
We present the
design and
implementation of
NetMedia, a
middleware that
supports client–
server distributed
multimedia
applications. In
NetMedia, individual
clients may access
multiple servers to
retrieve customized
multimedia
presentations. Each
server simultaneously
supports multiple
clients. NetMedia has
transmission support
strategies and robust
software systems at
both server and client
ends.

Researchers have become increasingly
interested in flexibly constructing and
manipulating heterogeneous presenta-
tions from multimedia data resources1

to support sophisticated applications.2 In these
applications, information from multimedia data
resources at one location must be made available
at other remote locations for collaborative engi-
neering, educational learning and tutoring, inter-
active computer-based training, electronic
technical manuals, and distributed publishing.
Such applications require that we store basic mul-
timedia objects in multimedia databases or files.
The multimedia objects—such as audio samples,
video clips, images, and animation—are then selec-
tively retrieved, transmitted, and composed for
customized presentations. For example, in asyn-
chronous distance learning, we may assemble basic
parts of the multimedia presentations stored in the
multimedia databases into different presentations
for individual learning and training; in medical
diagnosis for training and electronic technical
manuals, we may assemble a sophisticated presen-
tation containing images, video clips, and audio

samples from the data stored in the multimedia
databases. Such customized presentations require
highly flexible compositions among various mul-
timedia streams.

To support such advanced applications, we
need novel approaches to network-based com-
puting to position adaptive quality-of-service
(QoS) management as its central architectural
principle. One of the key problems is to design the
end system software to couple to the network
interface. Also, in the best-effort network envi-
ronment such as the Internet, the transmission of
media data may experience large variations in
available bandwidth, latency, and latency vari-
ance. Consequently, network delays may occur in
delivering media data. To meet the demands of
the advanced applications over the Internet in the
real world, end system software must have the
ability to efficiently store, manage, and retrieve
multimedia data. We must develop fundamental
principles and advanced techniques for designing
end-system software integrated with the network
to support sophisticated and customized multi-
media applications.

Our contribution
This article focuses on the design strategies of

NetMedia, middleware for client–server distrib-
uted multimedia applications (please see the
“Related Work” sidebar for research conducted
and developed by others). NetMedia provides ser-
vices to support synchronized presentations of
multimedia data to higher level applications. In
the NetMedia environment, an individual client
may access multiple servers to retrieve customized
multimedia presentations, and each server simul-
taneously supports multiple clients. NetMedia is
capable of flexibly supporting synchronized
streaming of continuous media data across best-
effort networks. To achieve this, we design a mul-
tilevel buffering scheme to control the
collaborations between the client and server for
flexible data delivery in distributed environments,
an end-to-end network delay adaptation protocol
(sending and display media units in a stream—
termed DSD) to adjust the sending rate for each
stream according to the optimum network delay,3

and the probe-loss utilization streaming (PLUS)
protocol, a flow and congestion control protocol
that uses network status probing to avoid conges-
tion rather than react to it. The DSD and PLUS
schemes integrate transmission support strategies
and robust software systems at the server and
client ends to dynamically handle adaptive QoS

56 1070-986X/02/$17.00 © 2002 IEEE

NetMedia:
Streaming
Multimedia
Presentations in
Distributed
Environments

Aidong Zhang, Yuqing Song, and Markus Mielke
State University of New York at Buffalo

Feature Article

management for customized multimedia presen-
tations. We use these schemes to enforce interac-
tive control (such as fast forward or backward
playback, pause, seek, and slow motion) with
immediate response for all multimedia streams.

To the best of our knowledge, this is the first work
that provides an integrated solution to buffer
management, congestion control, end-to-end
delay variations, interactivity support, and stream
synchronization.

57

Various research has been conducted to develop techniques
for distributed multimedia systems. Collaboration between clients
and servers has been addressed to support a globally integrated
multimedia system.1 In particular, researchers have studied
buffering and feedback control for multimedia data transmission
in the distributed environment. In Ramanthan and Rangan’s
work,2 they proposed server-centric feedback strategies to main-
tain synchronized transmission and presentation of media
streams. Nahrstedt and Smith3 used feedback to design robust
resource management over the network. Hui et al.1 designed a
backward feedback control approach to maintain loosely-coupled
synchronization between a server and a client. Feng et al.4 devel-
oped an approach to use the buffer, a priori information, and the
current network bandwidth availability to decide whether one
should increase the quality of the video stream when more net-
work bandwidth becomes available. Mielke and Zhang5 discuss
an approach to the integration of buffering and feedback control.

Substantial research has been conducted to reduce the bursti-
ness of variable-bit-rate streams by prefetching data.6 Researchers
have proposed many bandwidth smoothing algorithms specifi-
cally for this task. These algorithms smooth the bandwidth
requirements for video stream retrieval from the video server and
transmission across the network. Given a fixed client buffer, it’s
possible to minimize the peak bandwidth requirement for the
continuous video stream delivery while minimizing the number
of bandwidth rate increases.7 Another scheme aims at minimiz-
ing the total number of bandwidth changes.8 It’s also possible to
minimize bandwidth variability9 and buffer utilization6 or adhere
to a buffer residency constraint.6

Researchers have also investigated flow and congestion con-
trol for multimedia data transmission in best effort networks.10

These approaches assume no direct support for resource reser-
vation in the network and attempt to adapt the media streams
to current network conditions. Best-effort transmission schemes
adaptively scale (reduce or increase) the bandwidth requirements
of audio and video streams to approximate a connection that’s
currently sustainable in the network. Best-effort schemes split
into TCP-friendly and non-TCP-friendly mechanisms. TCP-
friendly algorithms avoid starvation of TCP connections by reduc-
ing their bandwidth requirements in case of packet loss as an
indicator of congestion.11 Non-TCP-friendly schemes reduce rates
only to guarantee a higher QoS to their own streams, thereby
forcing TCP connections to back off when competing for insuf-
ficient network bandwidth.12

Enforcing synchronization in playout scheduling has also been

recognized.13 Traditionally, servers focus more on keeping
resource costs low at the client side. We observe that the enforce-
ment of novel dynamic synchronization algorithms at the client
side has become feasible.13 Also, others have proposed control
schemes for processing user interactions14 for either centralized
or distributed environments. The difficulty of interactive support
for video streams is the forward motion prediction used by most
advanced compression techniques.15 Several papers propose
methods for implementing fast forward but don’t deal ade-
quately with fast backward playback. Normally streams are sent
out in encoding and not in display order to make it easier for for-
ward playback decoding. This complicates the video frames’
decoding in the backward direction and the synchronization
between participating streams after an interactive request.

Recent research also addresses the need for a middleware
framework in transmitting multimedia data. The middleware is
located between the system level (operating system and network
protocol) and the applications.16 Neufeld et al.17 describe a good
conceptual model of the middleware. They propose a real-time
middleware for asynchronous transfer mode (ATM) systems. It
provides virtual connection setup, bandwidth reservation, and
session synchronization. Li and Nahrstedt18 describe a middle-
ware control structure, which requires applications to implement
observation methods for respective system resources and prop-
er adaptation policies within the application.

