
The problem of protecting an

execution environment from

possibly malicious mobile

agents has been studied

extensively, but the reverse

problem—protecting the agent

from malicious execution

environments—has not.

The authors propose an

approach that relies on trusted

and tamper-resistant hardware

to prevent breaches of trust,

rather than correcting them

after the fact.

A Pessimistic Approach to Trust
in Mobile Agent Platforms

UWE G. WILHELM, SEBASTIAN M. STAAMANN, AND LEVENTE BUTTYÁN

École Polytechnique Fédérale de Lausanne

Mobile agent technologies such as Aglets1 and Telescript2 are
being deployed on the Internet to support new approaches
to distributed computing. In the domain of electronic com-

merce, a scenario involving these technologies might consist of an agent
program that searches a service for its owner by roaming the Internet
and visiting the sites of various service (or product) providers. Such an
agent is configured by its owner with all the relevant information to
describe a desired service, the constraints on an acceptable offer, and a
list of potential providers. The agent may also hold confidential infor-
mation such as data for one or several payment methods to finalize a
purchase. The agent should make this data available to a provider only
in the event of a purchase. Even then, it should offer only data perti-
nent to the payment method used in the purchase.

Because the agent is vulnerable while it is executing on the service
provider’s execution platform, its owner must obtain some guarantees
concerning the protection of the agent. Example threats from a mali-
cious service provider include trying to obtain payment data without
providing the service or trying to remove information about a better
offer from the agent’s memory, thereby tricking it into accepting the
malicious provider’s offer.

The usual approach to protecting mobile agents is to assume that
service providers are trusted principals that behave correctly.3 Although
the importance of trust has long been recognized as paramount for the
development of secure systems, the meaning associated with trust or a
trusted principal is seldom clearly defined. In this article, we address
the question of how to base trust on technical reasoning. We present
a pessimistic approach to trust that tries to prevent malicious behavior
from occurring in the first place, rather than correcting it after it has
occurred. Our approach relies on a tamper-resistant hardware device
that can be operated safely in an untrusted environment.

The ideas presented here are purely conceptual and have yet to be
implemented. Nevertheless, we believe that they can have important

40 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ 1089-7801/ 00/$10.00 ©2000 IEEE IEEE INTERNET COMPUTING

A
G

EN
T

TE
C
H

N
O

LO
G

IE
S

M O B I L E A G E N T S

41IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 2000

repercussions on the design of open mobile agent
systems, whereby potentially everyone could
become a service provider.

We begin by introducing our model for
mobile agents and pointing out the problems
related to trust within this model. We then dis-
cuss the notion of trust and define its relation to
policy before describing a piece of trusted hard-
ware and a protocol that, together, establish a
technological basis for trust in the context of
mobile agents.

MOBILE AGENT PARADIGM
Many researchers have proposed mobile agents
as a promising approach to structure problems
in distributed computing (for example, see Chess
et al.4). The merits of the mobile agent para-
digm, however, are still debated; and Harrison et
al.5 have shown that it has no conceptual advan-
tage over classic client-server approaches. On the
other hand, these same authors point out that
the mobile agent paradigm can offer interesting
solutions to many real-life problems in at least
two contexts:

■ high-bandwidth interactions, where the user
sends an agent to search for some specific
information on a database server that holds
a large amount of unstructured data, and

■ mobile users, where a user who is disconnect-
ed from the communication network sends
an agent out from a mobile computer in
order to accomplish a well-defined task.

In this article, we are not concerned with the
underlying technology that implements the
mobile agent paradigm. We require only a sim-
ple model for our discussion:

■ a mobile agent consisting of code, data, and
the current execution state. The agent can be
marshaled by its owner in a transport format
and subsequently sent to an agent executor.

■ cryptographic mechanisms that can protect
the agent’s confidentiality and integrity dur-
ing transit. These mechanisms also provide
origin authentication for the marshaled
agent.

