
Software agents that are

autonomous, communicative,

and possibly intelligent

processes raise new questions

for developers of distributed

systems. Specifically, what is

responsible agent behavior, and

who, as the owner, is legally

responsible for it? The answers

involve an understanding of

human-agent interaction,

agent-oriented middleware,

and social behavior.

EBRAHIM (ABE) MAMDANI AND JEREMY PITT

Imperial College of Science, Technology, and Medicine

27IEEE INTERNET COMPUTING 1089-7801/ 00/$10.00 ©2000 IEEE h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 2000

A
G

EN
T TEC

H
N

O
LO

G
IES

Responsible Agent Behavior
A Distributed Computing Perspective

S ociety is fundamentally and unequivocally set up to hold individ-
uals accountable for their actions. When agents act on a user’s
behalf, however, the legal and social ramifications can be obscure.

While researchers in artificial intelligence (AI) focus primarily on the intel-
ligence of agents, we are concerned with the legal aspects of autonomous,
asynchronously communicating, and perhaps intelligent software, espe-
cially in open systems.

An agent is an identifiable computational entity that automates some
aspect of task performance or decision making to benefit a human entity.
The human entity delegating its responsibility to the computational one is
what we call the owner of the agent. By ownership, we mean that there is
a specific person or organization that is responsible for the agent’s actions.

Two or more agents acting together form a multiagent system. To estab-
lish a practical agent society, the agents must communicate with each other
openly and directly, and be prepared to encounter new agents. Therefore,
agents are loosely coupled from the control (as well as ownership) perspec-
tive, and an owner may not know with whom its agent is communicating.
A communicative act is an action that can have legal or social consequences
(for example, the creation of a contract or unintended disclosure of confi-
dential information), for which the owner must take responsibility.

Furthermore, the immediate effect of a communicative act cannot be
predicted, unless the state and behavior of each agent is specified and fixed
in advance. However, communication in an agent society is asynchronous,
so many software agents will demonstrate nondeterministic behavior.

Programming experience shows that complex behavior of software
requires many internal states. We have to assume that some software agents
will have a sufficiently large number of internal states to be capable of seem-
ingly intelligent behavior (for example, Deep Blue 2). Hence, an agent’s
future external behavior cannot be guaranteed on the basis of its past behav-
ior, even if that behavior has been monitored over time. Complete com-
pliance tests of intelligent agents, therefore, may not be achievable because
of the (possibly) large number of internal states. Thus, the best we can say
is that an agent has not exhibited noncompliant behavior yet.

There are two conclusions from this argument: First, that communi-
cation between agents implies a contract between owners, and, second,
that complexity of agents implies possibly unpredictable behavior. There-
fore, an appropriate legal framework is required to underwrite the conse-

F E A T U R E

28 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

quences of (communicative) actions and to provide
safeguards against unlawful activities. The legal
implications of agent technology require new ways
of thinking about working with an agent, new
requirements for agent-oriented middleware, and
additional types of social behavior to be considered
when designing a multiagent system.

HUMAN-AGENT CO-WORKING
The main characteristic of working with an agent
is not that the software agent displays intelligence
but that it encapsulates and demarcates its owner’s
legal responsibility. The agent’s capability to act
intelligently only increases that responsibility. Soft-
ware agents can act as surrogates for their respec-

tive human entities, carrying out routine but intel-
ligent tasks without constant monitoring. Given
that appliances and services will likely be increas-
ingly and directly accessible on a computer net-
work, software agents will be important interme-
diaries between humans and the physical world.

The delegating human authority for each agent
must be explicitly identified. Agents will be bound
to one or more physical computational entities
(hardware) by middleware, but can only be expect-
ed to interact with other software agents asynchro-
nously, and are loosely connected to each other from
the standpoints of conventional control and shared
knowledge. For this reason, the interaction between
agent and owner must be tightly coupled in the
sense of an identifiable human taking responsibility
for an agent’s behavior. This applies to all agents, not
just to personal agents. Tight coupling does not
imply that an agent’s every action needs the owner’s
sanction, but that the owner assumes responsibility
for all possible behavior of an agent while it acts
autonomously as its owner’s surrogate. This has a
range of consequences, including

■ The owner will be responsible for damage
caused by agents either deliberately or acciden-
tally (for example, because of software bugs).

■ The owner will often not be the agent’s devel-

oper, so the actual owners may seek guarantees
from the developer, intermediate suppliers, and
perhaps governmental licensing authorities.

■ Because an agent’s damage may come to light
only after a considerable time, agent developers
may be required to incorporate accident black
boxes or audit trails to log the agent’s behavior.