However, there’s a lack of a middleware structure that can
effectively put all component techniques together as multime-
dia middleware services and provide a mapping from the high-
level requests of the application to the low-level implementation
of the system to support customized multimedia applications.
Ideally, the application should be able to treat a multimedia
stream like a file and access it without worrying about synchro-
nization, buffer management, and transmission over the net-
work. In contrast to the traditional networked file server,
multimedia computing introduces two new problems. First, the
size of multimedia objects requires large aggregate I/O band-
width. The bandwidth also must be large enough to deal with
the burstiness introduced by compression techniques. The mul-
timedia middleware must be able to handle bursty and volumi-
nous data at high speeds. Second, the service must be
guaranteed timely to ensure smooth playback at the client dis-
play. Main memory must be efficiently managed for staging data
between the disks and the network. To accommodate different
variations in bit rates for compressed streams as well as some-

continued on p. 58

Related Work

NetMedia architecture
We illustrate the overall system architecture in

Figure 1. The system has three main components:
the client for presentation scheduling, the server
for resource scheduling, and the database (file)
systems for data management and storage. Each
client supports a graphical user interface (GUI)
and synchronizes images and audio and video
packets and delivers them to an output device
such as a PC or a workstation. Meanwhile, each
server is superimposed on a database system and
supports the multiuser aspect of media data
caching and scheduling. It maintains timely
media data retrieval from the media database and
transfers the data to the client sites through a net-
work. Finally, each database system manages the

insertion, deletion, and update of the media data
stored in the local database. Because certain media
streams may be represented and stored in differ-
ent formats, the underlying database systems can
be heterogeneous. The aim in the proposed mid-
dleware is to give users as much flexibility and
individual control as possible. The middleware
must support each media type individually to
allow independent and interactive functionalities
as well as QoS requirements.

Server design
The server design permits individual stream

access with support of sharing resources to
enhance scalability. We can summarize the aim of
server functionality in the following points:

58

IE
EE

 M
ul

ti
M

ed
ia

what unpredictable transmission and retrieval delays, we also
need novel end-to-end control approaches. Moreover, the sys-
tem must be able to respond flexibly and dynamically to various
types of user interactions.

References
1. J. Hui et al., “Client–Server Synchronization and Buffering for

Variable Rate Multimedia Retrievals,” IEEE J. Selected Areas in

Comm., vol. 14, no. 1, Jan. 1996, pp. 226-237.
2. S. Ramanathan and P.V. Rangan, “Feedback Techniques for Intra-

Media Continuity and Inter-Media Synchronization in Distributed
Multimedia Systems,” The Computer J., vol. 36, no. 1, 1993, pp.
19-31.

3. K. Nahrstedt and J. Smith, “New Algorithms for Admission
Control and Scheduling to Support Multimedia Feedback Remote
Control Applications,” Proc. 3rd IEEE Int’l Conf. Multimedia

Computing and Systems (ICMCS 96), IEEE CS Press, Los Alamitos,
Calif., 1996, pp. 532-539.

4. W. Feng, B. Krishnaswami, and A. Prabhudev, “Proactive Buffer
Management for the Streamed Delivery of Stored Video,” Proc.

ACM Multimedia, ACM Press, New York, 1998, pp. 285-290.
5. M. Mielke and A. Zhang, “A Multi-Level Buffering and Feedback

Scheme for Distributed Multimedia Presentation Systems,” Proc.

7th Int’l Conf. Computer Comm. and Networks (IC3N 98), IEEE CS
Press, Los Alamitos, Calif., 1998, pp. 219-226.

6. W. Feng, Buffering Techniques for Delivery of Compressed Video in

Video-on-Demand Systems, Kluwer Academic, New York, 1997.
7. W. Feng and S. Sechrest, “Smoothing and Buffering for Delivery

of Prerecorded Compressed Video,” Proc. SPIE Multimedia

Computing and Networking, SPIE Press, Bellingham, Wash., 1995,
pp. 234-242.

8. W. Feng, F. Jahanian, and S. Sechrest, “An Optimal Bandwidth
Allocation Strategy for the Delivery of Compressed Prerecorded

Video,” ACM/Springer-Verlag Multimedia Systems J., vol. 5, no. 5,
1997, pp. 297-309.

9. J. Salehi et al., “Optimal Buffering for the Delivery of Compressed
Prerecorded Video,” Proc. ACM Special Interest Group on

Computer/Communication System Performance (Sigmetrics 96),
ACM Press, New York, 1996, pp. 222-231.

10. I. Busse, B. Deffner, and H. Schulzrinne, “Dynamic QoS Control of
Multimedia Applications Based on RTP,” Computer Comm., vol.
19, no. 1, Jan. 1996, pp. 49-58.

11. D.D. Clark, S. Shenker, and L. Zhang, “Supporting Real-Time
Applications in an Integrated Services Packet Network:
Architecture and Mechanism,” Proc. ACM Special Interest Group on

Data Comm. (Sigcom 92), ACM Press, New York, 1992, pp. 14-26.
12. S. Chakrabarti and R. Wang, “Adaptive Control for Packet Video,”

IEEE Multimedia and Computer Systems, IEEE CS Press, Los
Alamitos, Calif., 1994, pp. 56-62.

13. T.V. Johnson and A. Zhang, “Dynamic Playout Scheduling
Algorithms for Continuous Multimedia Streams,” ACM Multimedia

Systems, vol. 7, no. 4, July 1999, pp. 312-325.
14. N. Hirzalla, B. Falchuk, and A. Karmouch, “A Temporal Model for

Interactive Multimedia Scenario,” IEEE MultiMedia, vol. 2, no. 3,
Fall 1995, pp. 24-31.

15. M.S. Chen and D. Kandalur, “Downloading and Stream
Conversion: Supporting Interactive Playout of Videos in a Client
Station,” Proc. IEEE Multimedia Computing and Systems, IEEE CS
Press, Los Alamitos, Calif., 1995, pp. 73-80.

16. P.A. Bernstein, “Middleware: A Model for Distributed System
Services,” Comm. ACM, vol. 39, no. 2, Feb. 1996, pp. 86-98.

17. G.Neufeld, D.Makaroff, and N.Hutchinson, The Design of a

Variable Bit Rate Continuous Media Server, tech. report TR-95-06,
Dept. Computer Science, Univ. of British Columbia, Vancouver,
Canada, March 1995.

18. B. Li and K. Nahrstedt, “A Control-Based Middleware Framework
for Quality of Service Adaptations,” IEEE J. Selected Areas in

Comm., vol. 17, no. 9, Sept. 1999, pp. 1632-1650.

continued from p. 57

❚ resource sharing (use of common server disk
reading for multiple clients),

❚ scalability (support multiple front end modules),

❚ individual QoS and congestion control (man-
aging individual streams), and

❚ interactivity.

We divide the server and client design into the
front end and the back end. The server back end
includes the disk service module that fills in the
server buffer according to the request. The server
buffer contains a sub-buffer for each stream. All
streams and front-end modules share the back-
end module.

The server front end includes communication
and packetization modules that support reading
data from the server buffer and delivering it to a
network according to the QoS requirements for
each stream. It also deals with the clients’ admis-
sion control.

Figure 2 shows the server component’s imple-
mentation design for processing audio and video
streams. The disk service module is realized
through DiskReadThread. The packetization mod-
ule is realized by SendThread, which reads media
units from the server buffer and sends packets to
the network. The communication module is real-
ized through ServerTimeThread, AdmissionThread,
and AdmittedClientSet. ServerTimeThread reports
the server’s current time and estimates the network
delay and time difference between server and
client. AdmittedClientSet keeps track of all admit-
ted clients. The system uses Server_Probe_Thread
to get feedback messages and control messages
from the probe thread at the client site and initi-
ates control of probing the network.

Client design
A client’s main functionality is to display mul-

tiple media streams to users in the specified for-
mat. The client synchronizes the audio and video
packets and delivers them to the output devices.
In addition, the client sends feedbacks to the serv-
er, which the server uses for admission control
and scheduling. Figure 3 (next page) shows the
client’s design. The client back end receives the
stream packets from the network and fills in the
client caches. The client back end includes two
components:

❚ Communication module. The communication

module provides the interface to the net-
work layer. It primarily consists of two sub-
systems to handle user datagram (UDP) and
transmission control (TCP) protocols. This
lets the client use faster protocols like UDP

59

Network

Client

User

Media
database

Server

DBMS

Client

User

Media
database

Server

DBMS

Client

User

Media
database

Server

DBMS

Figure 1. NetMedia system architecture.

