
Previous attempts at
bringing gaze
awareness to desktop
videoconferencing
have relied on
hardware solutions.
Here, the authors
describe their
software approach,
which tracks
participants’ head
and eye movements
using vision
techniques, then uses
this information to
graphically place the
head and eyes in a
3D environment. 

T
he impact of gaze is striking. We all
know the experience of “feeling
watched,” and it’s hard to resist the
urge to look at someone who’s staring

at you. As the sidebar, “Human Gaze: A Closer
Look,” explains, gaze awareness—and eye contact
in particular—is extremely important in face-to-face
communication. In addition to practical uses, such
as using gaze to direct turn-taking in conversation,
gaze awareness has more abstract social value:
People who use frequent eye contact are perceived
as more attentive, friendly, cooperative, confident,
mature, and sincere than those who avoid it. 

Despite the obvious importance of directed
gaze, most videoconferencing systems make it
impossible for participants to make eye contact or
even to determine where or at what the other par-
ticipants are looking. This loss of gaze awareness
has a profound impact on communication, and
may in fact be a contributing factor in the failure
of videoconferencing to meet with its long-antic-

ipated success (for more on this, see the sidebar,
“Videoconferencing Research” on page 28). 

The lack of gaze awareness in typical videocon-
ferencing systems stems from the fact that when
participants look at each other, they stare into
their displays rather than into the camera, which
is typically mounted above, below, or beside the
display. Unless people look directly into the cam-
era, you will never perceive them as making eye
contact with you, no matter where you’re situated
in relation to the display. Conversely, if they’re
looking into the camera, they will always appear
to be looking at you, even when you move
around. A famous example of this is Leonardo da
Vinci’s painting of the Mona Lisa, whose eyes
appear to follow viewers around the room. 

As Figure 1 shows, videoconferencing typically
gives each participant an individual, arbitrarily
placed window, and participants never appear to
look at each other. In addition to inhibiting eye
contact between two parties, with multiparty desk-
top systems participants have no sense of spatial
relationship and cannot tell who’s looking at
whom. Existing systems restore gaze awareness
only by using special and typically expensive
hardware. 

We developed a software-based approach to
videoconferencing gaze awareness. We aim to
develop an inexpensive videoconferencing system
that supports two to four participants. To date,
hardware has been a serious obstacle to videocon-
ferencing. Thus, it was important that our system
work with cheap, commonly available hardware.
The system uses standard PC hardware, equipped
with audio I/O and video capture. Virtually all PCs
now ship with sufficient audio support, and many
are beginning to ship with video capture. For those
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doesn’t provide gaze awareness or give participants

a sense of spatial relationships. 
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In basic human interactions, people tend not to
gaze fixedly into each other’s eyes. Typically, peo-
ple gaze at points around the area of another’s eyes
and mouth, shifting points about every one-third
second.1 Mutual gaze is typically held for no more
than one second and doesn’t require actual eye
contact—it can be directed anywhere in the facial
region. In fact, most people have difficulty detect-
ing actual eye contact, whereas they’re fairly accu-
rate at detecting face-directed gaze.1,2 As distance
between people grows, their accuracy in detecting
gaze decreases. Accuracy also declines when peo-
ple aren’t directly facing each other.1,3,4 Researchers
have surmised that pupil position is most likely the
primary determinant of gaze direction.5

Human perception of head pose seems heavily
influenced by the region around the eyes and
nose—perhaps because people tend to direct their
gaze there. Figure A illustrates this idea. Although
the subject’s head is oriented toward the viewer,
we superimposed a cutout of the eyes and nose
that are turned to the right. At first glance, the
entire head seems oriented to the right. Researchers
also conducted an experiment that changed room
lighting6 and found that visible parts of a face’s left

and right profile lines
might give people
important cues in
perceiving head pose.