The executor will eventually unmarshal the agent
and instantiate it on a special environment called
the agent platform. Here, the mobile agent can
interact with local services, as well as other agents

located at this platform, and continue the task it
was given by its owner. After the agent has com-
pleted its local interaction, it can request migra-
tion to another platform or back to its owner.

There are many cases in which an agent might
need to hold confidential information that should
not be disclosed to either the executor or the ser-

vice provider (two principals that could be identi-
cal or could easily cooperate to mount an attack
on the agent):

■ A shopping agent that integrates mecha-
nisms for online payment might hold data
for several payment methods, such as differ-
ent credit cards. In the event of a purchase,
the service provider should be able to obtain
data for the one payment method used, but
not for the others.

■ An agent for electronic commerce might
hold a private key with which it can sign
messages on behalf of its owner. This key
must be kept secret to prevent the service
provider from illegitimately signing messages
in the agent owner’s name.

■ Finally, an agent that merely searches for
some particular financial data, such as stock
quotes, might convey some very sensitive
information; the request itself already con-
veys interest in the data.

In a conventional mobile agent system, when an
executor receives a mobile agent, the owner loses
all control over the agent’s code and data. The
executor can reverse-engineer the code, analyze
the data, or arbitrarily change either one. If no
direct attack is feasible, the executor can still
experiment with the agent by feeding it arbitrary
data to observe its reactions and by resetting it to
its initial state. The executor could even do this
with a copy of the agent on an isolated platform.
The owner has to trust the executor not to use
these methods to illicitly obtain confidential
information.

After local interactions, the agent
can request migration to another

platform or back to its owner.

F E A T U R E

42 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

This problem does not exist in the client-serv-
er paradigm, in which the client can rely on
many low-level system guarantees (for example,
that code will be executed at most once or that it
will be executed correctly). The client imple-
mentation resides in a physically trusted user
environment where it can, for instance, log any
irregularities as evidence for a possible dispute

with a service provider. This contrasts with the
mobile agent paradigm, in which the owner can-
not control or even reliably know about the
executor’s behavior. Digitally signing the agent’s
data can considerably limit the malicious actions
of an executor, but it cannot prevent them.

We want to suggest an environment for mobile
agents that lets them base their execution on guar-
antees, similar to those provided by the client-
server paradigm, so that a mobile agent can pro-
tect itself from a malicious agent executor.

THE NOTION OF TRUST
Central to our definition of trust is a policy—that
is, a set of rules prescribing a principal’s behavior
for all relevant situations. This policy must be
written down and made available to all other
principals that interact with its issuer. The policy
is, of course, consistent with the issuer’s goals.
This policy lets us separate the notion of trust
into two components: adequacy of the policy and
trustworthiness of its issuer:

■ For a principal A to trust a principal B, A
must verify B’s policy and decide whether it
adequately protects A’s interests. This prob-
lem is difficult but can be assisted by a formal
specification of the policy (similar to the
approach described for security architectures
in Rueppel6).

■ Then A must assess B’s trustworthiness by
establishing a basis for believing that B will
adhere to its published policy. This problem
is quite difficult to formalize.

Depending on how the trustworthiness of a prin-
cipal is established, two fundamentally different
approaches to trust can be identified: one opti-
mistic and the other pessimistic. (We have
named these approaches in accordance with sim-
ilar concepts in transaction processing.)

Optimistic Approach
In the optimistic approach, principal A gives
principal B the benefit of the doubt, assumes that
it will behave properly, and tries to punish any
violation of the published policy after the event.
This approach is easy to implement because it
requires no special measures to allow trusted
interactions between A and B. It does, however,
require some reliable mechanism to discover a
policy violation after it has occurred. (The
extreme case of this approach, in which such a
mechanism does not exist, is not recommended
for any important transaction and is not dis-
cussed further.)

If internal business processes were transparent
to external observers, it would be easier to dis-
cover a policy violation. It is unlikely, however,
that many principals would support this trans-
parency. An alternative is to designate specialized
companies that would execute frequent and in-
depth appraisals of company conduct.