D
isk read thread

VIDEO BUFFER

AUDIO BUFFER

ADMITTED CLIENT

VIDEO BUFFER

AUDIO BUFFER

ADMITTED CLIENT

Video
buffer

Audio
buffer

Send
thread

Send
thread

Server_Probe_Thread
Adjust video sending
Adjust audio sending

Server time thread

Admission thread

N
etw

ork

Set of admitted clients

Admitted client

Figure 2. Server design for audio and video streams.

for media streams that can tolerate some
data loss and reliable protocols like TCP for
feedback messages.

❚ Buffer manager. The buffer manager maintains
the client cache in a consistent state.

The client front end reads out the data from
the client cache and ensures the synchronized
stream presentation. The client front end includes
two components:

❚ Synchronization manager. The synchronization
manager schedules the multimedia data deliv-
ery to the output devices. This module controls
delivery of media streams based on QoS para-
meters that users and the presentation’s state
define.

❚ Presentation manager. The presentation manag-
er interacts with the GUI and translates user
interactions such as START and STOP into
meaningful commands that the other subsys-
tems can understand.

Note that we can retrieve a stream consisting
of transparencies (or images) using conventional
transmission methods such as remote procedure
calls (RPC) and synchronize it with the audio and
video streams at the interface level. The advan-
tage of RPC is that standard function calls can
implement well-known file functions—such as
opening and reading from a certain position—
that the server machine then transparently exe-
cutes. An RPC request may contain commands to
find a stream’s file length, providing directory
content or starting the slide session’s delivery.
The RPC server retrieves all requested data and
sends it back to the client side. Since the sched-
uling for such data isn’t as time critical as audio
or video data, the display of such data can toler-
ate some delay. In our implementation, we syn-
chronize the slides first according to the audio
information. If no audio is available, we schedule
slides with video; otherwise it behaves like a reg-
ular Postscript document.

To make the access to media streams transpar-
ent to the application’s higher levels, we provide
the MultiMedia Real-Time Interactive Stream

60

IE
EE

 M
ul

ti
M

ed
ia

MRIS (multimedia realtime interactive streams)

Open slides

Close slides

Estimation of network delay

Request for open of stream
Video
stream

Video
stream

GV
(ghost view)

Connect

C
om

m
ands

for interaction

Server

Synchronization betw
een slides and video/audio

Client

Slide
stream

N
et

w
or

k

 Client
management

 Client
management

RPC
server

Video/
audio
server

Video
buffer

Video
prepare thread

Receive
thread

Audio
buffer

Audio
prepare thread

Receive
thread

Synchronization
between video

and audio
Synchronization of audio
between client and server

Synchronization of video
between client and server

Control message

C
lie

nt
sc

he
du

le
th

re
ad

Request for close of stream

Disconnect

In
te

rf
ac

e

Audioplayer

MPEG_player

Figure 3. Multiple
streams synchronized
at the client.

(MRIS) interface for requesting media stream
delivery such as audio, video, or any other media
in a synchronized form from the server. MRIS sep-
arates the application from the software drivers
needed to access multimedia data from remote
sites and controls specific audio and video output
devices. The MRIS interface has the advantage
that the transmission support is independent of
the application. Any application that uses syn-
chronized multimedia data can rely on this mod-
ule. We use the MRIS class to implement our
virtual classroom application. Users can synchro-
nize the slides with the video and audio data at
the MRIS interface level.

Figure 4 illustrates NetMedia’s class hierarchy.
The application only contains the transparency-
reader Ghostview (GV), control Loop (gvMain-
Loop), and player units (MpegPlayThread and
AudioPlayThread). MRIS handles everything else.

Time control
A crucial design element of a multimedia sys-

tem is control over the timing requirements of the
participating streams so that we can present the
streams in a satisfiable fashion. In NetMedia, a
robust timing control module (named SleepClock)
handles all timing requirements in the system.
The novelty of SleepClock is that it can flexibly
control and adjust the invocation of periodic
events. We use SleepClock to enforce

❚ end-to-end synchronization between server
and client,

❚ smoothed transmission of streams,

❚ periodic checks in modules, and

❚ timing requirements of media streams.

Figure 5 (next page) shows how SleepClock
works. Initially, we set the start time of a periodic
event sequence and the time interval of each event.
We can set SleepClock to sleep until a given event
number’s appropriate time. Sleeping renders the
current process inactive until it reaches the event’s
time. For example, consider that the system started
at time s = 12:00:00 p.m. and the interval is set to 1
minute. If the current process needs to sleep until
the number 5 event and the current time is
12:02:30, then a sleep routine will be called with its
value set to 2 minutes and 30 seconds. This lets the
process sleep until the correct time. If the current
time surpasses startime + event_number ∗ interval,
then SleepClock will take no action and the process
can try to keep up to its timing requirements.

The advantage of SleepClock is that it provides
two ways to adjust the progress of events. First, the
invocation time of each event can be modified. It
does this by assuming a new start time for the
event sequence, which results in an acceleration

61

Jan
uary–M

arch
 2002

(decodeThread)
(decoder)

(audiobuffer)

(vrthread)
(arthread)

(schedtrhead)

(vptrhead)

AudioPlayThread

(aptrhead)

AudioPlay

gvMainLoopThread

(videobuffer)
MpegPlayThread

GV

ServerTimeThread

AdmissionThread

DiskReadThread

Client

VideoFileInfo
FlowControlBuffer<VideoPacket>
FlowControlBuffer<AudioPacket>

SendThread<VideoPacket>
SendThread<AudioPacket>

ServerScheduleThread

SleepClock
SleepClock

MRIS

AdmittedMRIS
AdmittedMRISSet

Video/Audio server

MRISManageThread

AdmissionReply

AdmissionRequest

VideoPacket

FeedBackMsg

(videofileinfo)
(videobuffer)
(audiobuffer)

(videothread)
(audiothread)

(schedtrhead)

(videoSleepClock)
(audioSleepClock)

ClientVideoBuffer
ClientVideoDecoder

AudioPacket

ReceiveThread<VideoPacket>
ReceiveThread<AudioPacket>

ClientSchedulThread

Decoder

ClientAudioBuffer

VideoPrepareThread
AudioPrepareThread

NetMedia-VCR

N
et

w
or

k

In
te

rf
ac

e

Figure 4. NetMedia class
hierarchy using the
MRIS.

or delay for the remaining sequence of events.
SleepClock checks the current time in relationship
to new_starttime + interval ∗ current_event. For
example, consider that the system has streamed
out 100 frames when it receives a speedup com-
mand. By moving the start time in the past (rela-
tive to the old start time), the 101 event (and all
following events) will occur sooner in contrast to
the original timing schedule. In Figure 5, Adjust
Progress shows an example of the modified start
time. It achieves the second form of adjustment by
modifying the interval between events. Figure 5
gives an example of changing intervals.

Buffering strategies
Buffer management is a crucial part in the

NetMedia system, which has two main compo-

nents: server and client buffers.

Server flow-control buffer
We designed a straightforward server buffer for

each stream to perform fast delivery of the stream
from the disk to the network. Figure 6 shows the
server buffer structure for a stream. A server stream
buffer is a circular list of items. Each item may
contain one packet. Each server stream buffer has
the following characteristics:

❚ One producer and one consumer. The producer
writes packets to the buffer and the consumer
reads from the buffer.

