
Virtual reality
systems use digital
models to provide
interactive viewing.
We present a 3D
digital video system
that attempts to
provide the same
capabilities for actual
performances such as
dancing. Recreating
the original dynamic
scene in 3D, the
system allows
photorealistic
interactive playback
from arbitrary
viewpoints using
video streams of a
given scene from
multiple
perspectives.

V
irtual reality can become a medium of
great usefulness in entertainment and
education if it can incorporate record-
ings of actual events. While much

work has gone into creating synthetic environ-
ments that correspond to counterparts in the real
world, few have attempted to incorporate real peo-
ple and events into such environments. To achieve
this, an event of interest must be truthfully cap-
tured by real-time sensors such as video. From this
recording, faithful digital replications must then be
created such that the original performances can be
presented using standard computer graphics meth-
ods and viewed from arbitrary perspectives.

We present a system for generating and replay-
ing photorealistic 3D digital video sequences of
real events and performances. 3D video embodies
the truthfulness of video recordings and the inter-
activity of 3D graphics (see Figure 1). This system
employs Multiple Perspective Interactive Video
(MPI-Video),1 an infrastructure for the analysis
and management of, and interactive access to,
multiple video cameras monitoring a dynamical-
ly evolving scene such as a football game.

Related work
The problem of virtual view creation, or view

synthesis or interpolation of real scenes, has
received increasing attention in recent years.
Current approaches divide into two classes:
image-based and model-based. Image-domain
methods employ warping or morphing tech-
niques to interpolate intermediate views from real
images. Model-based methods first recover the
geometry of the real scene; the resulting 3D model
can then be rendered from desired viewpoints.

Our method belongs to the latter class.

Image-based methods
The best-known image-domain method is

Apple’s QuickTime VR.2 By capturing the 360-
degree views (cylindrical panoramic images) of an
environment from a fixed position, you can inter-
actively adjust view orientation by rendering the
corresponding portion of the panorama. Other
approaches use image warping. Chen and
Williams3 determined camera transformations
with pixel correspondences, then used morphing
to generate intermediate views. Skerjanc and Liu4

used known camera positions to obtain depth
information and generate virtual views. Chang
and Zakhor5 obtained depth information by using
an uncalibrated camera that “scans” a stationary
scene and transforms points on camera image
planes onto the plane of the virtual view. Seitz
and Dyer6 proposed exploiting monotonicity
along epipolar lines to compose physically valid
intermediate views without the need for full cor-
respondence information.

Several recent developments employ the
plenoptic function, which describes light rays vis-
ible at any point in space. McMillan and Bishop7

developed an image-based rendering system using
a 5D representation and cylindrical projections.
Levoy and Hanrahan8 and Gortler et al.9 used 4D
formulations of the plenoptic function for virtu-
al view synthesis. In general, image-domain
approaches need fewer computational resources
than 3D model-based approaches, but they often
limit supported virtual views to a narrow range.

Model-based methods
At a high level, a model-based approach to 3D

digital video creation involves three processes. First,
an event or a scene must be recorded by multiple
strategically located cameras. Our experiments used
17 cameras surrounding a stage area to record var-
ious performances. In a similar way, Virtualized
Reality (Kanade et al.10) used six to eight cameras,
placed around a hemispherical dome five meters in
diameter, to record an actor in motion. Fuchs et
al.11 used image data acquired by many cameras
installed around a small environment such as a
conference room. By contrast, Tseng and Anastas-
siou12 used images captured simultaneously by a set
of equidistant cameras with parallel axes, in verti-
cal and horizontal lineups.

The next step extracts a 3D model of the envi-
ronment using computer vision techniques.
Existing methods use depth maps as 2.5D repre-

18 1070-986X/97/$10.00 © 1997 IEEE

Virtual View
Generation for
3D Digital Video

Saied Moezzi, Li-Cheng Tai, and Philippe Gerard
University of California, San Diego

Immersive Telepresence

.

sentations of the scene’s geometry. Some
researchers10-12 have used stereo methods to com-
pute time-varying depth maps. Our system con-
centrates on accurate recovery of the 3D shapes of
dynamic or foreground objects with a volume
occupancy method.