The social impor-
tance of eye contact
has long been estab-
lished.1 For example,
people definitely no-
tice the difference be-
tween receiving direct
gaze 15 percent of
the time versus 85
percent of the time.
Experiments have
found that people
using eye contact

received more job offers after interviewing, more
help after asking for it, and are generally considered
more persuasive. Teachers using eye contact have
more productive students who learn faster than
other students. People who use eye contact also
appear friendly, self-confident, natural, mature, and
sincere, while those who don’t seem cold, pes-
simistic, cautious, defensive, immature, evasive, sub-
missive, indifferent, and sensitive. Also, individuals

look at each other more when they cooperate than
they do when they compete.1

Speakers glance at listeners to elicit response
and, more importantly, to obtain information
about listeners through expressions, head nods,
and other signals. Speakers also widen their eyes
to emphasize points. Gaze direction can also be
important for silent participants, such as when they
direct a smile or wink at another participant.
Listeners typically focus their gaze on the speaker
70 to 75 percent of the time in seven- to eight-sec-
ond glances. Among the things listeners look for
are nonverbal communication through body lan-
guage, expression, and so on, and they also read
the speakers lips on occasion (a clear view of the
lips can make up for several decibel of noise).1

Finally, when individuals meet in groups of
three, gaze is typically divided between the other
two parties and mutual gaze occurs only about 5
percent of the time. In this situation, gaze coordi-
nates turn-taking in conversation, but isn’t always
the only or most important cue.7
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Human Gaze: A Closer Look 

Figure A. Here, we

superimposed the eyes

and nose onto the

face—at first glance, 

the head appears to be

turned to the right. 



that don’t, you can add a universal serial bus cam-
era or a camera and capture card, both of which
are inexpensive. The full system supports 3D sur-
round-sound audio to better position participants’
voices in the virtual space. We might also add

other features, such as a whiteboard and applica-
tion sharing. Here, we focus our discussion on our
video subsystem for supporting gaze awareness.

Figure 2 shows the architecture of our video sub-
system. As in traditional videoconferencing, the sys-
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Videoconferencing began with Ives’ 1927
research at Bell labs.1 Since then, videoconferenc-
ing has been repeatedly hailed as on the brink of
ubiquity: with the unveiling of the PicturePhone at
the 1964 World’s Fair, with the introduction of
Integrated Services Digital Network videoconfer-
encing in the 1980s, and the arrival of cheap desk-
top videoconferencing in the 1990s. However, the
technology has never caught on as well as 
expected.

Some studies of group problem solving and task
accomplishment found no advantage in videocon-
ferencing over audio-only communication. Chapanis
and his colleagues compared problem solving using
face-to-face communication to that using voice only,
handwriting, and typing.2 They found that for prob-
lem solving, voice is only a little slower than face-to-
face, and everything else takes at least twice as long.
The fact that voice is nearly as fast as face-to-face
seems to imply that video is unnecessary. In a similar
study, Gale compared data sharing, data sharing
with audio, and data sharing with audio and video
and found no difference in task completion time or
quality.3 Sellen also found no significant contribution
from video.4 Acker and Levitt found that people were
happy with gaze-aware videoconferencing as a
medium, but that it did not improve the final out-
come of the given task.5

Based on such studies and their own negative
personal experiences, some researchers have con-
cluded that videoconferencing isn’t worthwhile.
However, the negative results are in part due to

technical problems—many systems have suffered
from audio latencies and difficult call setup.
Furthermore, it’s not clear that solving contrived
problems is the true test of videoconferencing. If
video contributes to enhanced communications, it
could prove valuable in other contexts, such as
negotiations, sales, and  relationship building. In
fact, within these very studies, researchers observed
that the “rate of social presence” is increased by
video3 and that people took advantage of gaze
awareness in a system that supported it.4

Several studies suggest that replicating the con-
versation process requires spatial audio and
video.6,7 AT&T redesigned PicturePhone in the late
1960s, with the goal of reducing “eye-contact
angle,” which they believed is perceptible after
about five degrees.1 A study of a point-to-point sys-
tem with two or four people at each end found
that gaze correction improved participants’ per-
ception of nonverbal signals.8

Among the hardware techniques that support
gaze-aware videoconferencing systems are half-sil-
vered mirrors and pinhole cameras in displays.5,9 The
Virtual Space and Hydra systems support gaze
awareness by deploying a small display and camera
for each party. If you place the display far enough
away from users, they’re unlikely to notice the angle
between the camera and the display images.4,6

Although the Teleport system doesn’t support
gaze awareness,10 its creators note this problem
and recommend warping images onto 3D models,
as we have done in our system. 

Videoconferencing Research
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Figure 2. An overview of our video subsystem for supporting gaze awareness. 



tem captures a stream of video frames and transmits
it across the network. A vision component analyzes
the video frames and determines eye contour, head
orientation, and gaze direction. The system then
transmits this information across the network with
the video frames. At the receiving end, the system
uses the video frames and vision information to
render the head, with the desired gaze, in a virtual
3D space. In the following sections, we elaborate on
the rendering and vision components, followed by
an outline of our future plans.