AGENT-ORIENTED
MIDDLEWARE
Computationally, a software agent is a process that
encapsulates some notion of state, communicates
with other processes by message passing, and can
perceive (affect) its environment. The agent process
will also require a set of ontologies, grounded in the
application domain; an AI component, for reason-
ing about the domain; and a more or less anthro-
pomorphic shell, for user interaction. Collectively,
agents may be physically distributed, but individ-
ually, they are logically distinct and unlikely to
operate in isolation.

To function at all, each agent must be bound to
one or more hardware platforms. Middleware is any
entity that is interposed between a client and a serv-
er, a peer and another peer, or an application and a
network. This entity could also provide additional
functionality that might be associated with a human
middleman, broker, or arbiter, for example.

Middleware Services
Middleware functionality is implicitly or explicitly
evident in distributed object-oriented computing, the
Web, network computing, and computer-telephony
integration (CTI),1 providing the following services:

■ Dynamic binding services (such as CORBA)
between agent and hardware entity, such that
the binding also provides a handle for any enti-
ty “owning” the agent.

■ Location services (such as the Web) that enable
agents to find and communicate with each
other either directly or indirectly, to map task
requests to service instances, and to facilitate
agent interaction in either client-server or peer-
peer configurations.

■ Application services, including third-party ser-
vice provision and deployment, dynamic self-
configuration, and push-pull operations between
clients and servers (as in network computing).

■ Management services such as registration and life-
cycle management (defining and maintaining
type descriptions and service instances, and ensur-
ing service availability), banking, and billing.

Software agents encapsulate
and demarcate their owners’

legal responsibility.

R E S P O N S I B L E A G E N T S

29IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 2000

Agent-oriented middleware should provide these ser-
vices to agent-based applications and systems. How-
ever, while there is some overlap between the ser-
vices, until now middleware for agents has typically
provided only a subset of the first two types.2-4

Additional Services
In addition to the service requirements described
above, a generic middleware for agent-based systems
should have services for supporting responsible
behavior. Management services are an example of
this, but we also perceive the need for federation,
ownership, and mobility services.

Federation services. Negotiation, delegation, and
cooperation techniques are used to forge tempo-
rary alliances among otherwise autonomous oper-
ators to form a federation of multiple service
providers. Federation is important in light of dereg-
ulation, open markets, and personalized service
delivery; and brokerage is required by autonomous
and heterogeneous organizations to communicate,
collaborate, and coordinate. However, a federation
must be governed by a contract, and a federation
service must also include service-level agreements,
contract management, and dispute resolution.

Ownership services. Agent technology offers a pro-
found shift in the concept of ownership as it relates
to computation. Rather than owning hardware and
purchasing a license to run somebody else’s soft-
ware, in the new model someone owns software
and buys a license to run it on somebody else’s
hardware. Ownership services encompass the func-
tions needed to manage such ownership in an
open, distributed computing environment.

Ownership services and related support func-
tions can be compared to automobile ownership.
For example,

■ A driver (user) owns a vehicle (agent and/or soft-
ware) but pays road tax to drive it (legally) on
the roads (third-party-owned infrastructure).

■ A driver registers ownership with a vehicle licens-
ing authority (trusted third party); passes a licens-
ing exam, which qualifies him or her to drive a
certain class of vehicles; and buys insurance.

■ A driver buys fuel for the vehicle (CPU cycles),
which requires a yearly roadworthiness certifi-
cate (agent upgrade by self-configuration), and
whose steering wheel may be on either side
(communication protocol, either HTTP or
IIOP).

Mobility services. Agents need mobility to more
efficiently use bandwidth, limited resources (for
example, battery power), or intermittent connec-
tions. Mobility requires binding the software to dif-
ferent processors over time. Efficient middleware
would make the process transparent so that agent
mobility will not be noticeable.

Middleware will thus provide agents with addi-
tional functionality that we would, intuitively, asso-
ciate with certain actors in human societies. This
would obviously be realized in computational ter-
minology of types and services, and so provides
agents with the opportunity to be dynamic (that is,
mobile, self-configuring, and opportunistic). With
such a definition, an open issue is whether mid-
dleware is distinct from other agents or is an agent
itself with human-delegated responsibility.

This line of thought leads to a key design trade-
off. We trade fat middleware and thin agents (max-
imizing the abstraction of agents’ common func-
tionality, “delegating” the functionality to a separate
middleware component) for thin middleware and
fat agents (maximizing each agent’s autonomy and
minimizing the common functionality delegated
to the middleware).