The final step in generating 3D digital video is
to render the obtained model from the view of a
virtual camera. In systems described by Kanade et
al.10 and Fuchs et al.,11 stereo-based depths are
already aligned with the pixels of their corre-
sponding images. The former uses the depth map
from the closest camera, based on the viewer’s
position, to render the scene. The latter updates,
maintains, and displays the acquired depth map
for the viewer’s current position and orientation.
Similarly, Tseng and Anastassiou12 generated vir-
tual images by interpolating real views scanline by
scanline based on disparity information.

By comparison, our approach creates true 3D
models with fine polygons, each separately col-
ored (thus requiring no texture-rendering sup-
port), and the viewing position plays no role in
the modeling process. Our 3D models can use
standard object formats such as VRML (Virtual
Reality Modeling Language) delivered through the
Internet and viewed with VRML browsers (see
Figure 2 and Figure 3). Our approach is more suit-
able in the client-server scenario because, unlike

19

Figure 1. Reality

rendering. Given

multiple camera images

of the same scene (top),

the 3D shapes of the

scene object are first

reconstructed (middle),

then the surface colors

are determined,

resulting in a

photorealistic 3D video

sequence (bottom).

Figure 2. 3D video

sequence placed in a

synthetic environment.

Figure 3. 3D video

sequence viewed with

an Open Inventor

browser.

Video

Actual
camera
images

3D modeling

3D digital
scene model

Color mosaicing
Immersive video

Virtual
camera
images

.

earlier approaches, real views need not be trans-
ferred to the client, significantly reducing the
bandwidth required.

3D digital video creation and playback
Our system, Immersive Video,13 converts mul-

tiple video streams of a given scene into a 3D real-
istic dynamic model sequence for interactive
viewing (as shown in Figure 1). Stages involved
include data acquisition, camera calibration,
object segmentation, 3D model creation, color
mosaicing, and interactive playback.

In data acquisition, multiple perspective cam-
eras record the scene. Camera calibration deter-
mines the positions and orientations of all cameras
in a global coordinate system, which then facili-
tates assimilating object information from all cam-
era views. The object segmentation process
computes the projection of dynamic objects in
every frame, in each camera. For every set of syn-
chronized video frames, model creation recon-
structs the 3D shapes of all dynamic objects in the
scene. Color mosaicing “paints” these time-vary-
ing 3D geometric models into realistic replications
of actual objects. The resulting 3D video sequence
is then rendered from a virtual camera that the

viewer can control interactively during playback.
Detailed explanations of each stage follow.

Data acquisition
Data acquisition involves recording an event

from appropriate perspectives. Important consid-
erations include camera placement, video syn-
chronization, scene illumination, and camera
calibration. Camera placement influences shape
determination. Our experience indicates the fol-
lowing considerations:

❚ Cameras should be arranged to give, as closely
as possible, complete coverage of the scene
such that any part of the scene is visible by two
or more cameras.

❚ Cameras should be evenly distributed across
some imaginary sphere covering the center of
interesting objects to maximize the resolution
power for shape determination, as discussed later.

Accurately synchronizing frames from all cam-
eras plays a crucial role in the quality of the final
results. We found it easy to achieve video syn-
chronization by providing a common time refer-
ence in the recordings using an event visible to all
cameras (such as turning lights off and on).

In earlier experiments,13 we recorded outdoor
and indoor events without consideration for illu-
mination. Problems in separating foreground
dynamic objects from the background led us to try
a studio setup (Figure 4 and Figure 5), where we
can control illumination to facilitate good separa-
tion of objects (in our case, the performers) from
the background. One possible way to simplify fore-
ground-background separation is to intensely illu-
minate the performers in the scene (as shown in
Figure 5). Intense lighting allows a smaller camera
aperture, hence less-illuminated background
objects such as walls, cameras, tripods, and so forth
will not appear in the recordings. Cameras must
also be white-balanced; this calibrates the color
parameters of all cameras, an important issue in
the accuracy of the final colored 3D frames.

During data acquisition, for calibration purposes,
an object of known geometry must be placed in the
scene. Obtained from each camera view, images of
this object can provide the basis for determining
each camera’s position and orientation.