Rendering
On the receiving end, the system uses the

vision information to extract the head from the
video frame, correct the gaze, and place it in the
virtual 3D space. We achieve this in two steps.
First, the system replaces the eyes with synthetic

eyes to aim the gaze. The synthetic eyes simulate
eyes swiveling in their sockets. Second, the system
adjusts the head pose. To achieve the desired gaze,
the eye replacement must account for the forth-
coming head pose adjustment. 

Alternatively, we could use an entirely synthet-
ic head, or avatar. We have a spectrum of possibil-
ity here, from using unmodified video to using a
fully synthetic avatar. Our approach lies between
these extremes. The benefit of our approach is that
we transmit facial expressions and eye blinks as
they appear, while modifying only those aspects
of video that affect gaze perception. To achieve a
similar effect with an avatar, we would need a very
detailed head model and detailed tracking of addi-
tional facial points. As we discuss below, even our
modest tracking requirements still require more
research—tracking many facial points is not cur-
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Avatars (fully synthetic characters) have also
been used for teleconferencing. One system11

tracks the viewer’s facial features using tape marks
attached to the viewer’s face, and detects real-time
movements in the head, body, hands, and fingers
using magnetic sensors and data gloves. Colburn
and his colleagues are investigating the use of eye
gaze in avatars.12 They found that viewers respond
to avatars that have natural eye-gaze patterns by
changing their own gaze patterns, which helps
draw attention to different avatars. 
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rently feasible. A drawback of our approach is that
it can produce some distortion of the face, which
wouldn’t occur with detailed head models.

It’s also possible to achieve arbitrary gaze direc-
tion solely by manipulating the head pose.
However, for this work, the head must swivel
every time the gaze changes. Depending on the
virtual space’s geometry in relation to the geom-
etry of the viewer and the display, this can create
a lot of virtual head movement. In particular,
viewers who move their eyes back and forth
between two images might appear to be shaking
their heads and thus indicating “no” in their vir-
tual representations. 

Likewise, gaze can be corrected solely by
adjusting the eyes. However, simply repositioning
the pupils can change facial expression. As Figures
3a and 3c show, when a person looks up or down,
the top eyelid typically follows the top of the
pupil. If a system fails to synthesize this change in
the eye area, the eyelid might appear too low, giv-
ing the face an expression of disgust (Figure 3b),

or too high, creating a surprised expression (Figure
3d). Horizontal changes in pupil position have lit-
tle noticeable effect on facial expression.

Head orientation itself also conveys a message:
a lowered head might indicate distrust or disap-
proval, while a raised head might convey superi-
ority. Facial expression is further affected by how
far the eyes are opened and the amount of white
showing above and below the pupil.1 Figure 4
shows this to some extent, though to get the full
impact you have to see the actual motion of rais-
ing and lowering. A correction of the vertical head
pose angle between the camera and the images
onscreen is required to convey an accurate mes-
sage to the viewer.

Eye manipulation
Our system manipulates the eyes in two steps.

First, the vision component segments the eyes. As
we discuss in detail below, the vision component
indicates the video frame region that contains the
visible portion of the eyeballs. In the second step,
we use computer graphics to render new (syn-
thetic) eyes focused on the desired point in space.

Many well-known computer graphics tech-
niques exist for eye synthesis, including some that
are sophisticated and very realistic. However, we
use a relatively simple technique. We assume that
the average color of the sclera (“white” of the eye),
iris, and pupil are known. If we know the size of
the eyeball, we can estimate the relative size of the
iris. We fix the pupil’s radius to be a fraction of the
iris’s radius. We don’t currently model pupil dila-
tion and contraction. To simplify rendering, we
also model eyes without curvature. In practice,
this proves a reasonable choice because eye cur-
vature is only noticeable when the subject’s head
is significantly turned away from the viewer (more
than 30 degrees from our observations). 

We begin with a background that matches the
sclera’s average color value. The system then draws
two circles representing the iris and pupil. Next, the
system draws another circle the color of the pupil
around the edge of the iris to represent the limbus
(the iris’s dark outer edge). The system adds ran-
dom noise to the iris and the sclera to simulate tex-
ture. In a high-resolution system, we might switch
to a more elaborate eye model with improved shad-
ing, highlights, and spectral reflections.

