-based piogram synthesisin MGA,
the model inteoreters synthesie programs.
Figure 2 shavs the model-intgiretdion
process with a single intereter Comple
systems with mltiple model intepreteis
work similady; they geneete nultiple, inte-
grated gplicaions hut use the same inte
grated model set.

During goplicaion synthesisthe model
interpreter taverses the model dabase
beginning & the oot of the model hiarchy
and incementaly building the &ecutdle
system in the MGK erironment using the
MGK’s huilder API. The model intgoreter
credes and connects the actor anthdedes
of the MGK pocessing netark.® Also, in
pasllel with the eecutdle systemthe model
interpreter cedaes dbuilder object netwrk.”
The elaionship betveen this netark and
the models is detatined ty model compe
sition piinciples,sud as hiearchy or mod
ule inteconnectvity. For example in mod
eling pamdigms tha use a hiarchical
module-inteconnection composition method
there is one bilder object ér eaty compound
and pimitive module in the model higrchy.
The huilder objects hee thiee oles:

» stor references to the ppropriate
objects and leels in the model dabase;
store references to all the components
of the MGK piocessing netark (actor
and d&a nodes) thzare relevant to the
given level of the hiearchy; and
maintain connections to theqmessing
network for receving events thacan
trigger reconfguration.

In most of our pplicdions,the model dia
base model intepretess, and luilder object
network are in a single mrcess and computing
node; the componenppglicaions ae synthe
sized in sparate piocesses thhi@an un on one
or moe computing node3o maintain eal-
time behaior, we decouple thexecution and
modeling emironments.The model inter
preter accesses the modetati@se though
the object-aented déabases access méer
nisms,as deined by sud standads as the
Object dé&a mangement goup standat,

After the synthesizd gplicaion stats, it
runs under MGK conti. The MGK shed
ules the elementaicomputéions accoding
to the gaph topolay and the contl princi-
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ple (TfAll or IfAny) of the elementar
nodesTha is,a piocessing node iecuted
if data pioduced iy upsteam nodes isvail-

able for processing on aror all of its inputs:

Some of the prcessing nodes aispecial,
real-time nodes thare syntironized to ee-

cute with etemal events,suc as a softare

signal or interupt.

Representation issues

Representtion in self-adative software
faces tw primary challenges:
e sepamting the softvare’s time-ariant and
time-invariant elementsand
formalizing the time-gaiiant componen
representsion.

The justifcation for decomposing seli
adative software into“time-varant” and
“time-invariant” components desass some
consideation. Because softare—self-ada-
tive or not—dehes behaiors and tajecto
ries in an inihite stde-spacewhy not simpy
use aisting tedinology? The agument is
similar to tha used in the thegrof adative
dynamic system#daptive d/namic system:
are time-\afiant, nonlinear systems. Ko
ever, they are concetualized as an agieed
system (time-griant component) and al
adatation algorithm (time-invariant com
ponent) to magtheir design magaale. To
our knavledgg, this concetual framevork
is not widey applied in softvare engneer
ing; we use it todrmulate self-adptive soft
ware designand @in similar thecetical and
practical adiantages.

Selecting an agded systens time-\ari-

ant dhamcterstics is another fundamental applicaion code and is typicaly written in

issue The most fequenty used method in
building adative signal-pocessing or con
trol systems is to agé selected pametes
of the adated systens dynamic modelsThe
goal in self-adptive software is to hange
system behaor through adpting the com
position of a unning systemAccordingly,

the epresenttion in self-adative software
must formalize the desd@ption of the adpted
systems$ time-ariant composition and pr

vide constucts Dr expressing the agdation

process in tens of compositionttanges. Itis
interesting to note thaelf-adptive software
and adptive dynamic systems arcomple
mentay aspects of agiation. Thus,design

ers can implement an aptve dynamic

tectue and implement nonapléve d/namics
using self-adative softvare.