Camera calibration
External calibration determines a camera’s

position and orientation with respect to some

20

IE
EE

 M
ul

ti
M

ed
ia

Figure 4. Standard

studio lighting.

Figure 5. Lighting for 3D

video data acquisition.

.

world coordinate system. Accurate results are crit-
ical for assimilating information from multiple
cameras and hence accurately determining
objects’ shapes and colors. Camera calibration
requires a set of image points whose world coor-
dinates are known. In our approach, cameras
placed at the desired locations remain stationary
and need to be calibrated only once.

We use Tsai’s coplanar calibration algorithm,14

which requires a minimum of five coplanar points
and their 3D world coordinates. Grid points on a
calibration object (such as a cubic box with unit
markers), placed in the scene and recorded by all
cameras, can be used for this purpose. Our inter-
active calibration software allows us to manually
select corresponding image and model points for
each camera and obtain their positions, axes of
rotation, and pitch angles with respect to a refer-
ence world coordinate system.

The accuracy of the results for each camera can
be examined by rendering the calibration object
from the computed position and orientation and
overlaying the rendering on top of the actual
image. Significant errors often occur during the
first few tries, so several iterations of the point
selection and verification processes are needed to
obtain satisfactory results.

Object segmentation
During the object segmentation phase, each

frame of the digitized sequences from all available
cameras is processed and image regions belonging
to foreground objects are computed. Foreground
objects are detected by computing the difference
between the current frame and a background
frame. For a given camera, the background frame
represents the scene captured by that camera
when no dynamic object was present in the envi-
ronment. This process results in a set of binary
images indicating object versus background.

The controlled environment of the studio
setup can be exploited to acquire video sequences
that produce highly accurate binary images.
Ideally, the background appears uniformly black,
while foreground objects have high-intensity col-
ors and can be unambiguously determined. This
ideal condition results from careful control of the
lighting and background materials.

Model creation
Given the position and orientation of all cam-

eras and the synchronized binary frames comput-
ed by the above process, we can now recover the
object shape at each time instance. We use a vol-

ume intersection method to recon-
struct an object’s 3D shape. We
divide the volume enclosing the
scene into small elements (voxels),
and then for each frame iterate
through all voxels to determine if at
that instant the voxel is occupied by
the object (Figure 6).

This algorithm, given in Figure 7,
assumes all voxels are occupied ini-
tially. For each voxel, we calculate
the corresponding pixel location
(x, y) in each camera’s image plane. Checking the
binary images, we determine whether (x, y) is part
of the objects or the background. In our current
algorithm, if one voxel maps to a background
(empty) pixel in any binary image, the voxel is
declared “empty.” Assuming perfect camera cali-

21

Jan
uary-M

arch
 1997

Camera 2

Camera 3

Voxel A (occupied)

Camera image plane
Camera 1

Voxel B (empty)

Figure 6. Voxel occupancy

determination. The scene is filmed by

three cameras. The camera image

planes show the respective binary

images, with white corresponding to

dynamic objects and black to empty

space. Two sample voxels are shown.

Voxel A projects to “object-occupied”

regions in all cameras and is

determined occupied; Voxel B projects

to “empty” regions in cameras 1 and 2

and is declared empty.

for each frame f do
Initialize all voxels to be “occupied”
for each voxel v do

for each camera c do
project the center of the voxel back into
the camera view plane and determine
the coordinates (x,y of the corresponding
pixel p
if in the segmented image of frame f and
camera c, p is empty

then
set v to be empty
goto ENDINNERLOOP

fi
end
ENDINNERLOOP:

end
end

Figure 7. Algorithm to

determine voxel

occupancy.

.

bration, this approach accurately detects all occu-
pied voxels, but not all empty ones. Thus our
model can contain more volume than that actual-
ly occupied. We can eliminate such “extra” voxels
using depth maps computed via stereo methods.