❚ First-in, first-out. Packets written in first will be
read out first.

62

IE
EE

 M
ul

ti
M

ed
ia

Change interval

Start time = s s + interval s + interval*2

Event 0

Time

Events Event j

New start time = sn ns + new_interval*(n−j)

event nEvent 1

Old
interval

Event 2

Change interval now

Initially

Start time = s s + interval s + interval*2

Event 0 Event 1 Event 2 Event n

s + interval*nTime

Events

Interval

Adjust progress

start time = s s + interval s + interval*2

Event 0 Event 1 Event 2

Time

Events Event n

ns + interval*n

Set new start time (ns) = s + howmuch Adjust progress now by

Start time = s s + interval s + interval*2

Event 0 Event 1 Event 2

Time

Events

Sleep for next m events (here, m can be a fraction.)

Event n

Sleep from now … Till here.

Sleep from ... to

m = 2

m = 0.8

Interval

New
interval

Figure 5. SleepClock
design.

Specifically, each server stream
buffer has two pointers: read point-
er (readp) and write pointer (writep).
Items from readp to writep are read-
able; spaces from writep to readp are
writeable.

Because a server buffer is designed
for data flow control from the disk to
the network, the buffer’s size can be
relatively small. In NetMedia’s imple-
mentation, the video buffer’s size is
100 video packets, where each video
packet is 1,024 bytes, and the audio
buffer’s size is 20 audio packets,
where each audio packet is 631 bytes.

Client packet buffer
Client buffer management is a

central part of the NetMedia frame-
work. In contrast to the server buffer that must sup-
port fast delivery of the stream from the disk to the
network, the purpose of a client buffer is to take
care of network delays and out-of-order arriving
packets and to efficiently support user interactions.

The client buffer management’s novelty is its
ability to support interactivity requests, like back-
ward playback or seek. The difficulty experienced
with interactive support in video streams is the
video encoding used by most advanced compres-
sion techniques.4 Several works propose methods
for implementing forward playback but don’t ade-
quately deal with backward playback. To solve the
decoding problem, we propose an approach5 to
use a separate file for each video stream, pre-
processed for backward playback. The advantage
is that it doesn’t need special client buffer man-
agement. The disadvantage is that the system
must create a separate file for all video streams,
thus increasing the storage used in the system and
its cost.

Our approach is to let the client support inter-
active requests rather than the server. As the client
processes video frames, rather than discarding the
displayed frames, the client saves the most recent
frames to a temporary buffer. We do this to reduce
the network’s bandwidth requirements in
exchange for memory at the client site, because
we expect an increase in network load in the next
few years compared to falling memory prices.

A circular buffer serves as the client buffer
design for interactivity functions. The model pro-
posed here lets all interactive functions occur at
any time with an immediate response time. If the
buffer is large enough, the interactive request for

backward playback can be fed directly out of the
buffer instead of requesting a retransmission from
the server.

The interactive buffer for a stream has two lev-
els: packet and index buffers. The first level is the
packet buffer, which has a set of fixed-size pack-
ets. Each packet has one pointer that can point to
another packet, so we can easily link any set of
packets by pointer manipulation (for example, all
packets for a particular frame). The buffer main-
tains a list of free packet slots.

The second level for audio buffer is the index
buffer of a circular list, in which each entry records
the packet’s playback order. Each packet in an
audio stream has a unique number—PacketNo—
which indicates the packets’ order in the whole
stream. For the video buffer, each index in the
index buffer points to one frame (which is a list of
ordered packets within the frame). We define the
point with the minimal packet/frame number as
MinIndex and the point where we read data for
playback as CurrentIndex. Both indices traverse the
circumference in a clockwise manner, as Figure 7
(next page) shows. (Note that in this figure, since
the buffer is for a video stream, we named the two
pointers MinFrameIndex and CurrentFrameIndex.)

The distance between MinIndex and
CurrentIndex is defined as the history area. A pack-
et isn’t removed immediately after being dis-
played. It’s removed only when some new packet
needs space. So valid indices from MinIndex
(inclusive) to CurrentIndex (not inclusive) point
to the packets or frames that have been displayed
and haven’t been released yet. (Later the system
can use the data to support backward.) To keep

63

Jan
uary–M

arch
 2002

Item

Item

Item

Item
Item

Ite
m

Ite
m

Item

Write pointer Read pointer

Write
Item

Read

Figure 6. Server flow-
control buffer design.

track of the forward playback capabilities, we
introduce the packet/frame with the maximum
number as MaxIndex. Note that MaxIndex is
always between CurrentIndex and MinIndex. We
define the distance between CurrentIndex and
MaxIndex as the future area. Using the history and
future areas, users have full interaction capabili-
ties in the two different areas.

When a new packet arrives at the client site,
the system checks its packet or frame number
(denoted as seqno) and decides if the packet can
be stored. We define the valid range of the packet
or frame numbers as follows:

MinIndex ≤ seqno ≤ CurrentIndex + BuffSize − 1

If the packet has a packet or frame number out-

side this range, then the system considers it a
packet loss and discards it. Otherwise, the packet
is stored in a packet slot either taken from the free
packet slot list or obtained from releasing some
history data. Note that once the system releases
some history data, it also updates the MinIndex.

To increase the decoding speed of compressed
motion predicted frames, we introduce the use of
a decode buffer. The MPEG compression scheme4

introduces interframe dependencies among I, P,
and B frame types. To decode a certain frame, pre-
vious or future frames might be necessary. For
example, given the following frame sequence:

frame type: I B B P B B P B B I
frame #: 1 2 3 4 5 6 7 8 9 10

frames 1, 4, and 7 must be decoded before frame
9 can be decoded. To speed up the decoding
process for the backward playback, we cache the
decoded frames within an I-to-I frame sequence.
In case of dependencies, we might be able to feed
necessary frames out of the decode buffer instead
of calling the decoding routine multiple times.

To implement the buffer design and let inter-
active requests be fed from their local buffer, we
need to set a reasonable buffer size for the index
and packet buffers. We introduce two considera-
tion factors: Max−Interactive− Support and
Reasonable−Delay. Max−Interactive−Support defines
the longest playback time we expect to be
buffered in the client for interactive support, thus
defining the index buffer’s size. Reasonable_Delay
defines the delay within which most packets will
pass over the network, thus defining the packet
buffer’s size. In NetMedia’s implementation, we
defined Reasonable_Delay at 2 seconds. Max-
_Interactive−Support’s size depends on the amount
of forward and backward play support. (This can
vary from 10 seconds to 5 minutes or more,
depending on the memory at the client.)

At the server site, video frames are normally
represented in encoding order to make it easier for
the decoder to decode in the forward playback.
This complicates the decoding of frames for back-
ward playback. We transmit our streams in display
order to achieve the minimal distance among the
dependent frames for both forward and backward
playback decoding. The advantage is that our
scheme at the client site has uniform design and
the same performance for both forward and back-
ward playback. By using the decoding buffer and
our network-control algorithms, we can control
the amount of data in the future or backward area

64

IE
EE

 M
ul

ti
M

ed
ia

Packet Packet

Packet Packet

Packet

PacketPacket

Index
Index

In
de

x
Index

MinFrameIndex

CurrentFrameIndex

Free space listFirst Last

D
ecoder

Ring buffer for decoded frame

Packet buffer
Index buffer

Pa
ck

et W
rit

e

D
ec

od
ed

fr
am

eRe
ad

Packet

Figure 7. Packet and
index buffers for a video
stream at the client.

in our buffer. This lets users specify the amount of
interactivity support that they want for backward
or forward playback without immediate request
to the server.

