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A Unified Approach to Moving Object Detection
in 2D and 3D Scenes

Michal Irani and P. Anandan

Abstract—The detection of moving objects is important in many tasks. Previous approaches to this problem can be broadly divided
into two classes: 2D algorithms which apply when the scene can be approximated by a flat surface and/or when the camera is only
undergoing rotations and zooms, and 3D algorithms which work well only when significant depth variations are present in the scene
and the camera is translating. In this paper, we describe a unified approach to handling moving-object detection in both 2D and 3D
scenes, with a strategy to gracefully bridge the gap between those two extremes. Our approach is based on a stratification of the
moving object-detection problem into scenarios which gradually increase in their complexity. We present a set of techniques that
match the above stratification. These techniques progressively increase in their complexity, ranging from 2D techniques to more
complex 3D techniques. Moreover, the computations required for the solution to the problem at one complexity level become the
initial processing step for the solution at the next complexity level. We illustrate these techniques using examples from real-image
sequences.

Index Terms—Moving object detection, rigidity constraints, multiframe analysis, planar-parallax, parallax geometry, layers.
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1 INTRODUCTION

OVING object detection is an important problem in
image sequence analysis. It is necessary for surveil-

lance applications, for guidance of autonomous vehicles,
for efficient video compression, for smart tracking of mov-
ing objects, and many other applications.

The 2D motion observed in an image sequence is caused
by 3D camera motion (the egomotion), by the changes in
internal camera parameters (e.g., camera zoom), and by 3D
motions of independently moving objects. The key step in
moving-object detection is accounting for (or compensating
for) the camera-induced image motion. After compensation
for camera-induced image motion, the remaining residual
motions must be due to moving objects.

The camera-induced image motion depends both on the
egomotion parameters and the depth of each point in the
scene. Estimating all of these physical parameters (namely,
egomotion and depth) to account for the camera-induced
motion is, in general, an inherently ambiguous problem [3].
When the scene contains large depth variations, these pa-
rameters may be recovered. We refer to these scenes as 3D
scenes. However, in 2D scenes, namely, when the depth
variations are not significant, the recovery of the camera
and scene parameters is usually not robust or reliable [3].
Sample publications that treat the problem of moving ob-
jects in 3D scenes are [4], [21], [30], [31], [9]. A careful treat-
ment of the issues and problems associated with moving-
object detection in 3D scenes is given in [29].

An effective approach to accounting for camera-induced
motion in 2D scenes is to model the image motion in terms
of a global 2D parametric transformation. This approach is
robust and reliable when applied to flat (planar) scenes,
distant scenes, or when the camera is undergoing only ro-
tations and zooms. However, the 2D approach cannot be
applied to the 3D scenes. Examples of methods that handle
moving objects in 2D scenes are [14], [7], [8], [10], [28], [24],
[33], [5].

Therefore, 2D algorithms and 3D algorithms address the
moving object-detection problem in very different types of
scenarios. These are two extremes in a continuum of sce-
narios: flat 2D scenes (i.e., no 3D parallax) vs. 3D scenes with
dense depth variations (i.e., dense 3D parallax). Both classes
fail on the other extreme case or even on the intermediate
case (when 3D parallax is sparse relative to amount of inde-
pendent motion).

In real-image sequences, it is not always possible to pre-
dict in advance which situation (2D or 3D) will occur.
Moreover, both types of scenarios can occur within the
same sequence, with gradual transitions between them.
Unfortunately, no single class of algorithms (2D or 3D) can
address the general moving object-detection problem. It is
not practical to constantly switch from one set of algorithms
to another, especially since neither class treats well the in-
termediate case.

In this paper, we present a unified approach to handling
moving-object detection in both 2D and 3D scenes, with a
strategy to gracefully bridge the gap between those two
extremes. Our approach is based on a stratification of the
moving object-detection problem into scenarios which
gradually increase in their complexity:

1)� scenarios in which the camera-induced motion can be
modeled by a single 2D parametric transformation,
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2)� those in which the camera-induced motion can be
modeled in terms of a small number of layers of
parametric transformations, and

3)�general 3D scenes, in which a more complete parallax
motion analysis is required.

We present a set of techniques that match the above
stratification. These techniques progressively increase in
their complexity. Moreover, the computations required for
the solution to the problem at one complexity level become
the initial processing step for the solution at the next com-
plexity level. In our approach, we always apply first the 2D
analysis. When that is all the information that is contained
in the video sequence, that is where the analysis should
stop (to avoid encountering singularities). Our 3D analysis
gradually builds on top of the 2D analysis, with the gradual
increase in 3D information, as detected in the image se-
quence. After 2D alignment, there can be two sources for
residual motions: 3D parallax and independent motions. To
distinguish between these two types of motions, we de-
velop a new rigidity constraint based on the residual par-
allax displacements. This constraint is based on an analysis
of the parallax displacements of a few points over multiple
frames, as opposed to the epipolar constraint, which is
based on many points over a pair of frames. As such, they
are applicable even in cases where 3D parallax is very
sparse and in the presence of independent motions.