Metalevel semanticsReseath in dynamic
object tebinolagy represents one of the mo
important dilections in self-adative com
puting. Dynamic object tewnology, by
extending object-dented pogramming
with dynamic-linking and object-uptiag
cgpabilities, creaes an rcellent bundaion
for self-adptive software constuction.
From a epresentéion viewpoint, the key
concet goplied tavard adieving self-adat-
able behaior is suppor for embeding
metalerel semantics in an palicaion.
Metaobject potocols deeloped br object-
oriented languges,suc as Common Lisp

MIC TOOLS GIVE US
FLEXIBILITY IN DESIGNING THE
MODELING PARADIGM, WHICH
WE CAN TAILOR ACCORDING TO
THE DOMAIN.

n Object System (CLOSY let the implemen
tation adjust duing program eecution.
This,in tum, results in bangng gpplication
behaior over time without bangng the
code!! In this gproad, the adating soft
ware component is the metagram,which
assigns a ltangng intempretaion to the
applicatiion code The metarogram allavs
the time-ariant selection of time-iarant

the same langge as the pplicaion. The
time irvariant element is thepplication
code which necessdly limits the level of
adaptability, but grealy simplifies the design
and implementdon of self-adative soft

ware in inteesting system degories.

The sgartion of metalgel semantics ém
program-level code is also adg element in
achieving dynamic behwaior. However, the
abstaction level and unddying mehanisms
are quite diferent. In the MIC ahitectue,
the metaleel semantics iflades two main
componentsThededarative componentsre
domain models of a domain-spécihodeling
pardigm. For example in the stucturally
adaptive contol-system design zdesabe,

system using a nonggkive software achi-

domain models gaure the contiller’s stuc-

ture as signaltbw models containing pr
cessing locks and signalsThe model inter
pretes tha mgp the domain models intae
cutable models assigrkecution semantics to

stthe domain model§ he signaldow models

can also comjure a sinulation tool,suc as
Matlab, to validate the design. In hetage-
neous pplicaions,there ae typically multi-
ple execution semantics assigned to the san
integrated model set.

Executing gplications adat through the
evaluation — domain-modelltange - rein-
terpretation (regenemtion) — application
modifcation methanismAccordingly, in our
approad, the metaleel abstractions ae
domain-speci€. Unlike the metaobject pr
tocols,we shift the imariant in our @proach
from the aplicaion code to the model inter
pretess,which assign xecution semantics to
the domain modelhis shift has impdant
consequences in thetegory of embeded
real-time gplicaions,as we discuss bele.

Reflection. Another fundamentakpresen
tation concet and tebnique br self-ada-
tive systems igeflection12 Reflection,which
is dosely relaed to metaobject ptocolsi®
is a form of self-epresenttion, and thus is
cental for self-adative systems in that
allows a pogram to be selfs@are and con
trol its avn behgior.

We suppat reflection using eflective
domain models. MIC toolse us fexibility
in designing the modeling pdigm,which
we can tailor accding to the domairilhis
also lets us useplicit architectual models
and usefor example Architectue Descip-
tion Languae tednology.* Explicit archi-
tectue models ailable & runtime fcilitate
the eeflection.The eflective models can also
be implicit, which lets us shift theotus of
domain models tm eplicit application
modeling to modeling the infmation tha
detemines the pplicdion stucture.

We designediéxible self-epresenttion
into MIC for two reasons. IFst, finding the
right astraction level to daracteize a
dynamic atifact is a major difculty in the
self-adptive system design. In ourpeli-
ence offering designes domain-spedit rep-
resenttions is helpful-® Seconddesignes
must find the ight abstraction level for
descibing the ¢ynamic gplication’s con
straints. This is paticulady important for
real-time embeded systemsyhere much of
the naural modeling contet for represent
ing constaints—sub as stucture, time, and
resouce—is achitectuml.

ne
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Runtime support

In MIC, the two key components of the
runtime suppdrfor self-adative computing
are reconfgurable execution emironments
and embedable genegtors.