With our buffer design, we can use the history
and future areas to feed interactive requests direct-
ly from the local buffer. If the request doesn’t
exceed the cache, the server won’t be notified. This
will highly reduce the scalability problems faced
by the server in case of multiple interactivity
requests. The server must handle access outside the
history or future area by redirect streaming, but the
probability of this case can be drastically reduced
by the buffer size amount given at the client.

End-to-end flow control
Various delays and congestion in the network

may cause the client buffer underflow or overflow,
which may result in discontinuities in stream
playback. We propose DSD and PLUS schemes to
dynamically monitor the network situation and
adapt our system to the current situation of the
network. The DSD scheme provides full flow con-
trol on stream transmission, and the PLUS scheme
uses network status probing and an effective
adjustment mechanism to data loss to prevent
network congestion. Both schemes work together
to find the optimum adjustment considering net-
work delay and data loss rate and ensure no
underflow or overflow in the client buffer.

DSD scheme
The basic dynamic end-to-end control scheme

used in NetMedia is the DSD algorithm presented
in Song et al.3 For DSD, we define the distance
between sending and display at time t as the dif-
ference between the nominal display time of the
media unit—which is being sent—and the media
unit, which is being displayed. Thus, at a given
time, let the media unit being displayed have nom-
inal display time T and the media unit being sent
have nominal display time t. Then, DSD = t – T.
Figure 8 illustrates the meaning of DSD in a stream.

The connection between DSD and the network
delay is as follows. Comparing it with the network
delay, if DSD is too large, then the overflow data
loss at the client buffer could be high; if DSD is too
small, then the underflow data loss at the client
buffer could also be high. Thus, DSD should be
large enough to cover the network delay experi-
enced by most media units; it also should be small
enough to ensure the client buffer won’t overflow.

By adjusting the current DSD in the system to
respond to the current network delays, we can

monitor the best DSD dynamically. We can then
adjust the sending rate to avoid underflow or over-
flow in the client buffers and alleviate data loss.

Initially, we select a DSD based on the up-to-
date network load and fix the sending and display
rates at the nominal display rate. In the following
we show the current DSD calculation, the best
DSD, and the DSD adjustment.

Current DSD calculation. At time t, let tsent be
the nominal display time of the media unit being
sent at the server site and tdisplayed be the nominal
display time of the media unit being displayed at
the client site. By definition, the DSD is

DSDt = tsent − tdisplayed (1)

Suppose at time t, the media unit being dis-
played has unit number ut

displayed, the media unit
being sent has unit number ut

sent, and nominal
duration of one unit is UnitDuration. We can
then calculate DSD as follows:

(2)

The client can always know ut
displayed directly, but

it can only estimate ut
sentfrom the information car-

ried by currently arriving media units. Suppose
that it sends the current arriving media unit u at
time SendingTimeu and its unit number is nu.
Assume that the server is sending with nominal
display rate. At time t, we have

(3)

We then obtain

(4)

Best DSD calculation. We define an allowable
range for DSD:

MINDSD ≤ DSD ≤ MAXDSD,

where MINDSD = 0 and MAXDSD = Max−Delay.
We then evenly divide interval [MINDSD,

DSD UnitDuration

+(SendingTime)
displayed= − ×

−

()n u

t
u

t

u

u n

tt
u

u
sent

SendingTime
UnitDuration

= +
−

 DSD UnitDurationsent displayedt
t tu u= − ×()

65

Jan
uary–M

arch
 2002

T t

DSD

Media stream

Figure 8. Definition of DSD in a stream.

MAXDSD] into k − 1 subintervals with interval
points d1= MINDSD, d2, d3, … dk = MAXDSD. Here
k can be 10, 20, or even 100. The tradeoff is that
if k is too small, the best DSD found might not be
good enough; if k is too big, the overhead in cal-
culating best DSD is too large. For each di, we keep
track of data loss with respect to it.

Here’s the definition of relative data loss with
respect to di. Let d be the current DSD. Suppose we
have a virtual client, which is the same as the
actual client, with the same buffer size and the
same displaying time for any media unit. The dif-
ference is that, suppose for the real client, it sends
a real media unit at time t. It then should be dis-
played at time t + d. For the virtual client, this unit
is sent at time t and displayed at time t + di. So the
virtual DSD for this unit is di. Upon this assump-
tion, we define the virtual client’s loss rate as the
relative loss rate with respect to di. When a media
unit arrives, virtual clients first check if the unit is
late. Suppose the current time is currentT, the vir-
tual client’s DSD is d, and the sending time of this
media unit is sendT. If sendT + d < currentT, then
the unit is late. If the unit is late, it’s counted as a
relative loss for this virtual client.

The best DSD finder keeps track of these virtual
clients. It launches the best DSD calculation once
in a fixed time period (200 milliseconds in
NetMedia’s implementation). When it needs a new
(best) DSD, the best DSD finder browses virtual
clients and reports the DSD in the virtual client
with minimum loss rate as the best DSD. Note that

DSD only captures relative packet loss, which
means that the packet arrived at the client site but
was too late for display. The PLUS protocol captures
any data loss due to network congestion.

Adjustment to network delay. The system
chooses a DSD as an application begins, based on
the current network load. If the best DSD differs
from the current DSD, we can adjust it in two
ways. One is to change the sending rate and
another is to change the display rate. We can
adjust the display rate by the timing routine at the
client site. We only adjust video streams.

At any calculation point, if the client calls for
adjustment, then it sends a feedback message to
the server side to adjust the sending rate, so that
it changes the system DSD to the best DSD. The
feedback messages will carry the ∆d—the differ-
ence of the best DSD and the current DSD. A neg-
ative ∆d means the sending rate should slow down
and a positive ∆d means the sending rate should
speed up. The feedback data also contains infor-
mation about the loss rate to initiate frame drop-
ping at the server site if necessary.

To slow down, the server stops sending for |∆d|
time. To speed up, the server always assumes that
the current display rate is at nominal display rate
r. Let the maximum available sending rate over
the network be R. The server will speed up using
the maximum data rate for a time period. After
the reaction time finishes, the server will use the
nominal display rate r as the sending rate.

66

IE
EE

 M
ul

ti
M

ed
ia

Time

Events event n

n s + interval*n

Start time=s s + interval s + interval*2

Event 0 Event 1 Event 2

Time

Events Event n

Slow down

Initially

start time = s s + interval s + interval*2

Event 0 Event 1 Event 2 Event n
s + interval*nTime

Events

Event 2Event 1Event 0

s + interval*2s + intervalStart time = s

Speed up

Current time

Wait to send next unitInterval

Set new start time (ns)

Wait to send next unit

Wait to send next unit

Set new start time (ns)

Figure 9. Time control
in implementing the
DSD scheme.

Figure 9 shows SleepClock’s use in the DSD
scheme. The scheme adjusts the start time to change
the stream’s sending times in the following events,
which either increases or decreases the sending
bandwidth temporarily. This can adjust the stream
for varying end-to-end delays in the network.

PLUS scheme
The DSD scheme doesn’t address the conges-

tion problem in the network. It also doesn’t con-
sider the effect of data compression, which may
introduce burstiness into the data streams. The
burstiness results in different bandwidth require-
ments during the stream’s transmission. This
makes it difficult to come up with a resource and
adaptation scheme because the bandwidth
requirements always change. To address these
issues, we developed PLUS as a new flow and con-
gestion control scheme for distributed multime-
dia presentation systems. This scheme uses
network situation probing and an effective adjust-
ment mechanism to data loss to prevent network
congestion. We also designed the proposed
scheme to scale with increasing numbers of PLUS-
based streaming traffic and to live in harmony
with TCP-based traffic. With the PLUS protocol we
address how to avoid congestion rather than react
to it with the probing scheme’s help.