The goal in taking this approach is to develop a strategy
for moving object detection, so that the analysis performed
is tuned to match the complexity of the problem and the
availability of information at any time. This paper describes
the core elements of such a strategy. The integration of these
elements into a single algorithm remains a task for our future
research. A shorter version of this paper appeared in [13].

2 2D SCENES

The instantaneous image motion of a general 3D scene can
be expressed as in [22], [2]:
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where (u(x, y), v(x, y)) denotes the image velocity at image
location, (x, y), T = (TX, TY, TZ)t denotes the translational
motion of the camera, R = (ΩX, ΩY, ΩZ)t denotes the camera
rotation, and Z denotes the depth of the scene point corre-
sponding to (x, y).

The instantaneous image motion (1) can often be ap-
proximated by a single 2D parametric transformation. Be-
low, we review the conditions associated with the scene
geometry and/or camera motion when such an approxi-
mation is valid.

1)�A planar surface: When the scene can be modeled as a
single planar surface, i.e., when Z = A ⋅ X + B ⋅ Y + C,
where (X, Y, Z) are 3D scene coordinates and (A, B, C)
denote the parameters that describe the plane, Eq. (1)
can be reduced to:
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�where the parameters (a, b, c, d, e, f, g, h) are functions
of the camera motion (R, T) and the planar surface pa-
rameters (A, B, C). Thus, the image motion is de-
scribed by an eight-parameter quadratic transforma-
tion in 2D [15].

2)�Distant Scene: When the scene is very distant from the
camera, namely, when the deviations from a planar
surface are small relative to the overall distance of the
scene from the camera, the planar surface model is still
a very good approximation. In this case the 2D quad-
ratic transformation describes the image motion field
to subpixel accuracy. Moreover, as the overall distance

Z → ∞, then T
Z
x , 

T

Z
y , T

Z
z  → 0, i.e., the translational com-

ponent of image motion is negligible. (This is similar
to the case of pure rotation described below.) The
“distant scene” conditions are often satisfied in remote
surveillance applications, where narrow field-of-view

(FOV) cameras (typically 5o or less) are used to detect
moving objects in a distant scene (typically at least 1
km away).

3)�Camera Rotation: When the camera undergoes a pure
rotational motion (i.e., T = 0) or when the camera trans-
lation is negligible (|T| ! Z), then Eq. (1) becomes
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�Thus the 2D image motion field is described by a
quadratic transformation in this situation as well.

4)�Camera Zoom: Finally, on top of its motion, when the
camera zooms in, the image undergoes an additional
dilation. The resulting image motion field can still be
modeled as a quadratic transformation of the form of
Eq. (2); the zoom will influence the parameters b and f.

We refer to scenes that satisfy one or more of the above-
mentioned conditions (and, hence, Eq. (2) is applicable) as
2D scenes.

Under these conditions, we can use a previously devel-
oped method [6], [14] in order to compute the 2D paramet-
ric motion. This technique “locks” onto a “dominant”
parametric motion between an image pair, even in the pres-
ence of independently moving objects. It does not require
prior knowledge of their regions of support in the image
plane [14]. This computation provides only the 2D motion
parameters of the camera-induced motion, but no explicit
3D shape or motion information. To make the paper self-
contained, we briefly review these steps for estimating
these 2D motion parameters in the next few paragraphs.
Note that this 2D estimation process is also used later as an
initial step in the layered and the 3D analysis methods.

2.1 The 2D Parametric Estimation
A number of techniques have been described in the com-
puter vision literature for the estimation of 2D parametric
motion (e.g., [14], [7], [24], [33], [5], [16], [32]). In this paper,
we follow the approach described in [14]. To make this
presentation self-contained, we briefly outline this tech-
nique below.

We will refer to the two image frames (whose image
motion is being estimated) by the names “inspection” im-
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age and “reference” image, respectively. A Laplacian pyra-
mid is first constructed from each of the two input images
and then estimates the motion parameters in a coarse-fine
manner. Within each level the sum of squared difference
(SSD) measure integrated over regions of interest (which is
initially the entire image region) is used as a match measure.
This measure is minimized with respect to the 2D image
motion parameters.

The SSD error measure for estimating the image motion
within a region is:

E I x y t I x u x y y v x y t
r r r
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where I is the (Laplacian pyramid) image intensity,
r
α = a b c d e f g h, , , , , , ,2 7  denotes the parameters of the quad-

ratic transformation, and u x y v x y, ; , , ;
r r
α α2 7 2 73 8 denotes the

image velocity at the location (x, y) induced by the quad-
ratic transformation with parameters 

r
α  as defined in (2).

