
1070-986X/97/$10.00 © 1997 IEEE 51

.

V
ideo-on-demand (VoD) combines
the service quality of cable TV with
the interaction capabilities of a VCR
(see Figure 1). Its birth followed

technical advances in information retrieval,
consumer electronics, networking, and digital
signal processing, and the convergence of com-
munications, comput-
ers, and entertainment.
With VoD services,
customers may select
programs from mas-
sive, remote video
archives, view them
when they wish, and
interact with the pro-
grams using VCR-like
functions, such as fast-
forward and rewind. A
true VoD system satis-
fies three important
requirements: viewing
any video, at any time,
using any VCR-like
user interactions. A

system that does not satisfy all these requirements
is called a near-VoD system.

To compete with existing video rental services
requires true VoD, which most existing VoD field
trials1 do indeed provide. One solution for true
VoD assigns a dedicated video stream to each cus-
tomer. (A video stream typically consists of video
segments retrieved by a read-write head from the
video server, transported over a high-speed net-
work, and delivered to set-top boxes at the cus-
tomer’s premises.) This gets expensive, since each
stream requires high-speed data transport. For
example, existing VoD field trials typically deliv-
er MPEG-1 or MPEG-2 compressed video, requir-
ing 1.5 Mbps and 3 Mbps, respectively. To be
commercially viable, VoD service pricing must
compete with existing video rental pricing.

Batching2 can reduce the per-user video deliv-
ery cost. (Batching here does not necessarily mean
waiting a certain amount of time before serving
user requests—it simply means resource sharing.)
In a batching approach the same video stream is
multicast to, and shared by, multiple users. This
sharing, however, means that one user’s interac-
tion affects all other users on the same stream. For
example, to satisfy one user’s desire to rewind the
video, all other users sharing the same stream
would have to rewind. This won’t work. We want
to make the sharing transparent to users while
allowing true user interactivity.

Existing batching solutions fail to achieve this
goal. For example, staggered VoD3 broadcasts mul-
tiple copies (streams) of the same video program
at staggered times, with one stream serving multi-
ple users. Jumping to a different stream is used to
perform a user interaction. However, not all user

The Split and
Merge Protocol
for Interactive
Video-on-
Demand

Wanjiun Liao
National Taiwan University

Victor O.K. Li
The University of Hong Kong

A true video-on-
demand (VoD)
system lets users
view any video
program, at any
time, and perform
any VCR-like user
interactions. To
reduce the per-user
video delivery cost,
multiple users may
be batched and share
the same video
stream. Existing
sharing schemes do
not allow true VoD. A
new protocol, called
Split and Merge
(SAM), does allow
true VoD. SAM also
provides an
innovative way to
merge these
individuals back into
the batching streams
when they resume
normal play mode.

Video
server

Switch

Switch

Set-top box

Transport network

Figure 1. A VoD system combines the service quality of cable TV and the

interaction capabilities of a VCR.

interactions can be performed by jumping streams.
Consider, for example, fast-forward—none of the
streams is in fast-forward mode. Moreover, even
though this system can mimic some interactions,
it might not deliver exactly the effect the user
wants. For example, given a staggering interval of
5 minutes, you can jump forward for, say, 5, 10, or
15 minutes, but not for 7 minutes.

For staggered streams Almeroth and Ammar4

used the set-top box buffer to provide limited
interactive functions. Yu et al.5 developed the
look-ahead scheduling with set-aside buffer pro-
tocol, which attempts to take advantage of batch-
ing but only supports the interactive operation of
pause and resume. Another approach6 creates a
new stream to handle user interactions for each
interactive user, who will hold onto this stream
until disconnection. This approach will work only
if very few users issue interactive operations.
Otherwise, the system may start in a batch mode,
but will degrade to a nonsharing mode as more
and more users split off into their own streams. In
a different approach,7 Golubchik, Lui, and Muntz
proposed adaptive piggybacking. This involved
changing the display rates of user requests to
batch the nearby streams, thereby reducing the
aggregate I/O bandwidth on the server.

In this article we describe a new protocol, called
Split and Merge (SAM), which makes the sharing
of a video stream transparent to users while allow-
ing true user interactivity. Initially the protocol
handles user interactions by splitting off the inter-
active user to a new stream. Then it provides an
innovative way of merging these individuals back
into the batching streams. The SAM protocol
therefore significantly improves system resource
use and the number of simultaneous users. More
importantly, it enables true VoD services.

SAM works in various network infrastructures,
including telephone, cable TV, direct broadcast
satellite, wireless cable, local area, and the
Internet. For this article, we assume a generic net-
work protocol running on a generic network infra-
structure. The network protocol must support
multicasting operations. For example, we can run
Asynchronous Transfer Mode (ATM) on a Hybrid
Fiber Coax network. In addition, for synchroniza-
tion purposes all users can share some buffering,
typically located at the access node.