The PLUS protocol eases bandwidth fluctua-
tions by grouping together some media units
(frames for video) in a window interval ∆W (Figure

10). We define easing bandwidth in a given win-
dow as smoothing.6 One way of smoothing is to
send out the data at the average bandwidth
requirement for the window (Equation 5):

(5)

By using this method, the client can guarantee
that the bandwidth needed is minimal and con-
stant through the interval. The disadvantage of
this method is that the feedback received only
applies to the current or past bandwidth require-
ments. It doesn’t consider that there might be a
higher bandwidth request in the future, which the
network may not be able to process.

For each interval ∆W, we identify a critical
interval. The critical interval is an interval in the
future playback time that contains the maximum
number of packets. The aim of the PLUS probing
scheme is to test if the network can support the
critical interval. We set ∆W to be a 5-second
smoothing window in NetMedia’s implementa-
tion. This is a reasonable time to reduce the band-
width through smoothing. It’s also granular
enough to detect sequences with fast movements
(which result in higher numbers of packets per
frame and therefore provide the bottleneck band-
width of a stream).

Once we determine the critical interval for
each sequence, we apply our smoothing and
probing scheme. The critical bandwidth in the

∆

∆
a

W
 =

number_of_packets_in_current_interval

67

Jan
uary–M

arch
 2002

r Critical interval

r

a

a
i

r

Packet type

No_of_pkts
per frame:

Just-in-time

Send rate:

Send rate:

Interval

Type I B B I

3

I BBII IB I

2 1 8

Smoothing

PLUS

Send rate:

Smoothed rate Probe rate

Packet type

W

I BBBI II IB I

Figure 10. PLUS probing
scheme.

future, at a given interval, is provided by its criti-
cal interval. To find the minimal bandwidth
requirement for the critical interval, we apply the
averaging algorithm, which spreads the constant-
sized packets evenly. This leads to a sending dif-
ference between consecutive packets, which we
define by

(6)

According to Keshev,7 the packet pair approach
at the receiver site can estimate a connection’s
bottleneck bandwidth. The essential idea is that
the interpacket spacing of two packets will be pro-
portional to the time required for the bottleneck
router to process the second packet. We calculate
the bottleneck bandwidth as

(7)

In MPEG-encoded streams the loss of I or P
frames results in further dependent frames loss.
Only the loss of B frames doesn’t result in further
loss. A B frame loss (in presentation) results only
in a short degradation of the quality in playback.
We use B frames to probe the network to see if it
can support the critical interval and thereby pro-
tect critical frame loss like I or P frames (as the
lower part of Figure 10 shows).

Instead of spreading each packet evenly within
our 5-second smoothing window, we use the bot-
tleneck bandwidth for sending out all B frames.
Critical packets (belonging to I or P) will still be
sent out with the average bandwidth calculated in
Equation 5. Our scheme will thereby punctually
probe the network while acknowledgments will
give direct feedback ahead of time if the network
can support the critical bandwidth. In case of con-
gestion, we’ll initiate a multiplicative backoff of
the sending rate. B frames have less chance of sur-
vival in our scheme in case of congestion. This
isn’t a disadvantage because we can proactively
provide a bandwidth reduction at the server site by
dropping noncritical B frames in time to increase
the survival rate of critical packets (thereby increas-
ing the subsequent B frames’ survival number).

Concurrent probing of different PLUS streams
reports a conservative estimation of the current
network situation. We based the estimation on
the bandwidth need of the streams’ critical inter-
vals and not necessarily the current average inter-
val. This behavior lets the PLUS stream be aware
of its surrounding and responsive to protect criti-
cal packets when reaching the connection’s max-

imum capacity. If the concurrent probing causes
packet loss, PLUS streams back off, letting them
live in harmony with TCP and other PLUS
streams. Sequential probing of different PLUS
streams could report an estimation that leads to
data loss in case multiple PLUS streams send their
critical interval at exactly the same time, each
assuming the network can support it. The proba-
bility of such a situation is low and we can reduce
it further with the number of B frames in a stream.

We can also use SleepClock to sleep for the next
m events. Note that m can be a fraction of an event.
We use this to implement smoothed stream trans-
mission in the PLUS protocol. A video stream frame
consists of a sequence of one or more packets. Each
frame has to be sent out according to its nominal
display rate. However, I frames normally contain a
larger number of packets than P or B frames, which
must be sent per interval. To reduce the bandwidth
required by I frames, we can smooth packets over a
number of n frames (which equals n events). To uni-
formly send the packets, we can assign a fraction of
the interval time for an event to each packet.

Integration of the DSD and PLUS schemes
In addition to adjusting to the best DSD, the

DSD scheme also responds to the adjustment
needed by the PLUS scheme. It’s straightforward
to respond to slow-down requests. In case of
speedup, the time period t of the response at the
server side must be carefully calculated. Assume
that the nominal display rate is r, which is
smoothed based on the PLUS scheme, and the
current maximum transmission rate available is R
(R > r). We then must maintain

R * t − r * t ≤ Bavl

where Bavl is the extra buffer space available
beyond the data buffered for the nominal play-
back. Thus,

During the congestion period, instead of
increasing the DSD period with a large amount of
data to transmit, the system drops noncritical B
frames to maintain a reasonable DSD.

Playout synchronization
Consider the issue of enforcing smooth multi-

media stream presentation at client sites. This is
critical for building an adaptive presentation sys-
tem that can handle high rate stream presentation

t

B
R r

avl ≤
−

b

r
 =

packet_size
∆

∆

∆
r

W
=

pkts_in_critical_interval

68

IE
EE

 M
ul

ti
M

ed
ia

variance and delay variance of networks. In
Johnson and Zhang,8 we observed that dynamic
playout scheduling can greatly enhance the
smoothness of media-stream presentations. We
thus formulated a framework for various presen-
tation scheduling algorithms to support QoS
requirements specified in the presentations.8

We defined various QoS parameters to speci-
fy requirements on multiple-stream presenta-
tions.9 At the client, users submit their QoS
parameters for processing their multimedia data.
For example, Little and Ghafoor9 have proposed
QoS parameters including average delay, speed
ratio, utilization, jitter, and skew to measure the
QoS for multimedia data presentation. In our
playout scheduling framework, we consider indi-
vidual stream (intrastream constraints) QoS
parameters:

❚ Maximum rate change denotes the range within
which the rendition rate of stream s can vary.
This is a fraction of the nominal rate for s.

❚ Maximum instantaneous drift denotes the maxi-
mum time difference at any given time
between the presentation progress of the
stream and the presentation progress at the
nominal presentation rate.

We also consider QOS parameters for multiple
streams (interstream constraint):

❚ Synchronization jitter denotes the maximum
allowable drift between the constituent pre-
sentation streams. This drift is the difference
between the presentation progress of the fastest
and slowest streams.

We designed a scheduler within the NetMedia-
client to support smooth multimedia stream pre-
sentations at the client site in the distributed
environment. Our primary goal in the design of
playout scheduling algorithms is to create smooth
and relatively hiccup-free presentations in the
delay-prone environments.

Our algorithms can dynamically adjust any
rate variations that aren’t maintained in the data
transmission. We define the rendition rate as the
instantaneous rate of a media stream’s presenta-
tion. Each stream must report to the scheduler
(which implements the synchronization algo-
rithm) its own progress periodically. The sched-
uler in turn reports to each stream the rendition
rate required to maintain the desired presentation.

The individual streams must try to follow this ren-
dition rate. The client has several threads running
concurrently to achieve the presentation.