The sum is computed over all the points within a region of
interest, often the entire image.

The objective function E given in (4) is minimized w.r.t.
the unknown parameters 

r
α = a b c d e f g h, , , , , , ,2 7  via the

Gauss-Newton optimization technique. Let 
rα i =

a b c d e f g hi i i i i i i i, , , , , , ,2 7  denote the current estimate of the
quadratic parameters. After warping the inspection image
(towards the reference image) by applying the quadratic
transformation based on these parameters, an incremental

estimate δα δ δ δ δ δ δ δ δ
→

= a b c d e f g h, , , , , , ,2 7  can be determined.
After iterating a certain number of times within a pyramid
level, the process continues at the next finer level.

With the above technique, the reference and inspection im-
ages are registered so that the desired image region is aligned,
and the quadratic transformation (2) is estimated. The above
estimation technique is a least-squares-based approach and
hence possibly sensitive to outliers. However, as reported in
[7], this sensitivity is minimized by doing the least-squares
estimation over a pyramid. The pyramid-based approach
locks on to the dominant image motion in the scene.

A robust version of the above method [14] handles
scenes with multiple moving objects. It incorporates a
gradual refinement of the complexity of the motion model
(ranging from pure translation at low resolution levels, to a
2D affine model at intermediate levels, to the 2D quadratic
model at the highest resolution level). Outlier rejection is
performed before each refinement step within the mul-
tiscale analysis. This robust analysis further enhances the
locking property of the above-mentioned algorithm onto a
single dominant motion.

Once the dominant 2D parametric motion has been esti-
mated, it is used for warping one image towards the other.
When the dominant motion is that of the camera, all regions
corresponding to static portions of the scene are completely
aligned as a result of the 2D registration (except for
nonoverlapping image boundaries), while independently
moving objects are not. Detection of moving objects is
therefore performed by determining local misalignments
[14] after the global 2D parametric registration.

Fig. 1 shows an example of moving-object detection in a
“2D scene.” This sequence was obtained by a video camera
with an FOV of four degrees. The camera was mounted on
a vehicle moving on a bumpy dirt road at about 15 km/hr
and was looking sideways. Therefore, the camera was both
translating and rotating (camera jitter). The scene itself was

    
                                                                            (a)                                                                       (b)

      
                                        (c)                                                                      (d)                                                                     (e)

Fig. 1. Small 2D moving object detection. (a), (b) Two frames in a sequence obtained by a translating and rotating camera. The scene itself was not
planar, but was distant enough (about 1 km away from the camera) so that effects of 3D parallax were negligible. The scene contained a car driving on
a road. (c) Intensity differences before dominant (background) 2D alignment. (d) Intensity differences after dominant (background) 2D alignment.
Nonoverlapping image boundaries were not processed. The 2D alignment compensates for the camera-induced motion, but not for the car’s inde-
pendent motion. (e) The detected moving object based on local misalignment analysis. The white region signifies the detected moving object.
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not planar, but was distant enough (about 1 km away from
the camera) so that 2D parametric transformations were
sufficient to account for the camera-induced motion be-
tween successive frames. The scene contained a car moving
independently on a road. Fig. 1a and Fig. 1b show two
frames out of the sequence. Fig. 1c and Fig. 1d show inten-
sity differences before and after dominant (background) 2D
alignment, respectively. Fig. 1e shows the detected moving
object based on local misalignment analysis [14].

The frame-to-frame motion of the background in remote
surveillance applications can typically be modeled by a 2D
parametric transformation. However, when a frontal por-
tion of the scene enters the FOV, effects of 3D parallax mo-
tion are encountered. The simple 2D algorithm cannot ac-
count for camera-induced motion in scenes with 3D paral-
lax. In the next two sections, we address the problem of
moving-object detection in 3D scenes with parallax.

3 MULTIPLANAR SCENES

When the camera is translating, and the scene is not planar or
is not sufficiently distant, then a single 2D parametric motion
(Section 2) is insufficient for modeling the camera-induced
motion. Aligning two images with respect to a dominant 2D
parametric transformation may bring into alignment a large
portion of the scene, which corresponds to a planar (or a re-
mote) part of the scene. However, any other (e.g., near) por-
tions of the scene that enter the FOV cannot be aligned by the

dominant 2D parametric transformation. These out-of-plane
scene points, although they have the same 3D motion as the
planar points, have substantially different induced 2D mo-
tions. The differences in 2D motions are called 3D parallax mo-
tion [23], [25]. Effects of parallax are only due to camera
translation and 3D scene variations. Camera rotation or zoom
does not cause parallax (see Section 4.1).