Reconigurable execution ervironments.
Achieving dynamic beheaior through econ
figurable execution emironmentshas long
been an objeaté in softvare engneeing and
is well-undestood Work in this aea gner
ally falls under tw cédegories:dynamic object
languages and eal-time déa- and eent-
driven gplicaions.Well-known examples of
dynamic object languges indude CLOS™Y

Dylan (wvwwdylanpro.com/¢lan-faq.htm),
and to a lesser dgee M3 and Haskll.14

In real-time daa- and gent-diven gpli-
cations (pimaiily signal pocessing and cen
trol systems)reseacthers seek computa
tional-model suppaifor reconfgurable dda
flows and shedules. One mture system
here is Chimea,'®in which dynamic behe-
ior is adieved ly introducing a neel, recon
figurable computéional model.

Our reconfgurable execution emironment
belongs to this secondtegory. The under
lying computéional model is a maor
daaflow model thahas caabilities similar
to those in Chimer.We have poted the I&
est \ersion of the unddying runtime-system,

x_d Controller
dX_d N Partitioned f )
Servo Manipulator
ddX_d control
X_m
dX_m
X_d Controller X_d  Desired position
dX d = Proportional- f ) dX_d Desired velocity
W— ™ '”Ltzr:%ﬁi;g:' Manipulator ddX_d Desired acceleration
—— f Control signal
X_m  Measured position
X_m dX_m  Measured velocity

Figure 3: The two alternatives for a reconfigurable control system. The top architecture is used when both the position
and velocity sensors are working; the bottom is used if the velocity sensor fails.

X d C1 data flow —==
C2 data flow ——=
dx_d Cl1-1 C1-2
ddX_d —
C2
+—={ Evaluator
X_m dX_m

Figure 4: Reconfigurable controller architecture. The finite state machine is in the C1 state. If the evaluator (EVAL)
detects a problem with the dX_m signal, it triggers a state transition and switches to the C2 state.

the Multigraph Kemel? to paallel acchitec
tures and ealuaed it for reconfguration
overhead

In an MGK-basedpplication, the user can
trigger resynthesis aftethangdng the model;
the gplication can tigger it after detecting
a signifcant e/ent tha requires hangs to
the executing systens’ stucture. Useriniti-
ated dhanges ae typicall the esult of ince-
mental bangs in the modelsnd theefore
correspond toeolutionary system behaor.
The danges tiggered by events in the xe-
cution system artypically fast eactions to
detected lkbanges in the evironmentsud as
sensor &ilure. We cdegorize this beheior
asstructural adaptation.?

During gpplication resynthesighe model
interpretaion restats & a level of the model
hierarchy identified by a huilder objectThe
interpreter uses theuilder interfice and the
builder object netwrk to constuct a nev
version of the pocessing neterk without
suspending theest of the pplication. The
interpreter uses an MGK comlrprotocof to
switch from the old pocessing netark to
the nev computdéional stucture.

The pogramming languge for imple-
menting the elementacomputéion mod
ules—the untime libiary for the &ecution
environment—affects the systers’'reconfg-
uration cegabilities. With stdic languaes
sud as C and C++he MGK and allelevant
low-level computéion piimitives ae linked
together to 6rm an MGK-C or MGK-C++
processThrough the hilder interfice the
model intepreteis use pelinked pimitives to
modify dda stuctures and thergph topot
ogy, but cannot ginamicaly add computa
tional pimitives. In ¢namic languges tha
suppot late binding and yhamic linking and
loading designes could ceade MGK pro-
cesses thaupgade lav-level primitives as
well. In ealier MGA implementéons,we
provided this cpability in LISP ervironments.
One of our gals is to ceae and galuae
MGK ervironment pedrmance using a med
em dynamic languge, sud as ava or Dylan.

Embeddable generators. Software genee-
tors, such as Multi-GEN JTS and our MGA
genestors, provide synthesis gabilities.
However, the equiements of@al-time self-
adative gplicaions demand a dirent
approad. Because aditional softvare gener
ators ae used compile time (usualibefre
the actual compilt#on), they are rarely con
cemed with their wn perbrmance In a self-
adative systemieconfguration usesuntime
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resouces,and theefore afects the systers’
timing dhatacteistics. Thus,geneetors used
in this cont&t must sésfy stingent constints
on resouce usae, including piocessorycles.