The system draws the eyeball on the face in two
steps. First, the system draws the eyeballs on a tem-
porary image (see Figure 5a). Next, the system uses
the eye segmentation data to decide, for each pixel,
whether to use the pixel information from the orig-
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Figure 3. As the eyes move up and down, so do the

eyelids. If the system ignores this, facial expressions

can change. (a) The subject looks up;  (b) when the

system does not adjust the eyelids accordingly, the

subject appears to be glowering or disgusted. (c) The

subject looks down; (d) without eyelids adjustment,

the subject appears surprised. 

Figure 4. (a) The subject’s head and eyes are directed away from viewer,

showing a lack of gaze awareness and general disinterest.  (b) When the eyes

are directed at the viewer and the head is directed away, it creates eye contact

but gives the face a distrustful or disapproving expression. (c) When the

subject’s head and eyes are directed at the viewer, it creates eye contact and an

attentive facial expression.

(a)

(b)

(c)

(d)

(a) (b) (c)



inal face image or from the eyeball image. The sim-
plest method for combining the face image and
eyeball image uses color keying, which resembles
blue screening. As Figure 5b shows, we color each
segmented eyeball pixel blue (or whichever color is
the color key color). We can then blit the eyeball
image onto the face image. For a more refined or
realistic look, we can use alpha values to blend the
eyeball’s edges with the face image (see Figure 6). 

Controlling eye gaze means controlling where
the eyes are looking in 3D space. The 3D point
that the eyes are looking at is called the gaze
point. Our goal is to determine pupil positions
that give the appearance that the eyes are focused
on the desired gaze point. The eyes should con-
verge or diverge as the gaze point moves closer or
further away from the face. To compute the pupil
positions, we must determine (1) the 3D location
of the eyeball centers relative to the head model,
(2) the eyeball radius, and, if we have a 3D head
model, (3) its orientation and position in 3D
space. 

Because our eyeball model is flat, we need only
compute the plane on which to render the eye
and the pupil’s center. We select the plane to lie
in the eye sockets, oriented perpendicular to the
gaze direction. We find the pupil’s center by
intersecting the ray from the gaze point to the
eyeball center with the eye plane. Approximating
the flat eyeball becomes increasingly inaccurate
as the head rotates away from the viewer.
However, this inaccuracy is mitigated by two fac-
tors. First, extreme combinations of head orien-
tation and eye gaze (such as a head facing left and
eyes gazing sharply to the right) are rare. They’re
also difficult to modify for other reasons—includ-
ing that tracking the eyes in such situations pre-
sents significant challenges for computer vision.
Given this, our project restricts eye-gaze modifica-
tion to instances when the head is oriented
frontally (within about 30 degrees). Second, stud-
ies have shown that humans are poor judges of eye
gaze when a subject isn’t directly facing us,2-4 and
thus the errors in approximating extreme poses are
unlikely to bother viewers. 

Altering head pose
Our first attempt to rotate the head involved

warping the face image using correspondence
maps. However, we found many difficulties with
this method, including unacceptable distortions.5

Our present approach changes the head orienta-
tion using texture mapping. First, the system cre-
ates a 3D model in the shape of the subject’s head.

Next, as Figure 7 shows, the system executes tex-
ture mapping, projecting the face image from the
video frame onto the model. It can then rotate the
model to any desired orientation (see Figure 8,
next page). 

To texture map a model, we must know three
values:

1. The position of an anchor point on the 3D
model and its location in the face image. We
use the center between the nostrils as the
anchor point. This point is easy to track
because it doesn’t deform significantly when
the face rotates or the expression changes.

2. The orientation of the head in the video
frame. 

3. How to scale the head model to correspond to
pixel space. 
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Figure 5. (left) A

synthetic eyeball on a

temporary image and

(right) a video frame

with the segmented

eyeball area filled with

blue color.

Figure 6. Original image (center) and two synthesized images with redirected

eyeballs looking left (left) and looking right (right).

Figure 7. Simple head model used for texture mapping. 



For each vertex of the head model, we must
compute its 2D texture coordinates. The texture
coordinates define the location in the face image
corresponding to the vertex. If we have the three
values described above, we can compute the tex-
ture coordinates for each vertex with the follow-
ing steps. Here, we assume that we’re rotating the
model using the nose as an anchor point.
However, any point may be used.

❚ For each vertex in the head model, subtract the
value of the anchor point.

❚ Rotate the head model to the same orientation
as the head in the face image.