Fig. 2 shows an example of a sequence where the effects
of 3D parallax are evident. Figs. 2a and 2b show two frames
from a sequence with the same setting and scenario de-
scribed in Fig. 1, only in this case a frontal hill with bushes
(which was much closer to the camera than the background
scene) entered the FOV.

Fig. 2c displays the image region which was found to be
aligned after dominant 2D parametric registration (see Sec-
tion 2). Clearly the global 2D alignment accounts for the
camera-induced motion of the distant portion of the scene,
but does not account for the camera-induced motion of the
closer portion of the scene (the bushes).

Thus, simple 2D techniques, when applied to these types
of scenarios, will not be able to distinguish between the
independent car motion and the 3D parallax motion of the
bush. There is therefore a need to model 3D parallax as
well. In this section, we describe one approach to modeling
parallax motion, which builds on top of the 2D approach to
modeling camera-induced motion. This approach is based
on fitting multiple planar surfaces (i.e., multiple 2D “lay-
ers” [1], [33]) to the scene. In Section 4, approaches to han-

   
                                                                             (a)                                                                      (b)

      
                                         (c)                                                                     (d)                                                                      (e)

Fig. 2. Layered moving object detection. (a), (b) Two frames in a sequence obtained by a translating and rotating camera. The FOV captures a
distant portion of the scene (hills and road) as well as a frontal portion of the scene (bushes). The scene contains a car driving on a road. (c) The
image region which corresponds to the dominant 2D parametric transformation. This region corresponds to the remote part of the scene. White
regions signify image regions which were misaligned after performing global image registration according to the computed dominant 2D paramet-
ric transformation. These regions correspond to the car and the frontal part of the scene (the bushes). (d) The image region which corresponds to
the next detected dominant 2D parametric transformation. This region corresponds to the frontal bushes. The 2D transformation was computed by
applying the 2D estimation algorithm again, but this time only to the image regions highlighted in white in Fig. 2c (i.e., only to image regions in-
consistent in their image motion with the first dominant 2D parametric transformation). White regions in this figure signify regions inconsistent with
the bushes’ 2D transformation. These correspond to the car and to the remote parts of the scene. (e) The detected moving object (the car) high-
lighted in white.
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dling more complex types of scenes with (sparse and dense)
3D parallax will be described. They too build on top of the
2D (or layered) approach.

When the scene is piecewise planar, or is constructed of a
few distinct portions at different depths, then the camera-
induced motion can be accounted for by a few layers of 2D
parametric transformations. This case is very typical of
outdoor surveillance scenarios, especially when the camera
FOV is narrow. The multilayered approach is an extension
of the simple 2D approach and is implemented using a
method similar to the sequential method presented in [14]:
First, the dominant 2D parametric transformation between
two frames is detected (Section 2). The two images are
aligned accordingly, and the misaligned image regions are
detected and segmented out (Fig. 2c). Next, the same 2D
motion estimation technique is reapplied, but this time only
to the segmented (misaligned) regions of the image, to de-
tect the next dominant 2D transformation and its region of
support within the image, and so on. For each additional
layer, the two images are aligned according to the 2D
parametric transformation of that layer, and the misaligned
image regions are detected and segmented out (Fig. 2d).

Each “2D layer” is continuously tracked in time by using
the obtained segmentation masks. Moving objects are de-
tected as image regions that are inconsistent with the image
motion of any of the 2D layers. Such an example is shown
in Fig. 2e.

A moving object is not detected as a layer by this algo-
rithm if it is small. However, if the object is large, it may
itself be detected as a 2D layer. A few cues can be used to
distinguish between moving objects and static scene layers:

1)�Moving objects produce discontinuities in 2D motion
everywhere on their boundary, as opposed to static
2D layers. Therefore, if a moving object is detected as
a layer, it can be distinguished from real scene layers
due to the fact that it appears “floating” in the air (i.e.,
has depth discontinuities all around it). A real scene
layer, on the other hand, is always connected to an-
other part of the scene (layer). On the connecting
boundary, the 2D motion is continuous. If the connec-
tion to other scene portions is outside the FOV, then
that layer is adjacent to the image boundary. Therefore,
a 2D layer which is fully contained in the FOV, and
exhibits 2D motion discontinuities all around it, is
necessarily a moving object.

2)�The 3D consistency over time of two 2D layers can be
checked. In Section 4.2 we present a method for check-
ing 3D consistency of two scene points over time based
on their parallax displacements alone. If two layers be-
long to a single rigid scene, the parallax displacement
of one layer with respect to the other is yet another 2D
parametric transformation (which is obtained by taking
the difference between the two 2D parametric layer
transformations). Therefore, for example, consistency of
two layers can be verified over time by applying the
3D-consistency check to parallax displacements of one
layer with respect to the other (see Section 4.2).