A reconfigurable controller
architecture

Reliable position conol of medanical
devices sub as pbot manipultors and ai
craft contol surfaces is an imptant gpli-
caion problem ! Suc contol is adieved by
a contoller stucture thd receves inputs fom
position and glocity sensa,and calcultes
actudor contol signals (detenining, for
example the toques to begplied). In high-
reliability systems,contol must be main
tained @en in the &ce of sensosaflures.

Using contol theol, we can she that if
the \elocity sensor t@aks dan, for exam
ple, the system can still be coalied, albeit
with degraded permance However, to
accomplish thisthe contoller architectue
has to bange: a different stucture is needec
for the single-sensor cagégure 3 shavs a
contol-system athitectue without the con
troller details.The top par of the fgure
shaws the achitectue used wen both the
position and ®locity sens@ ae working.
The lonver achitectue is used Wwen ony the
position sensor is arking. If the contoller
is implemented in softare as a set of atg
rithmic blocks or comnainicaing objects,
switching from the upper to theer archi-
tectule requires contoller reconfguration.
(To replace the elocity signal with a con
stant alue will lead to incaect contol sig
nals,and thusdilure.)

Sample architecture. Figure 4 shavs an
example of aeconfgurable contoller archi-
tectue using a popular domain-specif
visual notéion—the signaldow diagram.
The upper parof the fgure shavs the con
trol-architectuie variant,which uses the posi
tion and elocity-sensor signals to calctda
the contol signal.This altenaive is based
on two objects:C1-1 and C1-2The lover
pait shavs a contoller altenaive tha uses
only the C2 lbock, which uses onl the posi
tion signal. The ealugor component
(EVAL) detects poblems with the elocity
sensor The ealuaor output tiggers the
reconfguration process. Recoiguration is
represented Y a finite-stae madine (FSM),
which has a ste for eat possilke confgu-

ration. Eat stde has an assoded set of

contwoller objectsTransitions among dtes
are contolled by the evalugor output.

Initially, the FSMis in the C1 d& In this
stae, the contoller uses the C1-1 and C1+
blocks. If the @aluaor detects a mblem
with the dX_m signalit triggers a st¢e tran
sition,which triggers a svitch to the C2 sta.
When this hppensthe contoller confgu-
ration will contain the C2 lock. When the
velocity sensorgsumes opetion, the achi-
tectue svitches bak to the oiginal C1 con
figuration. The contoller blocks ae the
architectue’s time-aiiant potion; the eal-
uator and FSM & time-irvarant.

This example contains the eritectue’s
time-variant elements (the comwiter bocks)

2is also model-baseit triggers the model

and the time-imariant components (the/al-

MODEL INTERPRETATION
STRATEGIES ARE NEEDED THAT
LEAD TO SMALL-FOOTPRINT,
EMBEDDABLE MODEL INTER-
PRETERS THAT OPERATE ON
THE TRANSLATED MODELS AND
IMPLEMENT RECONFIGURATION
STRATEGIES.

uaor and FSM). It thusepresents aacon

figurable software achitectue by shaving

all the altenatives,explicitly modeling an
evalugor component thariggers reconfg-

uration, and c@turing the achitectue’s

dynamic aspect in the FSM lassociting an
altemaive with eab stde.

Implementation. We implement theecon
figurable aichitectue in seeral stes. Rrst,
assuming the modelsedilt using a model
ing ervironmentmodel intepretess must gen
erate the untime system containing thesd
uaor and the FSMThe FSMS initial stde
specifes which architectual variant to ceae
first. Thus,the FSM nust execute an initial
transition to cede the C1-1/C1-2afiant.
Next, the system st&s and povides con
trol signalsAt eac activation, the evaluaor
is triggered to hed the \elocity sensos sta
tus. If a discgpang is detectedthe valua
tor triggers a tansition on the FSM objec
which leads to a v configuration. The

switch between conifjurations deactiates
and emoves the old ahitectue and ceaes
and actvates a ne/ one Because this pcess

interpreter to estat and intepret the nev
architectue’s model and bild runtime
objects or it; it then connects those objects
into the system da flows and esumes -
gram &ecution.This reconfguration process
dynamically synthesies a unning system
from predefned components.