❚ Scale the X and Y coordinates to correspond to
pixel values. This is equivalent to doing an
orthographic projection onto the image. An
orthographic projection assumes all lines of
sight are parallel (unlike the pinhole projection,
in which the lines of sight intersect at a point).

❚ Add the 2D pixel location of the nose in the
face image.

When creating a 3D head model, certain details
are more important than others. Based on our
experience, we identified two key features for judg-
ing head orientation. First, we must model the
eyes correctly. Although the eyeballs themselves
are flat, the eye socket must recede into the face.
This is important for creating a realistic look when
the head rotates up and down. Second, we must
model the nose so that it protrudes from the face. 

We model facial parts that have less affect on
head orientation—such as the mouth, forehead,
and cheeks—as flat or slightly rounded surfaces. To
account for differences in facial shape, we sepa-
rately fit the model to each subject. Because the
eyes and nose are the most important features, we
scaled the model to fit the face based on their geo-

metric relationship. We also fixed the amount that
eyes recede and the nose protrudes. Once again,
we assume that the head will not be rotated more
than 30 degrees, so the results should be realistic
for a reasonable range of facial orientations.

When a person talks or changes expression, the
head’s 3D shape can change. The most obvious
example is that when people talk, the chin moves
up and down. Given this, we assume that the
shape of a subject’s head model will change. To
deal with this, we extend the wireframe chin
below its normal position. This way, when the
mouth opens, the chin texture won’t slip down to
the neck area. When the mouth closes, the neck
will look like it’s attached to the bottom of the
chin, but this should only be noticeable when the
head is rotated significantly away from the viewer. 

As we described above, people typically judge
head orientation using the eyes and nose. This
might be because both are relatively static—eye
sockets don’t change shape, and noses rarely
deform. Our model takes advantage of this, letting
us use a static head model to achieve reasonable
realism.

Facial features are increasingly deformed as the
difference in rotation between the rendered head
and the head in the video is increased. Assuming
that we found correct texture coordinates, such
facial deformations result from an incorrect face
model. Many deformations go unnoticed, such as
the side of the head being too narrow. Other
deformations can actually cause changes in facial
expression. If a head model has an incorrect
mouth curvature, for example, the subject’s
mouth might look either happy or sad when the
head model rotates up and down. Similar changes
in expression can result when eyebrows are inac-
curately curved. Because every person has a dis-
tinct mouth curvature, we might solve this
problem by using “structure from motion” algo-
rithms from vision, which compute the 3D struc-
ture of a face using a video sequence.6 Identifying
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Figure 8. After texture mapping, the system can rotate the model in any direction. (a) Face oriented up left,

(b) face oriented up right, (c) original image, (d) face oriented down left, and (e) face oriented down right.

(a) (b) (c) (d) (e)



which parameters are important to ensuring con-
sistent expressions is in itself a difficult task.

Unintended changes in expression and distor-
tions also occur when the vision component gives
an inaccurate head location and orientation,
resulting in a misalignment of pixels on the head
model. This problem is most noticeable with errors
in the vertical orientation/position of the head.

Computer vision
Our system’s vision component must track the

head pose (the head’s location and orientation),
segment the eyes, and determine gaze direction.
Computer vision in general is very difficult, and
these tasks are no exception. However, several
factors make the problem more tractable in our
system:

❚ we’re looking only for a head, not arbitrary
objects; 

❚ we deal only with head poses that permit the
subject to gaze directly at the screen (if the
head is turned further away, it’s not looking at
anyone on screen, and we simply display the
image without alteration);

❚ the system only needs to detect gaze that is
directed at the screen; 

❚ similarly, because humans perceive any gaze
around their face as mutual gaze, pin-point
gaze location is not required; the system only
needs to detect gaze in the facial region; and 

❚ humans make errors—such as misjudging gaze
direction as the head angle increases and mis-
judging head pose based on the visible head
outline—and thus some system errors are like-
ly to be no different than what a human would
perceive. 

We tried two different approaches to tracking
head pose. The first approach assumes that the
camera is mounted below the display and tracks
the user’s nostrils.5 We compute head orientation
based on nostril deformation. We then track nose
position using standard template-matching tech-
niques. A nose template is created from the sub-
ject’s initial nose position. In each successive video
frame, we search around the nose’s last location to
find the best template match. When the head
changes orientation, the nostril shape deforms. To
predict the nostril deformation, we create a set of

nostril templates for a range of head orientations
using an affine transformation of the tracking tem-
plate. The nose tracker matches these nostril-ori-
entation templates to the current face image to
find head orientation. This approach has yielded
good results, but can have trouble with bushy
moustaches or if subjects wrinkle their noses.