3)�Other cues, such as detecting negative depth, can also
be used.

In the sequence shown in Figs. 1 and 2, we used the first
cue (i.e., eliminated “floating” layers) to ensure moving
objects were not interpreted as scene layers. The moving car
was successfully and continuously detected over the entire
two-minute video sequence, which alternated between the
single-layered case (i.e., no 3D parallax; frontal scene part
was not visible in the FOV) and the two-layered case (i.e.,
existence of 3D parallax).

4 SCENES WITH GENERAL 3D PARALLAX

While the single and multilayered parametric registration
methods are adequate to handle a large number of situa-
tions, there are cases when the parallax cannot be modeled
in terms of layers. An example of such a situation is a clut-
tered scene which contains many small objects at multiple
depths (these could be urban scenes or indoor scenes). In
this section, we develop an approach to handling these
more complex 3D scenes.

4.1 3D Scenes With Dense Parallax
The key observation that enables us to extend the 2D para-
metric registration approach to general 3D scenes is the
following: the plane registration process (using the domi-
nant 2D parametric transformation) removes all effects of
camera rotation, zoom, and calibration, without explicitly
computing them [15], [18], [26], [27]. The residual image mo-
tion after the plane registration is due only to the transla-
tional motion of the camera and to the deviations of the scene
structure from the planar surface. Hence, the residual mo-
tion is an epipolar flow field. This observation has led to the
so-called “plane + parallax” approach to 3D scene analysis
[17], [15], [18], [26], [27].

4.1.1 The Plane + Parallax Decomposition
Fig. 3 provides a geometric interpretation of the planar par-
allax. Let 

r
P X Y Z T= , ,0 5  and 

r
′ = ′ ′ ′P X Y Z T, ,0 5  denote the

Cartesian coordinates of a scene point with respect to two
different camera views, respectively. Let the 3 × 3 matrix R
and the 3 × 1 vector T denote the rotation and translation
between the two camera systems, respectively.

Let (x, y) and (x′, y′) denote the image coordinates of

the scene point P, and 
r r
p x y KP

T
Z= =, ,1 11 6  and

r r
′ = ′ ′ = ′ ′′p x y K P

T
Z, ,1 11 6  denote the same points in homo-

geneous coordinates. K and K′ are 3 × 3 matrices represent-
ing the internal calibration parameters of the two cameras

(see Appendix A). Also, define 
r r
t t t t KTx y z

T
= =, ,4 9 . Note

that KP Z
z

r3 8 = , ′ ′ = ′K P Z
z

r3 8 , and tz = TZ. Note that when Tz

≠ 0, 
r
e t

tz
=  denotes the epipole (or the focus-of-expansion,

FOE) in homogeneous coordinates.
Let Π be an arbitrary planar surface and A′ denote the

homography that aligns the planar surface Π between
the second and first frame (i.e., for all points 

r
P S∈ ,r r

P A P= ′ ′).
Define 

r r r
u p p u v

T= ′ − = , , 02 7 , where (u, v)T is the meas-
urable 2D image displacement vector of the image point 

r
p
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between the two frames. It can be shown (see Appendix A),
as well as [19], [15], [26], [27], that

r r
u u= +

→
π µ                                       (5)

where µπ
→

 denotes the planar part of the 2D image motion
(the homography due to Π), and 

rµ  denotes the residual
planar parallax 2D motion. The homography due to Π results
in an image motion field that can be modeled as a 2D
parametric transformation. In general, this transformation
is a projective transformation, however, in the case of instan-
taneous camera motion, it can be well approximated by the
quadratic transformation shown in (2).

When Tz ≠ 0:

µ µ γπ
π

→ → →
= ′ −�
��

�
�� = ′ −���

�
��

r r r
p p

T
d e pw

z
w;                   (6)

where pw
→

 denotes the image point (in homogeneous coor-
dinates) in the first frame which results from warping the
corresponding point 

r
′p  in the second image, by the 2D

parametric transformation of the reference plane Π. We will
refer to the first frame as the reference frame. Also, ′dπ  is the
perpendicular distance from the second camera center to
the reference plane Π (see Fig. 3), and as noted earlier 

r
e

denotes the epipole (or FOE). γ  is a measure of the 3D
shape of the point 

r
P . In particular, γ = H

Z , where H is the

perpendicular distance from the 
r
P  to the reference plane Π,

and Z is the “range” (or “depth”) of the point 
r
P  with re-

spect to the first camera. We refer to γ as the projective 3D

structure of point 
r
P . In the case when Tz = 0, the parallax

motion 
rµ  has a slightly different form: 

r r
µ γ

π
= ′d t , where t is

as defined earlier.
The use of the plane + parallax decomposition for ego-

motion estimation is described in [15], and for 3D shape
recovery is described in [18], [26]. The plane + parallax de-
composition is more general than the traditional decompo-

sition in terms of rotational and translational motion (and
includes the traditional decomposition as a special case). In
addition,