Olviously, our sample ahitectue can be
implemented  building all the achitectual
variants and using a simpl&-then-else”
switch. However, in large systems this is not
a suitdle solution br two reasonsthere might
not be enoughessouces to pegeneste all
altemaives,and the alteratives thaare gen
erated might esult flom a comple decision-
making pocess with a mitilevel hiearchy.
In sud caseghe gproad offered in kgure
4 is a moe generl and paverful solution.

Outstanding challenge. Our sheme pe-
sents one difcult problem: When one con
troller is talen out and a we contoller is
switched in,the system gneetes a hug
transientThe poblem is causedybthe ste-
space discontimties intoduced l the
switching actionThese tansients a unde
sired side dects of ag abrupt achitectual
change. However, there ae ways to mitigate
these dfcts. Initial eseach?16shows tha
if enough inbrmation is available, designes
can pepar a econfguration strategy to
smooth the fnsition. One sutgproach
uses a tpered svitch tha gradualy moves
the contol signal fom one conwller to the
other The reconfguration thus occws over
a rumber of stps,grealy reducing the an
sient efect.

Research issues

There ae mary interesting eseath issues
in reconfgurable software achitectues. Some
of these a domain-spedt, sud as the issue
of transients; otherae relaed to tebnolagy
required to suppdithe averall approad.

For example our reconfgurable contoller
architectue has distinctariants elaed to par
ticular situgions.This coresponds to afif-
then-else’stucture (or“switch-case’for mul-
tiple variants).There also might be a neearf
architectues in vhich the coniguration is
descibed using aepetitive patem, possilby
with dynamicall changng components as a
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function of the ealugion. For exampleif the

evaluaor detemines the nmber of conseeu
tive filtering opestions on a d@ steam the

reconfguration might consist ofwluging a
sclipt tha descibes hav to wire the compe
nents tgether and thus he to geneste the
architectue. This goproad, calledgeneative

modeling requires the use of atgithms to
descibe achitectues.These algrithms can
be &ecuted aruntime to @neete a n&v

architectue. Reseash issues herindude for-

malisms and implementing infeetess tha

can perbrm algorithmic geneegtion.

Another issue isalaed to the actuakcon
figuration execution. In the pproach we
descibe heg, the model intgrreters retrieve
models fom the model dabase and ee
the nev architectue. For eficiengy reasons,
and br confgurations sub as embedkd sys
temswe rrust compile the models into a co
cise brm to fit a small systenThus,the mod
els ae tansbrmed into embeded models
tha contain all the irdrmation neededtaun-
time without the werhead equired by a
sophisticéed daabase Reseath issues her
include hav to compile the modelsyha is
needed aruntime and hev to minimize the
embedied modelsfootpiint.

A related issue conces model intgretes.
Cettain gplications requiting reconfgurable
architectues cannot tolete the esouce
requiements of lage-gain model inteoreta
tion. Model-intepretaion stiategies ae
needed thidead to smalldotpiint, embedia
ble model intepretes tha opegte on the #ins
lated models and implemergaonfguration
strategies. These intguretes should also
smoothy integrate with untime-system com
ponents and pride all equired functionality

HE TECHNOLOGY OF SELF-ARP-
tivesystems is ne Here, we identifed some
of its key ingredientsjncluding the need tq
separate and gplicitly represent time-aii-
ant and time-imariant aspectsembedled
models and model intpreters, evaluaor
componentsand so on. Self-agéetion also
requires embeding a pogram tha can spec
ify the stuctures to be gneeted duing
reconfguration. This program nust be ge-
cuted aruntime and thel@anges gplied in
the unning systenirhese equiementsaise

n

issues elated to those in agaive-contol-
systems thegr sudh as adptéion time con
stants andwerall system staility.

Software thd can hang its achitectue a
runtime ofers nev oppotunities.Although
it can incease system compi¢y, dynamic
architectules can also ege reliable, perfor-
mance-consciousand eventually, more
usadle systemd
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