Let the nominal rendition rate for a stream si

be denoted by R n
si. We express this rate as the

number of stream granules per unit time. For
example, the nominal rendition rate for video
could be 30 frames per second, with one frame
comprising a granule. To meet this scheduling
requirement, the time period between consecutive
frames must be 1/30 seconds. Thus, we can
achieve intrastream synchronization by display-
ing the frames at this rate. However, because of
various factors affecting system load, it may not
always be possible to achieve this rate. We must
therefore specify a reasonable range within which
display operations will fall. We integrate two
intrastream QoS parameters—maximum rate
change csi and maximum instantaneous drift dsi—
and one interstream QoS parameter, synchro-
nization jitter j, into the stream presentation.

We maintain intrastream constraints by
enforcing constraints imposed by csi and dsi. The
maximum rate change csi represents the range
within which the rendition rate of stream si can
vary. It’s a fraction of Rn

si,

(8)

where R si (t) is the rendition rate of si at a time
instant t. We assume that when we display a
stream granule, the rendition rate R si(t) of si

remains unchanged.
We now define progress psi(t) of a stream si at

time t as the presentation time of granules dis-
played to date, assuming the nominal presentation
rate. In general, we measure progress in terms of
the granules displayed to date. Let the presentation
of stream si start at time t0. We say that stream si is
progressing at the nominal rate if, at time t, the
granules displayed to date are Rn

si ∗ (t−t0). In our dis-
cussion, we specify progress in terms of time rather
than in granules. Stream si is progressing at the
nominal rate if, at time t, the progress measured in
time is also t − t0. We arrive at this by dividing the
granules displayed to date (Rn

si ∗ (t−t0) for the nom-
inal rate) by Rn

si. We can express the progress in
terms of time by dividing the granules displayed
by Rn

si. If the progress is either less or greater than
t − t0, then the presentation is either below or
above the nominal rate. The presentation is at the
nominal rate if the progress equals t − t0.

The maximum instantaneous drift at any given
time dsi denotes the maximum time difference

 R c R t R cs
n

s s s
n

s
i i i i i* () * (),1 1− ≤ () ≤ +

69

Jan
uary–M

arch
 2002

between the progress of the stream and the
progress assumed under the nominal presentation
rate. If the stream started at time t0, then, given
the nominal presentation rate, the progress at
time t is t − t0. Thus, we should have

(9)

We assume that users can specify an interstream
jitter j to enforce synchronization requirements.
The interstream synchronization requirements can
be met if, for each synchronization point at time t
and all streams si and sk in the presentation,

(10)

The scheduling algorithms presented in Johnson
and Zhang8 dynamically formulate rendition rates
for media streams such that the three conditions
given in Equations 8, 9, and 10 are satisfied. The
central idea in these algorithms is that at any syn-
chronization point, the rates of all streams from this
point to the next synchronization point are calcu-
lated to meet the constraints. The intrastream con-
straints give us the allowed range for each stream

rate. The interstream constraint gives
the relationship among these rates.
The algorithms give two options—
minimizing change in rate or mini-
mizing jitter. You can find the details
of these algorithms in Johnson and
Zhang.8

For synchronization between
video and audio streams, we use the
playout scheduling algorithms pro-
posed in Johnson and Zhang.8 When
asynchrony occurs between audio
and video streams, it changes the
video assembling rate (hence, the
video display rate) while maintaining
the audio assembling rate (hence, the
audio display rate) as the nominal
audio display rate. We change the

video assembling rate by changing SleepClock’s
interval.

Experiments
We’ve developed a multimedia presentation

application prototype called NetMedia Virtual
Classroom (termed NetMedia-VCR) based on the
NetMedia design. We aim to provide a distributed
learning environment for students. We imple-
mented middleware architecture and prototype in
C++ for Sun machines, which the campus widely
uses. As part of the preprocessing work, we record-
ed and provided lectures in a database at the
departmental server. The idea is that students can
remotely connect to the server and retrieve lecture
material for review and quiz preparation.

Figure 11 shows the graphical user interface of
NetMedia-VCR. Students can customize the pre-
sentation to fit their individual learning require-
ments. As Figure 11 shows, students can construct
a presentation out of audio, video, and trans-
parencies. Students have free access to skip, seek,
rewind, and fast forward learning sessions. They
can also mark transparencies and print them for
later use.

 | () () |p t p t js si k
− ≤

 | () () |p t t t ds si i
− − ≤0

70

IE
EE

 M
ul

ti
M

ed
ia

Figure 11. Screen shot of
the NetMedia-VCR user
interface.

Table 1. CSE530 test stream and its burstiness.

Course Total Size Encoding Average Size Largest Smallest
Title (Mbytes) Type Resolution (Bytes) Frame Frame

CSE530.v 17.9 MPEG-1 320 to 240 3647 9846 1001

CSE530.a 2.4 Raw audio – 556 –* –*
CSE530.s 0.2 Postscript file – – – –
* The audio size is constant per time unit.

– The information doesn’t apply.

Users can start the server on any Sun-OS com-
patible machine. We tested the system at four dif-
ferent sites. We ran the server in Buffalo, New
York, Purdue University, Middle East Technical
University, Turkey, and the University of
Technology, Darmstadt, Germany. The server
requires about 0.15 percent system resources on a
Sun Ultra 10 with 128 Mbytes, delivering audio,
video, and transparencies. The server uses 2.2
Mbytes of disk space. For transparency data deliv-
ery, we start an additional remote procedure call
(RPC) server. During the tests, the client resided
in our Buffalo lab. We used a Sun Ultra 5 with 64
Mbytes of memory as the client.

Researchers have defined various QoS parame-
ters to specify QoS requirements on multiple-
stream presentations.9-11 In our experiments, we
measured two particularly important QoS para-
meters—latency and jitter. During each experi-
ment we recorded the jitter, network delay, and
packet loss. We used multiple recordings from lec-
tures provided at the State University of New York
at Buffalo as test streams. Table 1 presents the sta-
tistics about a stream from our CSE530 Network
Communication class lectures.

We conducted test runs every hour to all four
sites over a three-month period. We determined
the network performance at these sites by the
average packet loss experienced during the exper-
iments (Buffalo’s average packet loss was 0.01 per-
cent, Purdue’s was 1.3 percent, and Germany’s
was 8.34 percent). Network connections at the
Buffalo campus were nearly 100 percent loss-free.
All connections ran at 100baseT supported by a
Fiber Distributed Data Interface (FDDI) backbone
passing at most one router. We classified the net-
work load during the experiments as ideal.
Experiments to Purdue and Germany experienced
light packet loss most of the time. Packets nor-
mally traveled through four (Purdue) to nine
(Germany) routers.

Figure 12 shows the jitter between audio and
video during the test runs. Measured using the
synchronization algorithm given in Johnson and
Zhang,8 the jitter obtained on the Buffalo campus
remains on average in the ranges of 0 to 60 mil-
liseconds (ms) throughout the presentation,
which is much less than the upper bound (80 ms)
given in Steinmetz and Nahrstedt.10 Jitter obtained
from Purdue and Germany experienced spikes in
case of packet loss. On average, the jitter was still
below the requested 80 ms.