1)� the planar homography (i.e., the 2D parametric planar
transformation) compensates for camera rotation,
zoom, and other changes in the internal parameters of
the camera,

2)� this approach does not require any prior knowledge
of the camera internal parameters (in other words, no
prior camera calibration is needed), and

3)� the planar homography being a 2D parametric trans-
formation can be estimated in a more stable fashion
than the rotation and translation parameters. In par-
ticular, it can be estimated even when the camera FOV
is limited, the depth variations in the scene are small,
and in the presence of independently moving objects
(see Section 2).

Since the residual parallax displacements after the 2D
alignment of the dominant planar surface are due to
translational component alone, they form a radial field
centered at the epipole/FOE (see Fig. 3b). If the epipole is
recovered, all that is required for detecting moving objects
is the verification whether the residual 2D displacement
associated with a given point is directed towards/away
from the epipole. This is known as the epipolar constraint
[29]. Residual 2D motion that violates this requirement
can only be due to an independently moving object. Fig. 4a
graphically illustrates this situation. An algorithm for
detecting moving objects based on the plane + parallax
decomposition is described in [20]. This technique, how-
ever, requires the estimation of the 3D shape and the
epipole.

4.1.2 Difficulty of Epipole Recovery
While the plane + parallax strategy for moving object de-
tection works generally well when the epipole (FOE) recov-
ery is possible, its performance depends critically on the
ability to accurately estimate the epipole. Since the epipole

     

                                                          (a)                                                                                                         (b)

Fig. 3. The plane + parallax decomposition. (a) The geometric interpretation. (b) The epipolar field of the residual parallax displacements.



IRANI AND ANANDAN: A UNIFIED APPROACH TO MOVING OBJECT DETECTION IN 2D AND 3D SCENES 583

recovery is based on the residual motion vectors, those
vectors that are due to the moving object are likely to bias
the estimated epipole away from the true epipole. (Note
that this is true even of the “direct” methods that do not
explicitly recover the residual motion vectors, but instead
rely on spatiotemporal image gradients [18], since the in-
formation provided by the points on moving objects will
influence the estimate.)

The problem of estimating the epipole is acute when the
scene contains sparse parallax information and the residual
motion vectors due to independently moving object are
significant (either in magnitude or in number). A graphic
illustration of such a situation is provided in Fig. 4b. In the
situation depicted in this figure, the magnitude and number
of parallax vectors on the tree are considerably smaller than
the residual motion vectors on the independently moving
car. As a result, the estimated epipole is likely to be consis-
tent with the motion of the car (in the figure, this would be
somewhere outside the FOV on the left side of the image),
and the tree will be detected as an independently moving
object.

There are two obvious ways to overcome the difficulties
in estimating the epipole. The first is to use prior knowl-
edge regarding the camera/vehicle motion to reject po-
tential outliers (namely, the moving objects) during the
estimation. However, if only limited parallax information
is available, any attempt to refine this prior information
will be unstable. A more general approach would be to
defer, or even completely eliminate, the computation of
the epipole. In the next section, we develop an approach
to moving-object detection by directly comparing the par-
allax motion of pairs of points without estimating the
epipole.

4.2 3D Scenes With Sparse Parallax
In this section we present a method we have developed for
moving-object detection in the difficult “intermediate”
cases, when 3D parallax information is sparse relative to
independent motion information. This approach can be
used to bridge the gap between the 2D cases and the dense
3D cases.

4.2.1 The Parallax-Based Shape Constraint

THEOREM 1. Given the planar-parallax displacement vectors µ1
→

and µ2
→

 of two points that belong to the static background

scene, their relative 3D projective structure γ
γ

2

1
 is given

by:

γ
γ

µ

µ

2

1

2

1

=

�
��

�
��

�
��

�
��

→ →

⊥
→ →

⊥

T
w

T
w

p

p

∆

∆
.                           (7)

where, as shown in Fig. 5a, p1
→

 and p2
→

 are the image loca-
tions (in the reference frame) of two points that are part of the

static scene, ∆ p p pw w w
→ → →

= −
2 1

, the vector connecting the

“warped” locations of the corresponding second frame points
(as in (6)), and 

r
v⊥  signifies a vector perpendicular to 

r
v .