As agents become more sophisticated, middle-
ware will manage some services, and agents will
manage others. As the intelligence of an overall sys-
tem increases, the distribution of intelligence will
inevitably tend toward the agents and away from
the middleware. We are therefore moving away
from intelligent networks toward networked intel-
ligence, in which any middleware functionality will
itself be an agent. Managing this transition and
developing an appropriate software model is a major
open issue facing developers of agent-based systems.

SOCIAL BEHAVIOR
Developers clearly face many challenges in social,
chaotic, temporal, and emergent behavior that
must be resolved in order to realize agents’ full
potential. Other issues, already well known and
outside the scope of this article, include shared
ontologies, delegation of trust, uncertainty, learn-
ing, and interagent communication.

Agent ‘Police’
Agent compliance with a standard will never be easy
to test, and an intelligent entity possesses the free-
dom to be “economical with the truth”—perhaps
omitting key facts—in satisfying its goals. There-
fore, the monitoring and policing of external and
observable agent behavior remains an open issue.

F E A T U R E

30 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

One form of monitoring agent behavior is self-
policing: Agents are implemented such that actions
leading to potentially harmful social behavior are
short-circuited out of the reasoning process. A
companion approach involves sentinel agents that
patrol antisocial behavior, which raises the prob-
lem of defining antisocial behavior and methods
of sanctioning it. The importance of addressing
these issues will grow as larger open-agent com-
munities develop.

Error Recovery
Errors, malfunctions, and generally chaotic behav-
ior can occur anywhere in a distributed system, set-
ting off a ripple effect that can cause serious, and
widening, damage. Distributed models of com-
puting must consider these issues seriously because
of the inherent autonomy, concurrency, nondeter-
minism, asynchrony, and possible nontermination
of distributed, emergent algorithms.

Agent designers should be more concerned
about errors that might arise within the communi-
cating agent community (assuming that all lower
levels work well). Messages can be delayed, lost,
bottlenecked within a busy agent, even misunder-
stood by one “stupid” agent in the midst of other
good ones. The possibility of livelock in nondeter-
ministic negotiation is also of concern.

Little is known of the pathology of agent com-
munities. Therefore, something akin to system
reboot, an action taken by human owners, will be
the final recourse to recovery. However, we must
take care to distinguish accidental failure from mali-
cious behavior, and to recognize planned malicious
behavior masquerading as a software bug.

Awareness of Time
Current definitions of communicative acts see acts
performed by agents as isolated and without con-
sequences, but consider the following scenario:

Suppose Agent A issues a bid request that fails
to get any response from Agent B. Further, suppose
that Agent A knows that Agent B has the requisite
skills to respond to the bid (having done so in the

past, say), and also that Agent B is still active (hav-
ing just replied to another, unrelated query from
Agent A). Then this deliberate nonresponse is also
a communication of a kind, from which Agent A
may be able to draw inferences.

What’s more, the full effect of a communicative
act may only emerge over time, after some sequence
of acts between communicating agents. Because a
series of communications defines the context of an
agent interaction, an agent must track past com-
munications. Furthermore, an agent might be
involved in more than one thread, and these
threads might also interact with one another. These
problems require more research.

Emergent Behavior
Successful societies evolve. Given a communication
language and proximity enabled by middleware, an
awareness of “good” and “bad” behavior and of
time (particularly the future), agents can be pro-
grammed to change their behavior. While an indi-
vidual agent can learn to improve its performance,
a society of agents can evolve to find a pareto opti-
mal configuration for a certain task and environ-
ment. This is a form of emergent behavior in which
individuals collaborate to achieve collectively what
none could do alone.

Multiagent system design is software engineer-
ing based on process-oriented, rather than object-
oriented, design. The power of the multiagent par-
adigm stems from the ability to continually
reorganize, and if the multiagent system is extensi-
ble, to accommodate and exploit new agents with
new functionality.

The risk of top-down design is that emergent
behavior will be designed out, but to the extent that
it is not, how is the resultant system verified? How
is it visualized? How is the agent life cycle accom-
modated? In a safety-critical application, a group
of learning agents reorganizing themselves for pare-
to optimal behavior might, to some, be less than
reassuring. Balancing the power of emergent behav-
ior against the application constraints is a key issue
for future development of agent populations.

CONCLUSIONS
The limitations of software intelligence will influ-
ence how agent-based systems are designed. The
asynchronous nature of agent relationships sug-
gests that agenthood is assigned so that each agent
retains sufficient autonomy over the tasks for
which it is responsible. Thus, insofar as a develop-
er is free to partition a system into individual

Balancing emergent behavior
against application constraints is a
key issue in agent development.