Figure 13 (next page) shows loss rates for audio
and video streams with respect to different DSDs

calculated by the BestDSD Finder. From these two
figures, we can observe that, at any time, the DSDs
with the lowest data loss rate (0 in this case) form
a range. During the entire presentation, all the

71

Jan
uary–M

arch
 2002

C
SE

53
0

G
er

m
an

y

Jit
te

r

0

20

40

60

80

100

120

140

160

200

220

240

260

280

300

0
(c)

50 100 150

Time in seconds × 103

200 250 300

180

C
SE

53
0

Pu
rd

ue

Jit
te

r

0

20

40

60

80

100

120

140

160

200

220

240

260

280

300

0
(b)

50 100 150

Time in seconds × 103

200 250 300

180

C
SE

53
0

Bu
ffa

lo

Jit
te

r

0

20

40

60

80

100

120

140

160

0
(a)

50 100 150

Time in seconds × 103

200 250 300

180

Figure 12. Jitter between audio and video: servers at (a) Buffalo,
(b) Purdue, and (c) Germany.

ranges form a valley. Then the finder chooses the
best DSDs to form a line within this valley.

Figure 14a compares the average loss recorded
daily from the PLUS protocol against a 5-second
smoothing implementation with the server in
Middle East Technical University, Turkey. The
PLUS protocol could reduce the loss rate mainly

because of the bandwidth reduction in case of
congestion. To test the effect of proactively test-
ing the available bandwidth of the PLUS protocol,
we compared the number of received and suc-
cessfully decoded frames (Figure 14b) between the
smoothed transmission and the PLUS scheme.

On average, the PLUS scheme could deliver 47
percent more frames to the client than the
smoothed transmission. On one hand, we can
achieve this by backing off the sending rate in con-
gestion detection. To study the effect on proactive-
ly testing the network, we compared the PLUS
protocol to a smoothed transmission, which backs
off if the packet loss exceeds 10 percent within a 5-
second test interval. As Figure 14b shows, the PLUS
protocol doesn’t rely on just the backoff mecha-
nism to protect its content. The increased number
of saved B frames (even though they send more
aggressively) could be achieved because it saves a
larger number of critical frames. The probing nature
of the PLUS protocol causes this. Transmitting B
frames with a higher bandwidth causes the router
to be more likely to drop this kind of frame (and ini-
tiate proactive frame dropping). Probing also paus-
es before a critical packet stream (thereby giving the
router a chance to switch to a different stream and
process the critical packets later), which positively
impacts the survival rate of critical packets.

The experiments clearly demonstrate our
framework’s performance and usability. Interac-
tive requests could be delivered immediately dur-
ing any test run. As long as the network isn’t

72

1,000

2,000

3,000DSD in milliseconds

30

60

90

Ti
m

e
in

 se
co

nd
s

0
0.2
0.4
0.6
0.8

1

1,000

2,000

3,000DSD in milliseconds

30

60

90

Ti
m

e
in

 se
co

nd
s

0
0.2
0.4
0.6
0.8

1

Lo
ss

 r
at

e

(a)

(b)

Figure 13. Loss rates at
different DSDs with the
server in Germany:
(a) video stream and
(b) audio stream.

90

80

70

60

50

40

30

20

10

0

Lo
ss

 in
 p

er
ce

nt
ag

es

17:15 18:20 19:20 20:30 21:30 17:15 23:0024:00:001:00 2:00Time

Packet loss in percentages

PLUS Smoothed

Average number of frames received
 500

450

400

350

300

250

200

150

100

50

0
Smoothed Smoothed + drop PLUS

B-frames
P-frames
I-frames

(a) (b)

Figure 14. (a) Comparison of the PLUS protocol against 5-second smoothing with the server in Turkey. (b) Comparison of received and
decoded frames with the server in Turkey.

completely cloaked we can guarantee the avail-
ability and timeliness of data as demanded.

Conclusion
The advantage of the middleware NetMedia is

to give application developers a set of services that
hides the complexity of distributed multimedia
data retrieval, transmission, and synchronization.
From the point of the application developer,
access to multimedia data becomes as easy as read-
ing a file from the local disk. To achieve this, the
system has to integrate connection management,
buffer management, payload delivery, QoS man-
agement, and synchronization into one frame-
work and provide an easily accessible application
programming interface (API) to the developer.
The NetMedia framework is a unicast middleware.
One future aim is the integration of multicasting
streams into our proposed NetMedia middleware.

MM

References
1. T. Lee et al., “Querying Multimedia Presentations

Based on Content,” IEEE Trans. Knowledge and Data

Eng., vol. 11, no. 3, May/June 1999, pp. 361-385.
2. E. Fox and L. Kieffer, “Multimedia Curricula,

Courses, and Knowledge Modules,” ACM Computing

Surveys, vol. 27, no. 4, Dec. 1995, pp. 549-551.
3. Y. Song, M. Mielke, and A. Zhang, “NetMedia:

Synchronized Streaming of Multimedia Presentations
in Distributed Environments,” Proc. IEEE Int’l Conf.

Multimedia Computing and Systems, IEEE CS Press, Los
Alamitos, Calif., 1999, pp. 585-590.

4. B. Haskell, A. Puri, and A. Netravaldi, Digital Video:

An Introduction to MPEG2, Chapman and Hall, New
York, 1996.

5. M. Vernick, The Design, Implementation, and Analysis of

the Stony Brook Video Server, PhD thesis, Dept. Com-
puter Science, SUNY Stony Brook, New York, 1996.

6. W. Feng, F. Jahanian, and S. Sechrest, “Providing VCR
Functionality in a Constant Quality Video On-Demand
Transportation Service,” Proc. IEEE Multimedia, IEEE CS
Press, Los Alamitos, Calif., 1996, pp. 127-135.

7. S. Keshav, “A Control-Theoretic Approach to Flow
Control,” Proc. Conf. Comm. Architecture and

Protocols, ACM Press, New York, 1991, pp. 3-15.
8. T.V. Johnson and A. Zhang, “Dynamic Playout

Scheduling Algorithms for Continuous Multimedia
Streams,” ACM Multimedia Systems, vol. 7, no. 4, July
1999, pp. 312-325.

9. T. Little and A. Ghafoor, “Network Considerations
for Distributed Multimedia Object Composition and
Communication,” IEEE Network, vol. 4, no. 6, Nov.
1990, pp. 32-49.

10. R. Steinmetz and K. Nahrstedt, “Multimedia:
Computing,” Communications and Applications,
Prentice Hall, New York, 1995.

11. D. Wijesekera and J. Srivastava, “Quality of Server
(QoS) Metrics for Continuous Media,” Int’l J.

Multimedia Tools and Applications, vol. 3, no. 2, Sept.
1996, pp. 127-166.

Aidong Zhang is an associate pro-
fessor in the Department of Com-
puter Science and Engineering at
State University of New York at
Buffalo. She received her PhD in
computer science from Purdue

University in 1994. Her research interests include content-
based image retrieval, digital libraries, and data mining.
She is co-chair of the technical program committee for
ACM Multimedia 2001 and a NSF Career award recipient.

Yuqing Song received his BS in
mathematics from Nanjing Uni-
versity in China in 1990, and his
MS in computer science in 1993
from the Institute of Mathematics,
Chinese Academy of Sciences. He

expects to complete his PhD in computer science from
the State University of New York at Buffalo in May 2002.
His research interests are multimedia, image processing,
and computer vision.

Markus Mielke is a program man-
ager with the Internet Explorer
team at Microsoft Corporation.
His research interests include mul-
timedia systems, streaming tech-
nologies, and peer-to-peer and

Web services. He earned his MS degree in computer
engineering from the University of Technology,
Darmstadt, Germany. He received his PhD in computer
science and engineering from the State University of
New York at Buffalo in 2000.

Readers may contact Aidong Zhang at the Dept. of Com-
puter Science and Engineering, State Univ. of New York,
Buffalo, NY 14260, email azhang@cse.buffalo.edu.

For further information on this or any other computing

topic, please visit our Digital Library at http://computer.

org/publications/dlib.

Jan
uary–M

arch
 2002

73