PROOF. See Appendix B. o

Note that this constraint directly relates the relative pro-
jective structure of two points to their parallax displacements
alone: No camera parameters, in particular the epipole (FOE),
are involved. Neither is any additional parallax information
required at other image points. Theoretically, one could use
the two parallax vectors to recover the epipole (the intersec-
tion point of the two vectors) and then use the magnitudes
and distances of the points from the computed epipole to
estimate their relative projective structure. The benefit of the
constraint (7) is that it provides this information directly from
the positions and parallax vectors of the two points, without
the need to go through the computation of the epipole, using
as much information as one point can give on another. Fig. 5b
graphically shows an example of a configuration in which
estimating the epipole is very unreliable, whereas estimating
the relative structure directly from (7) is reliable. Application
of this constraint to the recovery of 3D structure of the scene
is described in [12]. Here we focus on its application to mov-
ing object detection.

   
                                                       (a)                                                                                                                             (b)

Fig. 4. Moving object detection based on violation of epipolar motion. (a) Moving object detection based on inconsistency of parallax motion with
radial epipolar motion field. (b) False epipole estimation when 3D parallax is sparse relative to independent motion.



584 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  20,  NO.  6,  JUNE  1998

4.2.2 The Parallax-Based Rigidity Constraint

THEOREM 2. Given the planar-parallax displacement vectors of
two points that belong to the background static scene over
three frames, the following constraint must be satisfied:
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where µ1
j

→
, µ2

j
→

 are the parallax displacement vectors of the
two points between the reference frame and the jth frame,

µ1
k

→
, µ2

k
→

 are the parallax vectors between the reference frame

and the kth frame, and ∆ pw

j
→�

��
�
�� , ∆ pw

k
→�

��
�
��  are the corre-

sponding distances between the warped points as in (7) and
Fig. 5a.

PROOF. The relative projective structure γ
γ

2

1
 is invariant to

camera motion. Therefore, using (7), for any two
frames j and k we get:
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As in the case of the parallax-based shape constraint
(7), the parallax-based rigidity constraint (8) relates the
parallax vectors of pairs of points over three frames with-
out referring to the camera geometry (especially the
epipole/FOE). Furthermore, this constraint does not even
explicitly refer to the structure parameters of the points in
consideration. The rigidity constraint (8) can therefore be

applied to detect inconsistencies in the 3D motion of two
image points (i.e., say whether the two image points are
projections of 3D points belonging to the same or different
3D moving objects) based on their parallax motion among
three (or more) frames alone, without the need to estimate
either camera geometry, camera motion, or structure pa-
rameters, and without relying on parallax information at
other image points. A consistency measure is defined as
the left-hand side of (8), after multiplying by the denomi-
nators (to eliminate singularities). The farther this quan-
tity is from zero, the higher is the 3D-inconsistency of the
two points.

4.3 Applying the Parallax Rigidity Constraint to
Moving Object Detection

Fig. 6a graphically displays an example of a configuration
in which estimating the epipole in presence of multiple
moving objects can be very erroneous, even when using
clustering techniques in the epipole domain as suggested
by [21], [30]. Relying on the epipole computation to detect
inconsistencies in 3D motion fails in detecting moving ob-
jects in such cases.

The parallax rigidity constraint (8) can be applied to
detect inconsistencies in the 3D motion of one image
point relative to another directly from their “parallax”
vectors over multiple (three or more) frames, without the
need to estimate either camera geometry, camera motion, or
shape parameters. This provides a useful mechanism for
clustering (or segmenting) the “parallax” vectors (i.e.,
the residual motion after planar registration) into con-
sistent groups belonging to consistently 3D moving ob-
jects, even in cases such as in Fig. 6a, where the parallax
information is minimal, and the independent motion is
not negligible. Fig. 6b graphically explains how the ri-
gidity constraint (8) detects the 3D inconsistency of Fig. 6a
over three frames.

                
                                                               (a)                                                                                                       (b)

Fig. 5. The pairwise parallax-based shape constraint. (a) This figure geometrically illustrates the relative structure constraint (7):
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AC . (b) When the parallax vectors are nearly parallel, the epipole estimation is unreliable. However, the relative structure AB
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can be reliably computed even in this case.
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Fig. 7 shows an example of using the rigidity-based in-
consistency measure described earlier to detect 3D incon-
sistencies. In this sequence the camera is in motion (trans-
lating from left to right), inducing parallax motion of differ-
ent magnitudes on the house, road, and road sign. The car
moves independently from left to right. The detected 2D
planar motion was that of the house. The planar parallax
motion was computed after 2D registration of the three im-
ages with respect to the house (see Fig. 7d). A single point
on the road sign was selected as a point of reference (see
Fig. 7e). Fig. 7f displays the measure of inconsistency of
each point in the image with respect to the selected road
sign point. Bright regions indicate large values when ap-
plying the inconsistency measure, i.e., violations in 3D ri-
gidity detected over three frames with respect to the road
sign point. The region which was detected as moving 3D-
inconsistently with respect to the road sign point corre-
sponds to the car. Regions close to the image boundary
were ignored. All other regions of the image were detected
as moving 3D-consistently with the road sign point. There-
fore, assuming an uncalibrated camera, this method provides
a mechanism for segmenting all nonzero residual motion
vectors (after 2D planar stabilization) into groups moving
consistently (in the 3D sense).