If a policy violation is discovered and if it can
be attributed irrefutably to one of the principals
in the corresponding transaction, this principal
could be punished according to the appropriate
laws and the damage caused by the policy viola-
tion. The primary goal of this punishment is to
deter violations from occurring in the first place.
Depending on how this punishment is enacted,
the optimistic approach can be further subdivid-
ed into trust based on (a good) reputation and
trust based on explicit punishment.

■ In trust based on reputation, A assumes that B
is well known and has little to gain but much
to lose from a discovered violation of its own
policy. This loss is attributed to lost revenue
when customers take their business to another
principal.

■ In trust based on explicit punishment, A does
not necessarily trust B, but rather trusts the
underlying legal framework to marshal B’s
behavior. The trade-off is similar to that in trust
based on reputation, with disciplinary legal
actions substituting for lost revenues. An obvi-
ous problem with this approach is enforcing

Digitally signing an agent’s data
can considerably limit, but not

prevent, malicious actions.

M O B I L E A G E N T S

43IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 2000

such laws, particularly if different countries are
involved.

By definition, the optimistic approach cannot
prevent malicious behavior but tries only to
compensate for violations. In many real-world
situations, however, proper functioning of the
system is absolutely essential, and any violation
can have irreparable effects.

Pessimistic Approach
In the pessimistic approach, principal A trusts that
principal B is prevented from performing actions
that do not conform to its defined policy. The
behavior of B—so far as it is constrained by its
policy—becomes completely visible, eliminating
the need to scrutinize any particular action. If the
policy prescribes a particular action for some event
and if the policy is enforced, then the action is
guaranteed to take place. Unfortunately, this
approach cannot be realized in its full generality
but is limited to those policies (or rules of a policy)
that can be effectively enforced with a mechanism
that cannot be circumvented. For policies that
cannot be enforced, principals must rely on opti-
mistic approaches to trust.

PROPOSED IMPLEMENTATION
We know of no simple way to conceive an enforce-
ment mechanism that cannot be circumvented
without relying on trusted and tamper-resistant
hardware. This was in principle the conclusion
reached by Chess et al.4 Sander and Tschudin7 have
since described an approach that may eventually
provide some agent protection based purely on
cryptographic mechanisms; however, their
approach supports only polynomial and rational
functions and does not yet allow the creation of
agents that encode arbitrary programs. Therefore,
our proposed approach is implemented on trust-
ed and tamper-resistant hardware.

The proposed implementation relies on pub-
lic key cryptography. In this approach, principals
A and B each have a pair of keys, one public and
one private (security can be further increased if
each principal has two pairs of keys, one for
encryption-decryption and one for digital signa-
tures). Given these keys and the corresponding
cryptographic algorithms, A can encrypt one mes-
sage with B’s public key to obtain an encrypted
message, which only B can decrypt by using its
private key. Principal A can use its private key to
generate a signed message (including a digital sig-

nature) that can be verified by anyone who has A’s
public key. (For details on public key cryptogra-
phy, see Menezes et al.8)

In the following we assume the use of opti-
mization schemes, such as encrypting a large
message with a symmetric session key, which in
turn is encrypted through the use of public key
cryptography and hash algorithms to reduce the
computational complexity of signing.

Figure 1 gives an overview of the trusted prin-
cipals in the proposed implementation: a trusted
manufacturer produces the execution environment,
called the trusted processing environment (TPE),
which can be purchased by an agent executor. An
agent owner has to trust the manufacturer to design
and produce its execution environments properly.
The broker is primarily a directory service to locate
other principals.

Processing Environment
The concept of tamper resistance usually
applies to a well-defined hardware module that
executes a given task. The outside environment
cannot interfere with the task except through a
restricted interface that is completely controlled
by the tamper-resistant module. We call this
device a trusted processing environment; the
TPE provides a complete agent platform, as
shown in Figure 2, which cannot be inspected
or tampered with. Any agent residing on the
TPE is thus protected from both disclosure and
manipulation.