This shape determination algorithm is very
sensitive to calibration errors. Small deviations in
camera parameters can translate to “losses” of
many actually occupied voxels. In the future, we
plan to develop a more robust approach using sta-
tistical methods. Another shortcoming of this
approach is that it cannot eliminate voxels inside
a concave portion of an object. Since such regions
may be occluded in all available camera views,
they are still marked “occupied” after volume
intersection. Good camera distribution and cov-
erage will minimize this problem and maximize

the ability to resolve voxel occupancy correctly.
This algorithm can be tuned for speed or quali-

ty of the model by adjusting the voxel size. We can
quickly visualize the object shape using large vox-
els or build accurate models using small voxels and
longer computation time. This customizability
allows us to construct models suitable for various
applications from low-resolution video games to
high-resolution 3D movies. For example, for a
1m × 1m × 2m volume covered by 17 cameras,
using a high-powered graphics workstation (such
as an SGI Onyx Reality Engine 2), we can compute
5-cm voxel models in less than 30 seconds. A high-
quality 1-cm model takes about 15 minutes.

After determining all occupancies, we have a
set of filled voxels. Because we are interested in
the shape only, we can ignore the information
about the voxels internal to an object to reduce
the data size. One method for internal voxel elim-
ination is the Marching Cubes15 algorithm, which
also converts the voxel-based model into a trian-
gle-based surface representation. We then paint
the shape models, either voxel- or surface-based,
using color mosaicing.

22

IE
EE

 M
ul

ti
M

ed
ia

Shape model

Model rendering
from each camera's
viewpoint

Real camera
images

r, g, b

Individual
shape model
element
(no color info)

"Index-colored"
element

+

+

+

reads r, g b

gets n

Portion
of the real
images
gives real color
r, g, b

Color
element n
with r, g, b

Averaging

Final 3D colored
model

All elements
together
construct
the final
model

Model elements
are colored with
their indices,

and then model
is rendered
from each
camera view

Corresponding

,

Figure 8. Color mosaicing “paints” the object model with color information

from real camera views. The model is first painted with colors that are actually

mappings of element indices. Then rendering from real camera views

establishes the correspondences between model elements and pixels in real

camera images. The corresponding pixels in turn yield true color values for each

element on the object surface.

.

Color mosaicing
To paint the 3D model, one

approach uses the real camera images
as textures and maps them onto the
model. Our earlier work13 shows this
method can generate realistic ren-
derings but requires high-powered
graphics hardware with powerful tex-
ture-mapping support. To make 3D
video playback practical on general-
purpose machines and eliminate the
need to transfer original camera
streams to every client (which
requires significant bandwidth), we
decided to encode color information
with elements (voxels or triangular
faces) of the 3D model, which can be
rendered on systems with simple
polygon-based 3D graphics. Using
small triangles or voxels, we can fully
capture the original textures in the
real images.

To recover the shape model’s col-
ors, we need to establish the corre-
spondence between shape model
elements and pixels in the camera
images. A naive approach will iterate
through all elements to calculate
their projections on each camera image plane, and
in case of no occlusion, the pixels will yield the
proper color values. Projection calculation and
occlusion check are expensive and slow processes.
To speed up color determination, we take advan-
tage of the high-speed graphics hardware and turn
the video memory into a data processing buffer.

Our approach, illustrated in Figure 8, first assigns
each element a unique index that is then mapped
onto a point in the RGB color space (for the algo-
rithm, see Figure 9). Each element is then uniquely
colored with its RGB value. For each camera we ren-
der the shape model from that camera’s viewpoint
and save the resulting image in memory.
Comparing each rendering with its corresponding
real camera image pixel by pixel, we can determine
what shape elements appear at certain pixels, which
in turn gives the proper colors of the elements. For
the voxel-based model we can also eliminate vox-
els not rendered in any camera views because they
are not visible (that is, they are internal to objects).

One issue in the color mosaicing process con-
cerns how to combine multiple color information
when one element is visible in several cameras. A
number of approaches are possible. For each ele-
ment we can average colors or select cameras

based on some measure of “closeness.” For exam-
ple, we can use the camera view with the smallest
normal angle (the camera closest to directly fac-
ing the element) or the closest distance.

After trying different approaches, we obtained
the best results with area-weighted averaging, or
averaging color information from different cam-
eras, weighted by the area. That is, if an element
occupies a large area in a camera view plane, the
color information from this camera should be
more accurate and have more weight. This
method has the benefit of blurring discontinuities
in camera coverage boundaries due to color bal-
ancing errors.