The Split and Merge (SAM) protocol
The SAM protocol aims to provide true VoD

services while reducing the per-user video deliv-
ery cost or, alternatively, increasing the number
of users served with given system resources. We
can summarize SAM as follows:

Split and Merge (SAM) refers to the split and
merge operations incurred when each user
performs user interactions. These operations
enable any kind of user interactions. SAM
starts by serving customers in a batch. When
a user in a batch initiates a user interaction,
the protocol splits off the interactive user from
the original batch and temporarily assigns
that user to a new video stream. With a dedi-
cated video stream, the user can perform any
interactions desired. As soon as the user inter-
action terminates, the system merges this user
back to the nearest ongoing video stream.

Since user interactions typically last a short
time compared to normal play, we divide the sys-
tem’s video streams into two types, service and
interaction. Service streams (S streams) serve users
during normal playback. Typically a multicast
stream, an S stream serves multiple users simulta-
neously. Interaction streams (I streams) satisfy some
user requests for VCR-like interactions, one I
stream for one user.

The SAM protocol’s fundamental principles
follow:

1. SAM delivers true VoD services while taking
full advantage of batching. To begin, a num-
ber of users are batched and served by an S
stream. Each user may initiate user interac-
tions, but then splits from the original S
stream and is temporarily allocated to an I
stream for interaction. When done, the user
merges back to an ongoing S stream. Note that
the pause operation does not require an I

52

IE
EE

 M
ul

ti
M

ed
ia

.

2 3 41 Stream 2

2 3 41 Stream 1

1 2

Retrieves
from
buffer

Feeds buffer

Buffer filled in this direction

Figure 2. Illustration of

how the synch buffer

synchronizes two

streams.

stream. Such split-and-merge operations
repeat whenever a user performs interaction,
until the original S stream terminates.

2. The system may block a user request for VoD
service if all S streams are occupied. Once the
system has admitted the request, however, it
will not block further user interactions even if
all system resources are busy. The request waits
until the resource becomes available. During
the wait, a user continues normal playback,
switching to the user interaction mode when
resources become available.

3. SAM is an adaptive protocol. As demand for a
particular video increases, the system will gen-
erate more S streams for that video. As demand
wanes, so do S streams. Although SAM works
in any scenario, it works most efficiently in a
system where some videos are very popular
and accessed by many users.

The synchronization (synch) buffer, shared by all
users, is an important component of SAM. Each
user resuming normal play after a user interaction
requires a video stream (of the same video), possi-
bly offset in time from the original S stream. For
example, a jump forward by seven minutes neces-
sitates a video stream that started seven minutes
before the original S stream. Since no such real
stream may exist, SAM attempts to create a virtu-
al one by using an ongoing S stream and the
synch buffer. First the protocol identifies the clos-
est ongoing S stream—the one with the smallest
offset in time from the virtual stream. This real S
stream feeds the synch buffer, and the virtual
stream retrieves content from the synch buffer
after the required time offset.

The synch buffer is circular. Each circular
buffer has two operation ends, one for putting in
video contents and the other for taking them out.
The synch buffer’s main role involves creating a
virtual video stream for resource sharing.

Figure 2 illustrates how the synch buffer syn-
chronizes two streams. To help explain the opera-
tion, we divided the streams into artificial
segments labeled 1, 2, and so on. Stream 1 is a real
and ongoing video stream. We want to create
another video stream—stream 2 in the same fig-
ure—with a start time two segments behind
stream 1. Instead of allocating system resources to
generate this new video stream, stream 1 with two
segments’ worth of synch buffer is used to create
stream 2—a virtual stream two segments offset in

time from stream 1. At any particular time, stream
1 will feed the synch buffer at one end, and
stream 2 will retrieve buffer contents from the
other end. Figure 2 shows the buffer contents as
stream 2 starts to retrieve the first segment.

The synch buffer’s actual location depends on
the network infrastructure. For large-scale VoD
(residential, for example) with a typical network
infrastructure as shown in Figure 3, it might sit at
the access nodes. If so, both server and network
bandwidth can be shared. For small-scale VoD
(enterprise, for example) running on a local area
network, the synch buffer might be located at the
video server.

The system dynamically allocates to each user
a synch buffer up to SB × Rp, where SB equals the
maximum duration of video storable per user and
Rp represents the stream’s playback rate. The size
of SB is a system design parameter. Even though
each user can claim up to a maximum synch
buffer size, in general usage remains much less.
For example, in Figure 2 the maximum synch
buffer size per user is four segments, while the
actual usage is two segments.

The flowchart in Figure 4 illustrates SAM’s
operation. Suppose a request for video i arrives. If
a batch is already forming for video i, this request
joins the batch and waits for the end of the batch-

53

O
cto

b
er-D

ecem
b

er 1997

.

 Local
server

Switch

Access network

Switch

Backbone network
Switch

.......