The TPE is a complete computer that con-
sists of a CPU, RAM, and ROM. It boots from

Host
computer

Provides
TM

AO

Trust

TPE

Br

AE

TM
TPE

AE
AO

Br

TPE manufacturer
Trusted processing environment

Agent executor
Agent owner
Broker

Figure 1. Trusted principals in the proposed implementation. A trust-
ed manufacturer produces the execution environment, which can be
purchased by an agent executor. An agent owner has to trust the man-
ufacturer to design and produce its execution environments properly.
A broker is primarily a directory service for locating other principals.

F E A T U R E

44 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

the ROM, which contains all the code required
to operate the TPE. This includes the code of
the virtual machine (VM), which provides the
platform for agent execution and which guar-
antees that an agent’s code will be executed cor-
rectly. The VM is governed by a trusted operat-
ing system, which is also loaded from the ROM.
The operating system coordinates and controls
the TPE resources, namely the CPU, the exter-
nal I/O interface, and the access to memory.
(The use of virtual-memory techniques can pro-
tect agents from each other by establishing and
enforcing protection domains; it does not, how-
ever, overcome the problem of covert channels
between agents on the same TPE.) The TPE also
provides cryptographic functionality in the form
of an extensive cryptographic library. This
library contains a private encryption key that is
not known outside the TPE—even the physical
owner of the TPE does not know this private
key. This secrecy can be achieved, for instance,
by generating the keys on the TPE itself. The

secrecy of this private key, ensured by the TPE’s
tamper resistance, is a crucial requirement for
the proposed implementation.

The TPE is connected to a host computer
controlled by the TPE’s owner. This host com-
puter can access the TPE only through a well-
defined interface that allows, for instance, the fol-
lowing operations on the TPE:

■ uploading, migrating, or removing agents;
■ facilitating interactions between the host

and agents;
■ verifying certain properties of the TPE, such

as which agents are currently executing.

Because the TPE is implemented as a tamper-
resistant module with restricted access via the
I/O interface, no one outside the TPE can
directly access information inside it. This prop-
erty is ensured by the TPE manufacturer, which
also provides a signed certificate to the agent
executor. The certificate contains information
about the TPE, such as its manufacturer, type,
guarantees, and public key. The agent owner has
to trust the manufacturer that the TPE actually
does provide the protection claimed in the cer-
tificate (discussed further in the section, “Trust
in the Manufacturer”).

CryPO Protocol
We have defined a protocol called CryPO (short
for cryptographically protected objects) to trans-
fer agents exclusively in encrypted form over the
network to a TPE by using the TPE’s public key.
The CryPO protocol makes it impossible for
anyone who does not know the private TPE key
to obtain the code or data of an agent in transit
to a TPE. CryPO has two distinct phases.

Phase 1: Initialization. The first phase consists of
an initialization, shown in Figure 3, which allows
the agent owner to verify that it interacts with
the TPE of a trusted manufacturer. This phase
sets up the required key information exchanges:

■ The agent owner holds an authentic copy of
the trusted TPE manufacturer’s public key,
which is used to verify TPE certificates.

■ The trusted manufacturer sends the signed
TPE certificate to the agent executor.

■ The executor registers its reference—name,
physical network address, policy, and signed
TPE certificate—with one or several brokers.

Host
computer

Provides
TM

AO

Trust

TPE

Br
RefAE

CertTPE

AE

Ref
TM
TPE

AE
AO

Br

Reference for an AE
TPE manufacturer
Trusted processing environment

Agent executor
Agent owner
Broker

Figure 3. Initialization phase of the CryPO protocol. The participants
exchange the required key information. An agent owner holds a
copy of a TPE manufacturer’s public key. An agent executor regis-
ters the certificate for its TPE with a broker.

Hardware

Operating system

Virtual machine

I/O
library Crypto

library

A1

KPrivate

A2 An
TPE

Figure 2. The trusted processing environment. The TPE is a tamper-
resistant computer that contains all the code on its own ROM that it
requires to boot and to operate a complete agent platform.