Color mosaicing is a general algorithm and
works well for both voxel- and surface-based mod-
els. Its only limitation is the color depth of the
video memory. For 24-bit displays, it can handle
up to 224 elements, which we believe is more than
necessary for most 3D scene models (in our exper-
iment, a high-resolution model of a person con-
tains just 70,000 elements).

Interactive playback
Once the models for individual frames are

available, they can be treated like ordinary 3D

23

Jan
uary-M

arch
 1997

for each shape element (voxel or triangle) t with index it do
// assume a 24-bit RGB color space with 8 bits and 28 = 256

shades for each color channel
n = it, r = n/(256 × 256) (integer division)
b = n – g × 256
assign color (r,g,b,) to t

end
for each camera c do

render the model from the view point of camera c with black
background and save the resulting image as Vc

end
for each element t do // initialize color accumulators and counter

of each element
R[t] = 0, G[t] = 0, B[t] = 0, k[t] = 0

end
for each camera c do

for each pixel p in Vc do
if p is not black (i.e., has some color (rV, gV, bV))

then
i = rV × 256 × 256 + gV × 256 + bV

get the element t whose index is i
let (rI,gI,bI) be the color of pixel p in the real
image Ic from camera c
// sum up colors corresponding to t
R[t] = R[t] + rI, G[t] = G[t] + gI, B[t] = B[t] + bI

// accumulate number of pixels corresponding to t
k[t] = k[t] + 1

fi
end

end
for each element t do

r = R[t]/k[t], g = G[t]/k[t], b = B[t]/k[t]
assign color (r,g,b,) to t

end

Figure 9. The color

mosaicing algorithm

determines the color of

each shape element.

.

graphics objects and rendered with standard
graphics libraries. A simple scheme for real-time
playback involves loading them into memory and
switching between frames at a controllable rate, a
function supported by Open Inventor browsers.
Many issues in 3D video playback remain unre-
solved; we discuss them later in this article.

Experiment and results
For the experimental setup, we chose a TV stu-

dio because the environment can be precisely con-
trolled. We arranged the lights to concentrate on
a 2m × 2m region so that outside areas appeared
dark, facilitating good segmentation. We arranged
17 cameras to give complete coverage around the
region from the left, right, front, back, and top. A
karate player served as the subject of our video
and performed various actions within our desig-
nated area.

We digitized eight seconds of video, which we
then processed for object segmentation. We man-
ually corrected certain frames to clean up shadow
and reflection effects. C++ programs using the
Open Inventor library implemented the model
creation and color mosaicing processes to gener-
ate 240 3D models. The resulting 3D sequence can
be viewed with standard Open Inventor and
VRML browsers such as Webspace (see Figure 3)
and combined with synthetic environments, as in
Figure 2 where a virtual “arena” provides the stage
for the 3D performance.

Figure 10 compares the created model and a
real camera view for a chosen frame. While some
artifacts are apparent if you look closely, the model
captures the fine texture details of the original
image. These results demonstrate the success of
our approach and its potential for 3D digital video.

To evaluate the quality of our result, we com-
pare, for each camera, the real image and the cor-
responding virtual view. By calculating the
percentage of area containing mismatches in the
virtual image, we obtain a measure of errors in the
3D model.

This measurement ranged from 5 percent to 29
percent. The worst results are found in top and
wide-angle views. Close-up viewpoints give an
error measurement of less than 5 percent. Most
errors consist of missing parts or shifts between
the model and the real images and arise from
problems in digitization (where horizontal shifts
are introduced between frames), calibration, and
segmentation. Thus close-up views work best for
accurate 3D model construction. Using profes-
sional studios and equipment (such as the TBC, or
time base corrector) can also reduce error sources.

Discussion
Making 3D video a practical medium requires

reducing the complexity and amount of data. In
particular, we must address the issues of model
representation, rendering speed, and temporal
compression. Significant trade-offs exist between
voxel- and surface-based models. Graphics hard-
ware tends to be optimized for rendering surfaces.
In the Open Inventor formats that we use, voxel
models result in more process overhead and storage
space than surface models. One benefit of voxels,
however, is their simplicity, an advantage when
considering compression.