Service
gateway

Switch

Remote
serverVideo archives

AN

Figure 3. VoD system

architecture. (AN

stands for access node.)

ing interval. At that time the system initiates an S
stream to serve the batch. Otherwise, the new
request has to form a new batch. It will request an
S stream from the pool of available S streams and
start a timer of duration Wi, the batching interval.
If no S stream is available, the request is blocked.
The user may then try again later or just decide
not to watch the video. If an S stream is available,
it is reserved. After the batching interval Wi, an S
stream is initiated to serve this user plus all other
requests for video i that have arrived during the
batching interval. Thus, after the system accepts
a user request, the maximum waiting time is Wi.
The actual value of Wi is a system design parame-
ter, corresponding to the maximum tolerable
waiting time before a user reneges from the sys-
tem. Note that each batch is initiated on demand
rather than by periodical broadcasting, as in stag-
gered VoD.

Note that even though the SAM flowchart

shows an initial batching delay, this is not neces-
sary. One variation of this basic scheme (discussed
later) avoids the initial batching delay.

SAM lets users interact with video programs via
VCR-like functions including play, stop, pause,
resume, fast-forward, rewind, jump-forward, and
jump-backward. The jump operations let the user
jump directly to a particular video location.
Although not supported in current VCR
machines, such random access operations, togeth-
er with fast-forward and rewind, will probably
provide the most desirable search mechanism for
digital video services. We will now describe how
SAM supports these interactive operations.

Jump-forward and jump-backward
Figure 5 shows the flowchart for the jump-for-

ward, jump-backward operation. The following
discussion focuses on jump-forward, since SAM
handles jump-backward similarly.

First the system determines if an eligible S
stream exists. We can best explain the concept of
an eligible S stream with a figure. In Figure 6, the
stream labeled original S serves the user accessing
video i. At time to the user issues a jump-forward
operation. Suppose the user jumps to a point in
the video t1 seconds in the future. (Note that if t1

would carry the user beyond the end of the video,
the jump instead stops at the end of the video.) In
Figure 6, t1 seconds corresponds to the beginning
of segment 6. This spot, known as the play point,
is the video location at which the user resumes
normal play after interaction.

The system looks at all ongoing S streams for
video i to find an eligible one for the user to merge
into. An S stream is eligible if its corresponding
play point (the beginning of segment 6 in this
example) plays before to, but not more than SB
before, where SB equals the maximum size of the
synch buffer dedicated to a user. This example
assumes that SB is four segments. Thus in Figure
6, the second S stream is ineligible because it has
not reached the play point yet, while the last S
stream is ineligible because it is offset in time
more than SB segments from the virtual stream
created by the jump—the synch buffer is not large
enough to synchronize to it.

The stream labeled targeted S is eligible. Given
multiple eligible S streams, the user will merge
with the one having the smallest offset tos from the
virtual stream. (This minimizes synch buffer
usage.) Denote by t2 the time the play point in the
targeted S stream plays. The offset tos is defined as
tos = to − t2. Once the system has identified a tar-

54

IE
EE

 M
ul

ti
M

ed
ia

.

Is someone
waiting for video i

?

Join the batch.

YN

Is an S stream
available?

N

Reject request.

Y

Initiate a timer for
batching interval.

N

Y

Normal play, exit
user interaction

Normal play ExitUser interaction

User request for video i

Initiate S stream for video i

Timer expires?

Figure 4. Flowchart of

the SAM protocol’s

operation.

geted S stream, it will
find an I stream and
split the user from the
existing batch. If no I
stream is available, the
request will join a first-
c o m e - f i r s t - s e r v e d
(FCFS) queue, and nor-
mal play continues
from the original S
stream.

During the wait, the
targeted eligible S
stream may become
ineligible, in which
case we need to find
another eligible one.
The I stream handles
normal play for a dura-
tion equal to the time
offset tos. At the same
time, a connection is
made to the targeted S
stream, which will feed
the synch buffer. After
the synch buffer has
been fed for a period
equal to tos, correspond-
ing to segments 8 and
9 in our example, the
user will start to
retrieve the video from
the synch buffer and release the I
stream. In other words, the user has
successfully merged with the S
stream.

If no eligible S stream is available
for the user to merge into, the sys-
tem initiates a new S stream to serve
this user. If the system finds no avail-
able S streams, the request will join
an FCFS queue to wait for the first
available S stream. In the meantime,
normal play continues from the
original S stream.

This discussion assumes that an S
stream feeds the user directly.
Suppose instead the synch buffer,
fed by an S stream, serves the user.
That is, earlier the user issued an
interactive operation. How does the
jump-forward operation change?
Fortunately, it doesn’t. Again, we need to identi-
fy the play point after the jump-forward operation

(the beginning of segment 6 in this example) and
the time at which the user issued the jump-for-

55

O
cto

b
er-D

ecem
b

er 1997

.

1. Split from the
 original S stream.
2. Use the I stream
 for normal play
 for duration of
 time offset.
3. The eligible S
 stream fills the
 synch buffer.
4. Return the I stream
 and merge to the
 eligible S stream.

Jump forward/backward

Y

N Y

Go back to normal play.

Is an I stream
available? Stay in the

original
S stream and

continue
normal play.

1. Get a new S stream.
2. Split from the original
 S stream.
3. Initiate the new
 S stream for normal
 playback.

Is an S stream
available?

Find an I stream.

N

N

 Stay in the original
S stream and

continue normal play.