M O B I L E A G E N T S

45IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 2000

Phase 2: Operation. After the initialization, the
participants can actually transfer mobile agents,
as shown in Figure 4.

■ The agent owner queries the broker for the ref-
erence of the executor that it wants to interact
with.

■ The owner verifies the executor’s policy to
decide whether it is adequate and checks the
manufacturer-issued TPE certificate to
decide whether the TPE provides sufficient
support to enforce this policy. If any of these
checks fail, the owner will abort the protocol.

■ If the checks do not fail, the owner sends the
agent, encrypted with the TPE public key, to
the executor.

■ The executor cannot decrypt the TPE-encrypt-
ed agent, nor can it do anything other than
upload the agent to its TPE.

■ The TPE uses its private key to decrypt the
message sent by the agent owner, thus obtain-
ing the executable agent, which it will even-
tually start. The agent can then interact with
the executor’s local environment or with
other agents on the TPE.

■ After finishing its task, the agent can migrate
back to its owner or to another TPE-certified
executor to which it holds a reference.

The problem of protecting the TPE from mali-
cious agents is independent of this approach and
must be solved by using other mechanisms. The
problem of protecting the TPE from agents that
have been tampered with can be solved by con-
catenating the agent with a hash of the entire
agent, including its execution state, before
encrypting it. The TPE simply has to verify the
correct hash before starting the agent.

Limitations of the
Proposed Implementation
Constructing a device that can actually resist
tampering is a decidedly nontrivial task. Given
sufficient time and resources, an attacker could
violate the protection of any device, so this is
a weakness in the proposed approach. A disad-
vantage is that any compromise of the TPE’s
private key gives an attacker complete control
over the agents sent to this TPE. These prob-
lems, however, are very similar to those in areas
where the use of tamper-resistant devices is
well established, such as debit cards and the
subscriber identity module (SIM) cards used

for global system for mobile (GSM) commu-
nications.

If the TPE’s basic physical protection is con-
sidered too weak, it could be periodically inspect-
ed by an independent appraisal organization with
capabilities to detect tampering. This would limit
the time an attacker could benefit from a suc-
cessful attack. It might also provide an effective
deterrent if an attempted or successful breaking
of a TPE were severely punished. Thus, in the
rare case when an attacker does break a TPE, the
protection provided by the optimistic approach
is still available. As discussed in Anderson and
Kuhn,9 a tamper-resistant device can resist even
massive attacks if only detection—not preven-
tion—of tampering is required.

The TPE could become a performance bot-
tleneck. It is possible to alleviate these perfor-
mance problems by establishing a maintenance
contract with the manufacturer, in which it
ensures proper operation and adequate perfor-
mance of a service provider’s TPE installation.
Such a maintenance contract might not be avail-
able to the small service providers who might
have the most to gain from the availability of a
TPE.

Maintaining and upgrading a tamper-resistant
device can be difficult and the device itself may
be expensive. All these limitations must be
weighed against the perceived advantages.

EXAMPLE SCENARIO
Together, the TPE concept and the CryPO pro-
tocol guarantee the integrity of the agent platform

Host
computer

Provides
TM

AO

Trust

TPE

Br

KTPE

KAO

RefAE

AEname

AE

Ref
TM
TPE

AE
AO

Br

Reference for an AE
TPE manufacturer
Trusted processing environment

Agent executor
Agent owner
Broker

Public

Public

Figure 4. CryPO protocol operations. The agent owner verifies the
policy and TPE mechanism of an agent executor through a broker,
then uses the TPE public key to transfer agents to the TPE for
processing.

F E A T U R E

46 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

to an agent owner. Further, they protect the
agent’s code and data against manipulation and
disclosure, both in transit and during execution.
These basic guarantees could be extended by for-
mulating new rules for the TPE policy. The poli-
cy itself must support the desired protection, and
it must be enforced on the TPE where the agent
executes. The policy can be verified with the help
of the certificate issued by the manufacturer, who
also assures its enforcement.