As in traditional digital video, data size presents
a significant problem. At 1-cm voxel resolution,
the model of a single person in any pose has about
17,000 voxels, or 70,000 triangles. Assuming 30
frames per second, storage needs quickly reach the
gigabyte scale for several seconds of 3D video of
this person. As neighboring frames are typically
similar, temporal compression can produce signif-
icant savings in data size. There are several poten-
tial approaches to compressing 3D digital video, as
follows.

Temporal differences. We can transmit the
changes (additions or deletions) between consec-
utive frames. This method is easily applicable to
voxel-based models.

24

IE
EE

 M
ul

ti
M

ed
ia

Figure 10. Comparsion

between a real camera

image (right) and the

constructed 3D model

rendered from the same

viewpoint of the camera

(left).

Digital model Real camera image

.

2D slices. Slicing a 3D model along the Y axis
gives us a 2D image for each Y value. Then we can
simply compress these images using conventional
methods like JPEG or even MPEG. Another possi-
bility is to compute bounding rectangles (or poly-
gons) for every slice. We can then transmit the
information related to the object by a hierarchi-
cal representation inside the bounding rectangle.
An advantage of 2D slices is that we can use tem-
poral correlation (on the same slices of consecu-
tive frames) or spatial correlation (on neighboring
slices) for compression. This representation also
allows us to create a mathematical function that
approximates the contour and represents it as a
mathematical curve.

Transforms in the 3D domain. By consider-
ing voxels the 3D equivalent of pixels, we could
apply a domain transform to this 3D array to
determine a quantizer and an encoder that would
permit a scalable display. Then, if we decide to
transmit only a coarse representation of our
model to display it on a slow machine, we could
transmit only the low-frequency parameters. JPEG
and MPEG methods are good candidates, but may
waste a lot of time transmitting coding of empty
spaces because the bounding box in which the
model is calculated itself contains a lot of empty
space. It might be more effective to use a 3D
wavelet transform and zero-tree coding16 instead.

Efficient data organization. We can use index
tables and store color indices instead of the full col-
ors. Another approach is to use quantization to
reduce bits required for color and coordinate values.

Geometric compression approaches. These
include lossy compression by rounding coordi-
nates and polygon mesh simplification.

In selecting a compression and representation
scheme, one issue cannot be overlooked: The
decoding and rendering speed of the chosen
scheme is a function of the graphics hardware archi-
tecture. Voxels can be more easily compressed, but
polygon surfaces have an advantage over voxels for
rendering speed in graphics workstations accessible
to us. The ideal scheme has to support quick decod-
ing yet generate representations that can be passed
quickly to the graphics pipeline and rendered for
real-time video performance.

Conclusions and future work
Our 3D digital video system creates realistic

time-varying 3D model sequences from multiple

video streams. The 3D sequences allow full repre-
sentation of the original dynamic objects and sup-
port new types of interaction for the viewer. This
new medium has the potential to revolutionize
the use of video in interactive television, video
games, and the entertainment industry.

Many issues remain that we hope to address in
future research. Of high priority is the develop-
ment of appropriate temporal compression
schemes to reduce data size. Encoding and decod-
ing of 3D digital video will require more research
and standardization, but we believe the benefits
will justify the efforts. MM

References
1. P. Kelly et al., “An Architecture for Multiple

Perspective Interactive Video,” Proc. ACM Multimedia

95, ACM Press, New York, 1995, pp. 201-212.

2. S.E. Chen, “Quicktime VR—An Image-Based

Approach to Virtual Environment Navigation,” Proc.

Siggraph 95, ACM Press, New York, 1995, pp. 29-38.

3. S.E. Chen and L. Wiliams, “View Interpolation for

Image Synthesis,” Proc. Siggraph 93, ACM Press,

New York, 1993, pp. 279-288.

4. R. Skerjanc and J. Liu, “A Three-Camera Approach

for Calculating Disparity and Synthesizing

Intermediate Pictures,” Signal Processing: Image

Comm., Vol. 4, No. 1, Nov. 1991, pp. 55-64.