Has targeted S
become ineligible?
(time offset > SB)

Y

Y

N

Is there an
eligible

S stream?

Figure 5. Flowchart of

the jump-forward or

backward operation.

2 3 4 5 61 Original
S stream

Ineligible
S stream

Ineligible
S stream

Targeted
S stream

Jump-forward
issued at t0

Play point,
played at t2

(t2 > t0)

Play point,
played at t2

(t2 < t0)

Play point,,
played at t2

(t2 < t0)

Play point after
jump-forward

2 3 4 5 61

2 3 4 5 61 7

2 3 4 5 61 7 8

2 3 4 5 61 7

......

8

9

Synch buffer

t1

t0S

t0S >SB

Figure 6. Illustration of

the jump-forward

operation.

ward (to in this example). We then
try to merge with an existing S
stream.

The same criteria as before applies
when selecting this targeted S
stream, with just a few differences:
First, when waiting for an I or S
stream, normal play continues from
the buffer, fed by the original S
stream. Second, following a success-
ful merge with the targeted S stream,
the connection to the original S
stream ends and everything in the
buffer corresponding to the old S
stream is discarded. In addition, if
the jump-forward is to a point in the
video already in the buffer, we can
avoid the split and merge operation
altogether.

The operation of jump-backward
is similar, except the eligible S
streams will have negative offsets.

Fast-forward and rewind
The flowchart for the fast-forward

and rewind operation appears in
Figure 7. Figure 8 illustrates how
SAM handles fast-forward. Again
each user is allocated a synch buffer
of maximum size SB, four in this
example. Suppose the stream labeled
original S in the figure serves the user
accessing video i. At time to, the user
issues a fast-forward operation. The
protocol requests an I stream to serve
the user. If one is available, the sys-
tem will deliver video in fast-forward
mode; otherwise, the request for an
I stream joins an FCFS queue.
Meanwhile, normal play continues.
After a duration d, the user termi-
nates the fast-forward operation and
resumes normal play. SAM then
attempts to merge the user back to
one of the ongoing S streams.

Suppose the fast-forward opera-
tion takes the user to a point t1

beyond initialization of the fast-for-
ward—the beginning of segment 6
in our example. SAM looks at all
ongoing S streams for video i in
search of an eligible one for this user
to merge into. An S stream is eligible
if its corresponding play point (the

56

IE
EE

 M
ul

ti
M

ed
ia

.

Y

Is there an eligible
S stream?

NY

N

Go back to normal play.

Find an I stream.

Is an I stream
available?

 Stay in the original
S stream and

continue normal play.

1.Split from the original S stream.
2. Use the I stream for FF/REW.
3. After FF/REW, find an eligible S stream.

1. Use the I stream
 for normal play
 for the duration
 of time offset.
2. The closest eligible
 S stream fills
 the synch buffer.
3. Return the I stream
 and merge to the
 eligible S stream.

1. Get a new S stream.
2. Return the I stream.
3. Initiate the new S stream for normal playback.

Is an S stream
available?FCFS queue

Fast-forward/
Rewind

Figure 7. Flowchart of

the fast-forward and

rewind operation.

2 3 4 5 62 3 4 5 61

2 3 41

2 3 4 5 61 7 8

2 3 4 5 61 7

...

10

9

11
12

5 6 7

9 10 11

Original
S stream

Ineligible
S stream

Ineligible
S stream

Targeted
S stream

Fast-forward
issued at t0

Play point,
played at t2
(t2 > t0+d)

Play point
played at t2
(t2 < t0+d)

Play point
played at t2
(t2 < t0+d)

Play point after
fast-forward

Synch buffer

t1
t0 +d

t0S

t0S >SB

Figure 8. Illustration of

the fast-forward

operation.

beginning of segment 6 in this
example) precedes to + d, but not
more than SB before. Thus in Figure
8, the second and the last S streams
are ineligible.

If the protocol finds no eligible S
stream, it initiates a new S stream to
serve the user. If there is no available
S stream in the system, the request
will join an FCFS queue to wait for
the first available S stream, and nor-
mal play continues on the I stream.
If there is at least one eligible S
stream, the user will merge with the
eligible S stream whose offset tos = to

+ d − t2 is the smallest. The I stream
held by the user will continue to
serve the user starting at the play
point in normal play mode. At the
same time, the targeted S stream will
feed the synch buffer.

After the synch buffer has been
fed for a period equal to tos, corre-
sponding to the segments 9 (last
half), 10, 11, and 12 (first half) in our
example, the user will start to
retrieve the video from the synch
buffer and release the I stream. In
other words, the user has successful-
ly merged with the S stream. As in
jump-forward, if the synch buffer fed
by an S stream serves the user origi-
nally, SAM’s operation remains pret-
ty much the same.

The operation of rewind is simi-
lar, except the eligible S streams will
have negative offsets.