Our second approach determines head pose by
tracking nine small image features on the face (see
Figure 9). This approach assumes that we know
each feature’s approximate 3D position relative to
the face (again, we get this information using
motion techniques to determine structure). Each
image feature consists of a small rectangular tem-
plate whose default size occupies 8 × 8 pixels in
the image (we can warp the template according to
the expected size and orientation of the face in
the image). For each new frame, we search for the
minimum sum of pixel-wise absolute differences
(SAD) between the template and each subrectan-
gle within a restricted region of the live image. We
start the matching at a coarse resolution and pro-
ceed to finer resolutions to reduce computation.
Once we determine the positions for all nine
image features, we perform a gradient descent in
the six-degree-of-freedom pose space (x, y, z, pitch,
roll, and yaw) to estimate the final pose. The goal
is to minimize the sum of distances between the
tracked points and the projected position of those
points given a particular pose. Using the last
known pose as a starting point, Levenberg-
Marquardt optimization7 achieves this goal with-
in a handful of iterations. We use the projected
positions of the feature points as the centers of the
search regions for tracking in the next frame.

Pose tracking can fail if a large portion of the
subject’s face is occluded or if the subject moves
too quickly. To maintain robustness in these cir-
cumstances, we recover tracking quickly using a
fast attentional mechanism.8 The system detects
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Figure 9. A single frame

of face-pose tracking

shows the nine tracked

points on the face, an

octagon indicating the

face’s plane, and a line

indicating a normal to

the face.



feature-tracking failure when a large residual error
occurs in the SAD computations. It then resorts to
skin-color “blob tracking” and head contour track-
ing to localize the face and reinitialize feature
tracking. When the feature trackers find their
respective targets, pose tracking continues.

We also tried two approaches to eye segmenta-
tion. The first builds on a deformable “active con-
tour,”9 which tracks the contour formed by the
upper and lower eyelids. Once eye position is
determined (based on head-pose information),
the system processes rectangular regions centered
on each eye to enhance the eye contours using
histogram equalization, smoothing, and ridge
detection. The system then estimates the best
position for the eyelid contour using coordinate
descent in the space of parameters corresponding
to translation in x, translation in y, width, in-
plane rotation, scale, and eye openness. 

Our second approach to eye segmentation is
the “warp tracker” system,10 which tracks features
through a sequence of images. Our software ini-
tializes the warp tracker using an initial (perhaps
canonical) image of the eyes and a contour around
the visible eye area. This image and contour define
the source; eye segmentation then amounts to
tracking the source contour. For any subsequent
target image, we compute the correspondence
map between the source and target images and
apply it to the source contour to yield the target
contour. To find the correspondence map, we use
an automated multiresolution lattice deformation
technique. In our experience, the warp tracker per-
forms fairly well on its own, and its hierarchical
nature naturally lends itself to integration with
other tracking algorithms for increased accuracy
and robustness. Figure 10 shows some of our warp
tracker results. While the early results are promis-
ing, it’s still too slow (2 frames per second on a
Pentium 333) and sometimes produces irregularly
shaped contours. 

Conclusion and future work
The results of our work to date appear promis-

ing. Given that we can extract accu-
rate vision data from each video
frame regarding head pose, eye seg-
mentation, and gaze direction, we
can arbitrarily position and pose the
head in a virtual 3D space, and syn-
thesize the eyes with the appropriate
gaze direction. The resulting video-
conferencing system supports a
sense of space and gaze awareness.

Currently, our chief difficulty is with the vision
component. Our current methods are still too
slow and inaccurate. Work on the warp tracker
continues at Carnegie Mellon University, while
colleagues at Microsoft Research strive to improve
the head tracker. We intend to publicly release our
software with a replaceable vision module, which
will let vision research groups try their own
approaches using our system. While waiting for
computer vision to come up to speed, we might
work with infrared-based vision systems so that
we can push ahead with research on our virtual
3D conferencing environment.

Existing videoconferencing systems without
gaze awareness present images that generally lack
valuable social information. Such video streams
quickly become uninteresting and are often
ignored. In contrast, it’s almost impossible to
ignore eye contact. We believe that video that
supports gaze awareness—along with low-latency,
high-quality audio and easy call set up—will mean
that a videoconferencing system finally has a
chance to succeed. MM
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