R E S P O N S I B L E A G E N T S

31IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 2000

agents, partitioning should be done with autono-
my (and consequently minimum interagent com-
munication) as the criterion. Meanwhile, the
developer must take into account agents developed
and owned by other organizations, and should
consider legal, formal, and related ownership mat-
ters as paramount design issues.

Lehman and Belady5 classify software into three
types:

■ S-type software is precisely specified; thus, its
correctness can be tested against the specifica-
tions. An example is a program designed to
invert matrices.

■ P-type software lacks a precise specification but
relies upon a good model for its effective oper-
ation. An example is a chess-playing program.

■ E-type software is embedded software whose
sole purpose is to respond to external sensors
and effect changes upon some external envi-
ronment.

Software agents can be seen as P-type in the sense
that they exhibit autonomous, proactive behavior
and reason about the external environment. How-
ever, they can also be seen as E-type embedded sys-
tems in the sense that they are meant to be respon-
sive (reactive) to the external environment. It is also
possible that software agents are a novel type of
interactive software.

If two communicating agents A and B respond
to distinctly disjoint environment domains, then
each is completely reliant on the other in dealing
with the other’s domain. However, if in the exter-
nal world their domains overlap, the agents can
note the communicative acts the other produced
and observe how it behaved, and are thus able to
verify the communications. Even if two agents do
not directly share a common domain of discourse
about the external world, they may do so indi-
rectly via other agents with which they are com-
municating.

Finally, the practical issues of software agents
must be grounded in the engineering aspects of
computer science: its systems, processes, architec-
tures, tools, and standards. If we can tackle the engi-
neering of agent communities with full knowledge
of the legal and social challenges, then that will help
with the practical deployment of agents. ■

ACKNOWLEDGMENTS
This work owes much to discussion with many colleagues, and we

are pleased to acknowledge their various contributions. We are

especially grateful to Munindar Singh for his valuable and con-

structive comments, and to the anonymous referees. We also

acknowledge the financial support of the European Union project

IST-10298 ALFEBIITE (http://www.iis.ee.ic.ac.uk/alfebiite).

REFERENCES
1. D. Messerschmitt, “The Future of Computer-Telecom-

munications Integration,” IEEE Comm., vol. 34, no. 4, Apr.

1996, pp. 66-69.

2. K. Sycara, K. Decker, and M. Williamson, “Matchmaking

and Brokering,” Proc. Second Int’l Conf. Multiagent Systems,

(ICMAS 96), AAAI Press, Menlo Park, Calif., 1996.

3. T. Finin, Y. Labrou, and J. Mayfield, “KQML as an Agent

Communication Language,” in Software Agents, J. Brad-

shaw, ed., MIT Press, Cambridge, Mass., 1997.

4. Foundation for Intelligent Physical Agents, “FIPA 97 Speci-

fication Part 1: Agent Management System,” Geneva, 1997;

also available online at http://www.cselt.it/fipa/spec/fipa97/

fipa97.htm.

5. M. Lehman and L. Belady, Program Evolution: Processes of

Software Change, Academic Press, New York, 1985.

Ebrahim (Abe) Mamdani is a professor of electrical and elec-

tronic engineering at the Imperial College of Science, Tech-

nology, and Medicine, London, England. His research

interests are in intelligent and interactive systems. He cur-

rently holds the Nortel Networks/Royal Academy of Engi-

neering chair in telecommunications strategy and services at

Imperial College and has acted as technical advisor to the

Foundation for Intelligent Physical Agents (FIPA). Mam-

dani holds a BE and a PhD from London University. He is

a Fellow of the IEEE and a Fellow of the Royal Academy

of Engineering.

Jeremy Pitt is a lecturer in the Intelligent and Interactive Sys-

tems Group of the Department of Electrical and Electron-

ic Engineering at the Imperial College of Science, Tech-

nology, and Medicine, London, England. He is principal

investigator of the UK CASBAh project (funded by the UK

Engineering and Physical Sciences Research Council and

Nortel Networks), concerned with agent-oriented middle-

ware for advanced telecommunications service delivery, and

project manager of the European Union–funded project

ALFEBIITE, investigating legal, ethical, and normative

issues in multiagent societies. Pitt holds a BSc and a PhD

from London University.

Contact the authors at Dept. of Electrical and Electronic Eng.,

Imperial College of Science, Technology, and Medicine, Exhi-

bition Road, London, SW7 2BZ; {e.mamdani, j.pitt}@ic.ac.uk;

http://www-ics.ee.ic.ac.uk/.