Pause and resume
The flowchart for the pause and

resume operation appears in Figure 9. Again, the
system allocates each user a synch buffer of max-
imum size SB, four in our discussion. Suppose the
original S stream in Figure 10 (next page) serves
the user accessing video i. As soon as the pause
begins, the original S stream feeds the synch
buffer. After the pause operation, the only eligible
S streams that the user may merge into must have
started later than the original stream.

Suppose the earliest of these eligible streams,
labeled targeted S in the figure, starts a duration t
later. The user will try to merge into this S stream.
We distinguish between two major cases. Case 1
occurs when t ≤ SB, and case 2 occurs when t > SB.

Case 1 (shown in Figure 10a, next page) further
divides into 1a and 1b. In case 1a, the pause peri-
od d < t. Since d < t ≤ SB, the synch buffer is not yet
full when the user resumes. (In fact, it will contain
segments 3 and 4 in this example.) The user can
simply retrieve the video from the synch buffer.
In case 1b, d ≥ t, meaning the corresponding play
point (the start of segment 3 in this example) of
the closest eligible stream (the targeted S stream)
will play before the pause operation terminates.
In Figure 10a, since t corresponds to three seg-
ments, the corresponding play point will arrive
after three segments of the original S stream—
segments 3, 4, and 5—have been stored. The user

57

O
cto

b
er-D

ecem
b

er 1997

.

Pause/resume

Y

If still pause?
N

Y

Y

Is an eligible
S available?

N

If resume?

N

Y

Y

If still pause?

Go back to normal play.

Y

N

N

Case 1b

Case 1a

Case 2a Case 2b

1. Release the
 reserved S
 stream.
2. Merge to the
 eligible one,
 which fills
 synch buffer.

After synch buffer is full,
1. Reserve a new S stream.
2. Purge synch buffer.
3. Split from the original S.

N

Before
synch buffer is full,

is an eligible S
available?

Before
synch buffer is full,

resume issued?

1. Purge synch
 buffer.
2. Split from the
 original S stream.
3. Merge to the
 eligible one, which
 fills synch buffer.

Original S stream
fills the synch buffer.

Initiate the
reserved S stream

to continue
normal play

Figure 9. Flowchart of

the pause and resume

operation.

merges (switches) to the new stream, meaning the
targeted S stream starting at the play point will
feed the synch buffer. If the buffer fills before the
pause terminates, we have Case 2.

Case 2 (shown in Figure 10b) further divides
into 2a and 2b. The system might need to initiate
a new S stream, depending on whether the pause
terminates before or after an ongoing S stream has
reached the play point. As soon as the buffer fills, a
reservation request goes out for a new S stream, the
contents are purged from the synch buffer, and
SAM splits the user from the original S stream. In
case 2a, the pause terminates before an ongoing S
stream has reached the play point, and a new S
stream (the one reserved earlier) will be initiated
to serve the user. Otherwise, we have case 2b.

Quite possibly no S streams are available in the
system. The user’s request will then join an FCFS
queue to wait either for the next available S

stream or until an ongoing S stream has reached
the play point, at which time the user can merge
with this ongoing stream. In case 2b, the corre-
sponding play point (the start of segment 3 in this
example) of the closest eligible stream will play
before the pause operation terminates. In Figure
10b, since t corresponds to six segments, the cor-
responding play point will arrive after six seg-
ments of the original stream have arrived. Since
the buffer is of size 4, it can only store four seg-
ments—3, 4, 5, and 6. The protocol releases the
reserved S stream and merges (switches) the user
to the new stream as soon as the synch buffer
becomes full. The new stream, starting at the play
point, now feeds the synch buffer. In cases 1b and
2b, since the user remains in the pause mode after
merging with the targeted ongoing S stream, the
procedure must repeat, perhaps multiple times,
until the user terminates the pause operation.

This discussion assumes that an S stream feeds
the user directly. Let us now study the situation in
which the synch buffer, fed by an S stream, serves
the user—the user issued an interactive operation
earlier. Figure 11 illustrates how SAM handles
pause and resume in this situation. Again, this
example assumes the system has allocated a synch
buffer of size four to each user. Suppose the origi-
nal S stream in Figure 10 serves the user accessing
video i. Note that this virtual S stream is fed by an
ongoing S stream that started two segments earlier.
In other words, two segments of the synch buffer
have already been used to synchronize with this
feeding S stream, leaving only two segments avail-
able. This marks the only difference between how
SAM handles the pause operation when the user is
served directly versus through a synch buffer.

Note that the synch buffer size is now SB′ =
SB − td, where td is the lead time of the feeding S
stream compared to the original S stream. In addi-
tion, t, the time until the nearest eligible ongoing
S stream, is calculated from the original S stream,
not the feeding S stream. Since td = 2 in our exam-
ple, SB′ = 2 and t = 2. The operation is described
by the same flow chart (Figure 9) as when a real S
stream feeds the user. The only difference is that
the synch buffer size equals SB′ instead of SB. In
addition, a user switching to a new stream (case
1b and case 2b) can discard the existing contents
in the synch buffer, effectively augmenting the
synch buffer to the maximum value of SB again.

Variations of the basic scheme
Now let’s consider variations of the basic SAM

protocol.