With this approach, the agent owner does
not need to trust the executor; it suffices to trust
the manufacturer to properly manufacture and

control its TPE so that the claimed guarantees
hold. We will now describe how the approach
can be used to implement agents with a limit-
ed lifetime as well as a mechanism that lets
them base their execution on results of previous
executions. (For a more detailed discussion of
protections that mobile agents can implement,
see Wilhelm.10)

The TPE Policy
Consider the case of a shopping agent that con-
tains data for more than one payment method
but should disclose data for no more than one of
them. For the sake of this discussion, assume fur-
thermore that the service provider’s TPE enforces
a well-defined set of rules that are detailed in its
policy. In the example scenario, the TPE enforces
the following six rules:

1. The TPE will never disclose or alter an
agent’s code.

2. Any invocation of the agent’s methods will
be executed exactly according to the code in
the agent.

3. An agent’s data can be accessed and mani-
pulated exclusively through the agent’s
interface. If the agent does not provide
methods to access a data item directly, its
value can, at most, be inferred from responses
to other method invocations.

4. Before a migration, an agent will obtain the
reference to the designated receiver’s TPE,
which also contains the policy. The agent can
decide whether it wants to be transferred, and
the current TPE will honor the agent’s
decision. The actual transfer follows the
CryPO protocol.

5. The TPE provides an internal clock with
reasonable accuracy (on the order of several
seconds). It synchronizes this clock with a
trusted time service and tells the agent
whether its synchronization was successful.

6. The TPE then provides a small amount of
nonvolatile storage for a fixed period of time
even to an agent that has terminated its
execution.

Protecting the Shopping Agent
With this policy in place, it is possible to imple-
ment a shopping agent that will not, under any
circumstances, reveal more than the data for one
payment method.

The agent’s overall behavior is this: It finds a

Related Work in Trusted Mobile Systems

Several researchers have explored the idea of using trusted hard-
ware to ensure a certain behavior of a system.

Herzberg and Pinter1 describe a device that can be used to pro-
tect software against piracy. Chaum and Pedersen2 describe a wal-
let architecture that carries a database with personal information
and that protects the database from unauthorized access (even from
the owner of the wallet). That system incorporates trusted hardware
(called the observer) comparable to the hardware proposed in our
approach, but it is explored in a very different setting.

A more recent approach by Yee and Tygar3 has much in com-
mon with the one we present here. However, the authors are more
interested in the classical issues of ensuring that the system func-
tions securely, while we are more interested in data protection.

Sander and Tschudin4 describe a completely different approach
to code protection that relies on the execution of encrypted func-
tions and does not need trusted hardware. Unfortunately, their
approach does not support arbitrarily complex functions and is
not sufficiently powerful for our application. A similar idea, pre-
sented by Hohl,5 allows arbitrarily complex functions but guaran-
tees protection only for a certain time interval.

References
1. A. Herzberg and S.S. Pinter, “Public Protection of Software,” Advances in Cryp-

tology: Crypto 85, Springer-Verlag, Berlin, 1985, pp. 158-179.

2. D. Chaum and T.P. Pedersen, “Wallet Databases with Observers,” Advances in

Cryptology: Crypto 92, Lecture Notes in Computer Science, Vol. 740, Springer,

New York, 1992, pp. 89-105.

3. B. Yee and D. Tygar, “Secure Coprocessors in Electronic Commerce Applica-

tions,” Proc. First Usenix Workshop on Electronic Commerce, Usenix Assoc.,

Berkeley, Calif., 1995, pp. 155-170.

4. T. Sander and C. Tschudin, “Toward Mobile Cryptography,” IEEE Symp. Security

and Privacy, IEEE Computer Soc. Press, Los Alamitos, Calif., 1998, pp. 215-224.

5. F. Hohl, “Time Limited Blackbox Security: Protecting Mobile Agents from Mali-

cious Hosts,” Mobile Agents and Security, Vol. 1,419, Lecture Notes in Com-

puter Science, G. Vigna, ed., Springer-Verlag, Berlin, 1998, pp. 92-113.