5. N.L. Chang and A. Zakhor, “Arbitrary View

Generation for Three-Dimensional Scenes from

Uncalibrated Video Cameras,” Proc. IEEE Int’l Conf.

on Acoustics, Speech, and Signal Processing, IEEE

Press, Piscataway, N.J., pp. 2455-2458.

6. S.M. Seitz and C.R. Dyer, “Physically Valid View

Synthesis by Image Interpolation,” Proc. Workshop

on Dynamic Representation of Visual Scenes, IEEE

Press, Piscataway, N.J., 1995, pp. 18-25.

7. L. McMillan and G. Bishop, “Plenoptic Modeling: An

Image-Based Rendering System,’” Proc. Siggraph 95,

ACM Press, New York, 1995, pp. 35-46.

8. M. Levoy and P. Hanrahan, “Light Field Rendering,”

Proc. Siggraph 96, ACM Press, New York, 1996, pp.

31-42.

9. S.J. Gortler et al., “The Lumigraph,” Proc. Siggraph

96, ACM Press, New York, 1996, pp. 43-54.

10.T. Kanade, P.J. Narayanan, and P.W. Rander,

“Virtualized Reality: Concepts and Early Results,” IEEE

Workshop on Dynamic Representation of Visual Scenes,”

IEEE Press, Piscataway, N.J., 1995, pp. 69-76.

11.H.Fuchs et al., “Virtual Space Teleconferencing

Using a Sea of Cameras,” Proc. 1st Int’l Symp. on

Medical Robotics and Computer Assisted Surgery,

1994, pp. 161-167.

12.B.L. Tseng and D. Anastassiou, “Multi-Viewpoint

25

Jan
uary-M

arch
 1997

.

Video Coding with MPEG-2 Compatibility,” IEEE

Trans. Circuits and Systems for Video Tech., Vol. 6, No.

4, Aug. 1996, pp. 414-419.

13.S. Moezzi et al., “Reality Modeling and Visualization

from Multiple Video Sequences,” IEEE Computer

Graphics and Applications, Vol. 16, No. 6, Nov. 1996,

pp. 58-63.

14.R.Y. Tsai and R.K. Lenz, “A New Technique for Fully

Autonomous and Efficient 3D Robotics Hand/Eye

Calibration,” IEEE Trans. Robotics and Automation,

Vol. 5, No. 3, June 1989, pp. 345-358.

15.W.E. Lorensen and H.E. Cline, “Marching Cubes: A

High-Resolution 3D Surface Construction

Algorithm,” Computer Graphics, Vol. 21, No. 4, July

1987, pp. 163-169.

16. J.M. Shapiro, “Image Coding Using the Embedded

Zerotree Wavelet Algorithm,” Mathematical Imaging:

Wavelet Applications in Signal and Image Processing

(Proc. SPIE 2034), SPIE, Bellingham, Wash., 1993,

pp. 180-193.

Saied Moezzi is a project scientist

in the Department of Electrical

and Computer Engineering at the

University of California, San

Diego, where he leads several

research efforts in immersive 3D

video, telepresence, and interactive visual information

systems for medical images. He received a BS in electrical

engineering in 1980 and an MS degree in computer sci-

ence with honors in 1983 from the University of Kansas,

and a PhD in computer science and engineering in 1992

from the University of Michigan.

Li-Cheng Tai received a BS and

an MS in computer engineering

from the University of California,

San Diego. Currently he is pursu-

ing a PhD at UCSD. His research

interests include open hyperme-

dia systems, virtual view synthesis for 3D interactive

video, and human-computer interaction in multimedia

systems.

Philippe Gerard is an engineer-

ing graduate student at the

Conservatoire National des Arts et

Métiers, Paris. He earned an MBA

from ISG-Paris in 1993 and an MS

in audiovisual techniques from the University of

Valenciennes in 1989. His industry work has included

video engineering, production, and post-production.

Research interests include digital video editing tech-

niques and videoconferencing.

Contact Moezzi at the Visual Computing Laboratory,

Department of Electrical and Computer Engineering,

University of California, San Diego, 9500 Gilman Drive,

La Jolla, CA 92093-0407, e-mail moezzi@ece.ucsd.edu.

26

IE
EE

 M
ul

ti
M

ed
ia

.