58

IE
EE

 M
ul

ti
M

ed
ia

.

2 3 4 5 61 Original S stream

Targeted S stream

Original S stream

Targeted S stream

2 3 4 51

2 3 41

d

t

d
Play point

after resume

Play point
after resume

7

t

Play point

(a) Case 1: t <= SB

4

Case 1a

3

4

Case 1b

3

5

2 3 7 8 912 3 4 61

2 3 41

Play point

5

6 7

Pause
issued at t0

Resume
(case 1a: d < t)

Resume
(case 1b: d >= t)

d
d

Pause
issued at t0

Resume
(case 2a: d < t)

Resume
(case 2b: d >= t)

4

Case 2a

3

5

6

4

Case 2b

36

5

(b) Case 2: t > SB

Figure 10. Illustration

of the pause operation.

No initial batching delay
As soon as the system receives a video request,

it determines whether at least one eligible S
stream exists. If so, an I stream serves the request
immediately and the eligible S stream feeds the
synch buffer for an interval tos, equal to the time
offset between the new request and the eligible S
stream. After tos, this video request effectively
merges into the ongoing S stream by serving the
user from the synch buffer. If no eligible S streams
exist, the system immediately initiates a new S
stream to serve the request.

Adjustable batching intervals
Batching intervals may differ for different

videos due to differences in the videos’ populari-
ty. More popular videos should have shorter
batching intervals. In addition, since popularity
may change over time, we can periodically change
the batching interval based on the observed video
request rate in the previous period.

A variation of the basic batching idea
Instead of the system initiating a timer when

the first request in a batch arrives, it divides time
into fixed length intervals, say every five minutes.
If at least one request for video i arrives during an
interval, the system initiates an S stream at the
end of that interval. This has the advantage that,
for unpopular videos, the average wait equals half
of the batching interval instead of the whole
batching interval. Users will not notice much dif-
ference for popular videos.

One synch buffer for multiple virtual streams
In the basic scheme, when the split and merge

operations are required, the system only examines
real ongoing video streams. Most likely the users
can merge into virtual streams. SAM uses a synch
buffer to create a virtual stream from an ongoing
real stream. Each virtual stream offset in time
from the real stream needs its own synch buffer.
To reduce the total amount of synch buffer
required, the same synch buffer may serve multi-
ple virtual streams.

For example, virtual stream B may be one
minute behind real stream A, while virtual stream
C may be two minutes behind real stream A. We
can have stream A feed a synch buffer that will in
turn feed both streams B and C. As a result, a
synch buffer may have one input stream but mul-
tiple output streams serving different users with
different time offsets.

A pricing mechanism for user interactivity
The more a user will pay, the closer the user

gets to true VoD service. The high end imposes no
initial batching delay and allows full user interac-
tivity. Medium-cost service yields an initial batch-
ing delay and full interactivity. Finally, the
least-expensive service level buys users an initial
batching delay and limited interactivity.

Numerical results
This section presents simulation results gener-

ated by a C program running on a Hewlett-
Packard C160. We simulated 24 hours of real time,
requiring on average 30 minutes of CPU time for
each arrival rate. We used the following system
parameters: 30 available videos, each lasting 120
minutes, with the probability a particular movie

59

O
cto

b
er-D

ecem
b

er 1997

.

Original S stream

Targeted S stream

S stream feeding buffer of original S stream

Original S stream

Targeted S stream

S stream feeding buffer of original S stream

d
d

(a) Case 1: t <= SB'

4

Case 1a

3

4

Case 1b

36

55

Pause
issued at t0

Resume
(case 1a: d < t)

Resume
(case 1b: d >= t)

d
d

Pause
issued at t0

Resume
(case 2a: d < t)

Resume
(case 2b: d >= t)

4

Case 1a

3

4

Case 1b

366

55

2 3 4 5 61 2 3 4 5 61

2 3 41

7

2 3 7 8 912 3 4 61

21

5

2 3 4 5 61 2 3 4 5 61 7 8

t

td

Play point

Play point

t

td

2 3 4 5 61 2 3 41 7 8

3 4 5 6

(b) Case 2: t > SB'

Figure 11. Illustration

of the pause operation

when the user operates

from the synch buffer.

is accessed (pi where i = 1, 2, …, 30) following the
Zipf distribution.8 Therefore, video 1 is the most
popular, followed by video 2, and so on.

We also assume the following user activity
model: A user starts in normal play mode and stays
there for an exponential amount of time with a
mean of 30 minutes. Then the user goes to interac-
tion mode with probability 0.75 and quits with
probability 0.25. In interaction mode, the user is
equally likely to issue a jump-forward, jump-back-
ward, fast-forward, rewind, or pause operation.
Each pause is exponentially distributed with a
mean of 5 minutes. Each fast-forward or rewind is
exponentially distributed with a mean of 0.5 min-
utes (the user holds down the fast-forward or
rewind button for an average of 0.5 minutes). Fast-
forward and rewind take the user to a point in the
video offset from the original point by an interval
uniformly distributed between 1 and 90 seconds.