M O B I L E A G E N T S

47IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 2000

suitable offer, queries the service provider for the
supported payment methods, chooses from
these the owner’s preferred method, and final-
izes the purchase by disclosing the payment
information.

To implement the desired protection, the
agent actualizes the policy: Rules 1 and 2 guar-
antee basic protection of its code and ensure its
proper execution; rule 3 guarantees the protec-
tion of its data from undesired disclosure and
manipulation. Therefore, the owner can rely on
the agent’s programmed methods not to disclose
more than data for a single payment method.
Rule 4 guarantees that the agent knows the TPE
policy to which it is transferred and will thus not
be sent to a TPE that provides insufficient pro-
tection.

This level of protection, however, is not yet
sufficient for the shopping agent because the
executor could store the originally received and
encrypted agent before uploading it to its TPE,
thereby obtaining the agent’s data for the first
payment method through normal interaction.
The executor could then replace the agent on the
TPE with the stored version and conduct anoth-
er interaction with the agent, this time request-
ing data for another payment method.

To counter this attack, the agent must know
about possible previous executions on the TPE in
question. Rule 5 allows an agent containing an
expiration date to implement a limited lifetime of,
say, a few days or hours. When it arrives, the agent
requests the current time and determines whether
it is within its attributed lifetime. If its expiration
date has passed or the TPE did not successfully
synchronize its clock, the agent will abort. This
sets a time after which the agent can no longer be
executed.

Finally, rule 6 lets the agent store its identity
and its chosen payment method, during the lim-
ited lifetime, in the TPE’s nonvolatile storage.
The agent does all of this before it discloses the
payment information. If it finds its identity
already stored in the TPE, it refuses to disclose
more payment information. The limited lifetime
of the stored information removes expired entries
and prevents a memory overflow in the TPE.
The agent can be executed only during its life-
time, and it has information about its previous
executions.

If these guarantees are enforced, an agent can
be created to use several payment methods but
disclose only one of them.

TRUST IN THE MANUFACTURER
The mechanism introduced in the example sce-
nario requires the agent owner to trust the man-
ufacturer to properly design, implement, and pro-
duce its TPEs. We know of no way to enforce
correct behavior of the manufacturer, so our
approach might seem simply to replace one
required trust relationship with another. Never-
theless, we believe that this replacement has sev-
eral subtle implications.

The manufacturer is a specialized service
provider that primarily provides security devices
and has a good understanding of security and
privacy problems. Expert appraisal organizations
could control the relatively small number of
manufacturers (several hundreds) more easily
than they could the large number of possible
owners of a TPE (several millions). Further,
because TPEs are difficult to produce, manufac-
turers would be major corporations with
resources to build a good reputation. For exam-
ple, a manufacturer could invite external experts
to control its operation, similar to the approach
for quality assurance in ISO 9000. Finally,
because the manufacturer and the owner of the
TPE are independent, the manufacturer cannot
draw a direct benefit from a TPE that does not
enforce its policy.

We believe that these arguments of expertise,
controllability, good reputation, and lack of incen-
tive to violate policy are sound reasons to trust a
manufacturer to build reliable and powerful TPEs.
An agent executor, who may offer no incentive to
place trust in it, can leverage the trust an agent
owner has in a TPE manufacturer in order to con-
vince the agent owner to start a business transac-
tion with it. This favors the open systems philos-
ophy, by which any principal can become a
provider of services.

CONCLUSION
Agent owners currently face a dilemma when
they want to interact with an unknown and

Agent owners must trust
manufacturers to properly design,

implement, and produce TPEs.

F E A T U R E

48 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

untrusted service provider that needs confiden-
tial information to complete a transaction. We
have proposed an approach that lets a service
provider define a trust policy, which is actually
enforced through an execution environment
based on trusted and tamper-resistant hardware
purchased from a third-party manufacturer.
With this approach, the service provider can ben-
efit immediately from the trust that users have in
the TPE manufacturer.