Each jump operation lasts one second and takes the
user to a point in the video offset from the original
point by an interval uniformly distributed between
1 and 1,000 seconds. After a user interaction, the
user resumes normal play mode. This cycle repeats
until the user quits. The total number of video
streams is 515. The batching interval used is 10
minutes, and the maximum synch buffer allocat-
ed per user varies from 1 to 10 minutes.

Note that because existing batching approach-
es only allow near-VoD services, in our simulation
we compare SAM with the nonbatching approach
only. For fair comparison, in the nonbatching
case we use all of the 515 available video streams
to serve users in a dedicated fashion. Each user
also follows the same user activity model.

Figure 12 shows how the blocking probability

60

IE
EE

 M
ul

ti
M

ed
ia

.

S = 500, I = 15,
SB = 2 min

S = 415, I = 100,
SB = 10 min

35

30

25

20

15

10

5

0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
ve

ra
ge

 w
ai

tin
g

tim
e

(s
ec

)

Arrival rate (sec)

Figure 14. Average interaction delay as a function

of arrival rates.

S = 500
I = 15
W = 10 (min)

0.2 0.22 0.24 0.26 0.28 0.3
Arrival rate (sec)

Pr
ob

ab
ilt

iy
 (

%
)

30

25

20

15

10

5

0

SB = 60
SB = 120
SB = 300
SB = 600

Figure 15. Blocking probability as a function of

synch buffer allowed.

Pr
ob

ab
ilt

iy
 (

bl
oc

ki
ng

)
(%

)

SAM (S=500, I=15,
SB=2 (min))

SAM (S=415, I=100,
SB=10 (min))

Nonbatching

40

35

30

25

20

15

10

5

0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Arrival rate (sec)

Figure 12. Blocking

probability for the

batching and

nonbatching cases.

Max. total SB (S=500, I=15, SB=2 min)
Avg. total SB (S=500, I=15, SB=2 min)
Max. total SB (S=415, I=100, SB=10 min)
Avg. total SB (S=415, I=100, SB=10 min)

Sy
nc

h
bu

ffe
r

re
q

ui
re

m
en

t
(h

r)

45

35

40

30

25

20

15

10

5

0
0 0.05 0.1 0.15 0.2 0.25 0.3

Arrival rate (sec)

Figure 13. Average

amount of synch buffer

required as a function

of arrival rates.

changes as the video request rate increases for the
cases of batching (SAM) and nonbatching (point-
to-point connection for each user). As expected, a
large reduction in the blocking probability occurs
with SAM. (Actually, the improvement for popu-
lar videos is much more dramatic than indicated,
since the figure shows the reduction in blocking
probabilities averaged over all videos.) The price
we pay is the initial batching delay, which is
bounded by 10 minutes and averages 5 minutes.

In addition, we need a synch buffer, and the
user may experience some interaction delay. Figure
13 shows the average total synch buffer required
in the system as a function of arrival rate. Note
that this translates into very small per-user synch
buffer requirements. For example, the buffer
required is 8.3 seconds per user when the arrival
rate is 0.3 requests per second, for S = 500, I = 15,

and SB = 2 minutes. (Note that 0.3 requests per sec-
ond translates to 0.3 × 120 × 60 = 2,160 average
number of users.) Figure 14 shows the average
interaction delay—acceptable except in a highly
loaded situation. (To ensure that the blocking
probability remains small, we would not operate
the system at such a high load anyway.) This leads
us to conclude that our proposed SAM protocol
makes an excellent VoD video delivery protocol.

We also investigated how the blocking proba-
bility (see Figure 15) and the interaction delay (see
Figure 16) change as the maximum synch buffer
allowed for each user changes. As expected, the
blocking probability decreases as the maximum
synch buffer allowed increases. At the same time,
the interaction delay increases because more users
are admitted into the system.

Finally, we studied the effect of increasing the
number of I streams while keeping the total num-
ber of streams constant: on the blocking proba-
bility (see Figure 17), the synch buffer required
(see Figure 18), and the interaction delay (see
Figure 19). For the system parameters specified in

61

O
cto

b
er-D

ecem
b

er 1997

.

S = 500
I = 15
W = 10 (min)

0.2 0.22 0.24 0.26 0.28 0.3
Arrival rate (sec)

In
te

ra
ct

iv
e

de
la

y
(s

ec
)

120

100

80

60

40

20

0

SB = 60
SB = 120
SB = 300
SB = 600

Figure 16. Average interaction delay as a function

of synch buffer allowed.

Nonbatching

SAM

60

50

40

30

20

10

0

Pr
ob

ab
ili

ty
 (

%
)

0 20 40 60 80 100
Number of I streams

120 140 160 180 200

S+I = 515
W = 10 (min)
Arrival rate = 0.3 (sec)

Figure 17. Blocking probability as a function of

number of I streams.

Max. total
SB requirement

Avg. total
SB requirement

40

35

30

25

15

10

0

Sy
nc

h
bu

ffe
r

re
q

ui
re

m
en

t
(h

r)

0 20 40 60 80 100
Number of I streams

120 140 160 180 200

S+I = 515
W = 10 (min)
Arrival rate = 0.3 (sec)

Figure 18. Average

amount of synch buffer

required as a function

of the number of I

streams.

140

120

100

80

60

20

40

10

0

In
te

ra
ct

iv
e

de
la

y
(s

ec
)

0 20 40 60 80 100
Number of I streams

120 140 160 180 200

S+I = 515
W = 10 (min)
Arrival rate = 0.3 (sec)

Figure 19. Average

interaction delay as a

function of the number

of I streams.

the figures, we find that the blocking probability
and the interaction delay are minimized with 120
I streams, at which time the synch buffer required
reaches its maximum.

Conclusions
VoD will be one of the most important com-

mercial applications of distributed multimedia
systems. It provides an electronic video rental ser-
vice, which gives users the ultimate flexibility in
selecting any video programs, at any time, and in
performing any VCR-like user interactions.

To achieve commercial success, however, VoD
must be priced competitively with existing video
rental services. Approximately half of video rental
revenues go to the program providers. That means
the other half goes toward the cost of delivering
the video and for the service provider’s profits. In
existing video rental stores, the users bear the
major cost of delivery, and the service provider
incurs only the costs of shelf space. For VoD, the
costs of video delivery include the costs of the
high-capacity video server and the high-speed net-
work, both substantial. Our proposed protocol lets
multiple users share the same video stream, dra-
matically increasing the capacity of the system
and greatly reducing the costs per user. At the
same time, the price—batching delay, interaction
delay, and so forth—remains tolerable. This leads
us to conclude that our proposed SAM protocol
makes an excellent candidate for deployment in
interactive VoD systems. MM

Acknowledgments
This research is supported in part by the Pacific

Bell External Technology Program.

References
1. T.S. Perry, “The Trials and Travails of Interactive TV,”

IEEE Spectrum, Vol. 33, No. 4, Apr. 1996, pp. 22-28.

2. A. Dan, D. Sitaram, and P. Shahabuddin,

“Scheduling Policies for an On-Demand Video

Server with Batching,” Proc. ACM Multimedia 94,

ACM Press, New York, 1994, pp. 15-23.

3. R.O. Banker et al., “Method of Providing Video-on-

Demand with VCR-like Functions,” U.S. Patent

5,357,276, 1994.

4. K.C. Almeroth and M.H. Ammar, “The Use of

Multicast Delivery to Provide a Scalable and

Interactive Video-on-Demand Service,” IEEE J.

Selected Areas in Comm., Vol. 14, No. 6, Aug. 1996,

pp. 1110-1122.

5. P.S. Yu, J.L. Wolf, and H. Shachnai, “Design and

Analysis of a Look-Ahead Scheduling Scheme to

Support Pause-Resume for Video-on-Demand

Application,” ACM/Springer Multimedia Systems, Vol.

3, No. 4, 1995, pp. 137-150.

6. V.O.K. Li et al., “Performance Model of Interactive

Video-on-Demand Systems,” IEEE J. Selected Areas in

Comm., Vol. 14. No. 6, Aug. 1996, pp. 1099-1109.

7. L. Golubchik, J.C.S. Lui, and R.R. Muntz, “Reducing

I/O Demand in Video-on-Demand Storage Servers,”

Proc. ACM SIGMetrics, ACM Press, New York, 1995,

pp. 25-36.

8. D. Knuth, “The Art of Computer Programming,”

Sorting and Searching, Addison-Wesley, New York,

Vol. 3, 1973.

Wanjiun Liao is an assistant pro-

fessor in the Electrical Engineering

Department at National Taiwan

University, Taipei, Taiwan. Her

research interests include multi-

media communications, network-

ing, and distributed database systems. She received her

BS and MS from National Chiao Tung University,

Taiwan, in 1990 and 1992, respectively, and a PhD in

electrical engineering from the University of Southern

California, Los Angeles. A member of the IEEE and the

Phi Tau Phi scholastic honor society, she is a recipient

of the Acer Long-Term thesis award, the Chinese IEE

(CIEE) graduate student thesis award, and the outstand-

ing research paper award at USC. She was recently select-

ed by EE Times (Oct. 1997) as an Outstanding Young

Electrical Engineer.

Victor O.K. Li is Chair Professor of

Information Engineering at the

Department of Electrical and

Electronic Engineering, University

of Hong Kong, Hong Kong, and

Managing Director of Versitech,

the University Contract Research Company. His research

interests include high-speed communication networks,

personal communication networks, and distributed

multimedia systems. He received his SB, SM, and ScD in

electrical engineering and computer science from the

Massachusetts Institute of Technology, Cambridge,

Massachusetts, in 1977, 1979, and 1981, respectively. He

was elected an IEEE Fellow in 1992.

Readers may contact Li at the Dept. of Electrical and

Electronic Engineering, The University of Hong Kong,

Pokfulam Road, Hong Kong, e-mail vli@eee.hku.hk.

62

IE
EE

 M
ul

ti
M

ed
ia

.