While making it easier for a new service
provider to establish itself in the market, this
solution also allows an agent owner to protect
specific data in a mobile agent. It can thus
encourage the construction of open mobile agent
systems that allow any principal to become a ser-
vice provider. ■

ACKNOWLEDGMENTS
This research was supported by a grant from the EPFL (privacy

project) and by the Swiss National Science Foundation as part

of the Swiss Priority Programme Information and Communica-

tions Structures (SPP-ICS) under project number 5003-045364.

REFERENCES
1. D.B. Lange and M. Ishima, Program and Deploying Java

Mobile Agents with Aglets, Addison-Wesley, Boston, 1998.

2. J.E. White, “Mobile Agents,” Software Agents, J. M. Brad-

shaw, ed., AAAI Press/MIT Press, Menlo Park, Calif., 1997.

3. V.A. Pham and A. Karmouch, “Mobile Software Agents: An

Overview,” IEEE Comm., vol. 36, no. 7, 1998, pp. 26-37.

4. D.M. Chess et al., “Itinerant Agents for Mobile Computing,”

IEEE Personal Comm., vol. 2, no. 5, Oct. 1995, pp. 34-49.

5. C.G. Harrison, D.M. Chess, and A. Kershenbaum,

“Mobile Agents: Are They a Good Idea?” Mobile Object Sys-

tems: Toward the Programmable Internet, vol. 1,222 of Lec-

ture Notes in Computer Science, J. Vitek and C. Tschudin,

eds., Springer-Verlag, New York, 1997, pp. 25-47.

6. R.A. Rueppel, “A Formal Approach to Security Architec-

tures,” Proc. EuroCrypt, Springer-Verlag, Berlin, 1991, pp.

387-398.

7. T. Sander and C. Tschudin, “Toward Mobile Cryptogra-

phy,” IEEE Symp. Security and Privacy, IEEE Computer

Soc. Press, Los Alamitos, Calif., 1998, pp. 215-224.

8. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Hand-

book of Applied Cryptography, CRC Press, Fla., 1997.

9. R. Anderson and M. Kuhn, “Tamper Resistance—A Cau-

tionary Note,” Proc. Second Usenix Workshop on Electronic

Commerce, Usenix Assoc., Berkeley, Calif., 1996, pp. 1-11.

10. U.G. Wilhelm, A Technical Approach to Privacy Based on

Mobile Agents Protected by Tamper-Resistant Hardware, doc-

toral dissertation, École Polytechnique Fédérale de Lau-

sanne, Switzerland, 1999.

Uwe G. Wilhelm was a researcher and lecturer at the Operat-

ing Systems Laboratory (LSE) in the Computer Science

Department at the École Polytechnique Fédérale de Lau-

sanne (EPFL) at the time this article was written. He has

since joined T-Nova, Deutsche Telekom Innovationsge-

sellschaft mbH, as a researcher and project manager. Wil-

helm received a diploma in computer science from the Uni-

versity of Kaiserslautern in 1992 and a PhD from the EPFL

in 1999.

Sebastian M. Staamann is cofounder and co-CEO of Xtradyne

Technologies, a company specializing in security middle-

ware for extranets. From 1997 to mid-1999, he led several

research projects related to security in middleware-based

service platforms in the EPFL’s LSE at Lausanne. His

research interests are security and high availability.

Levente Buttyán is a research and teaching assistant and a PhD

student in the Institute for Computer Communications

and Applications (ICA) in the Computer Science Depart-

ment of the EPFL. He received an MSc in computer sci-

ence from the Technical University of Budapest in 1995.

Readers can contact the authors at u.wilhelm@telekom.de,

staamann@xtradyne.com, and levente.buttyan@epfl.ch.

you@computer.org
FREE!

All IEEE Computer Society members can
obtain a free, portable

e-mail alias@computer.org.

Select your own user name and initiate your
account. The address you choose is yours for
as long as you’re a member. If you change
jobs or Internet service providers, just update
your information with us.

Sign up today at
http://computer.org