Fig. 8 shows another example of using the rigidity con-
straint (8) to detect 3D inconsistencies. In this sequence the
camera is mounted on a helicopter flying from left to right,
inducing some parallax motion (of different magnitudes) on
the house roof and trees (bottom of the image) and on the
electricity poles (by the road). Three cars move independ-
ently on the road. The detected 2D planar motion was that
of the ground surface (see Fig. 8d). A single point was se-
lected on a tree as a point of reference (see Fig. 8e). Fig. 8f
displays the measure of inconsistency of each point in the
image with respect to the selected reference point. Bright
regions indicate 3D-inconsistency detected over three
frames. The three cars were detected as moving inconsis-
tently with the selected tree point. Regions close to the im-

age boundary were ignored. All other image regions were
detected as moving consistently with the selected tree
point.

The ability of the parallax rigidity constraint (8) to detect
3D-inconsistency with respect to a single point provides a
natural way to bridge between 2D algorithms (which as-
sume that any 2D motion different than the planar motion
is an independently moving object), and 3D algorithms
(which rely on having prior knowledge of a consistent set of
points or, alternatively, dense parallax data).

5 CONCLUSION

Previous approaches to the problem of moving-object de-
tection can be broadly divided into two classes: 2D algo-
rithms which apply when the scene can be approximated
by a flat surface and/or when the camera is only undergo-
ing rotations and zooms, and 3D algorithms which work
well only when significant depth variations are present in
the scene and the camera is translating. These two classes of
algorithms treat two extremes in a continuum of scenarios:
no 3D parallax (2D algorithms) vs. dense 3D parallax (3D al-
gorithms). Both classes fail on the other extreme case or
even on the intermediate case (when 3D parallax is sparse
relative to amount of independent motion).

In this paper, we have described a unified approach to
handling moving-object detection in both 2D and 3D
scenes, with a strategy to gracefully bridge the gap between
those two extremes. Our approach is based on a stratifica-
tion of the moving object-detection problem into scenarios
which gradually increase in their complexity. We presented
a set of techniques that match the above stratification. These
techniques progressively increase in their complexity,
ranging from 2D techniques to more complex 3D tech-
niques. Moreover, the computations required for the solu-
tion to the problem at one complexity level become the ini-
tial processing step for the solution at the next complexity
level.

     
                                                                        (a)                                                                                (b)

Fig. 6. Reliable detection of 3D motion inconsistency with sparse parallax information. (a) Camera is translating to the right. The only static object
with pure parallax motion is that of the tree. Ball is falling independently. The epipole may incorrectly be computed as e. The false epipole e is

consistent with both motions. (b) The rigidity constraint applied to this scenario detects 3D inconsistency over three frames, since 
T A
T A

T C
T C

1 B

1 T

2 B

2 T
≠ − .

In this case, even the signs do not match.
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                                                 (a)                                                              (b)                                                            (c)

        
                                               (d)                                                                (e)                                                            (f)

Fig. 7. Moving object detection relying on a single parallax vector. (a), (b), (c) Three image frames from a sequence obtained by a camera trans-
lating from left to right, inducing parallax motion of different magnitudes on the house, road, and road sign. The car moves independently from left
to right. The middle frame (Fig. 7b) was chosen as the frame of reference. (d) Differences taken after 2D image registration. The detected 2D
planar motion was that of the house, and is canceled by the 2D registration. All other scene parts that have different 2D motions (i.e., parallax
motion or independent motion) are misregistered. (e) The selected point of reference (a point on the road sign) highlighted by a white circle.
(f) The measure of 3D-inconsistency of all points in the image with respect to the road sign point. Bright regions indicate violations in 3D rigidity
detected over three frames with respect to the selected road sign point. These regions correspond to the car. Regions close to the image bound-
ary were ignored. All other regions of the image appear to move 3D-consistently with the road sign point.

      
                                              (a)                                                                 (b)                                                              (c)

      
                                             (d)                                                                 (e)                                                                 (f)

Fig. 8. Moving object detection relying on a single parallax vector. (a), (b), (c) Three image frames from a sequence obtained by a camera
mounted on a helicopter (flying from left to right while turning), inducing some parallax motion (of different magnitudes) on the house roof and
trees (bottom of the image) and on the electricity poles (by the road). Three cars move independently on the road. The middle frame (Fig. 8b) was
chosen as the frame of reference. (d) Differences taken after 2D image registration. The detected 2D planar motion was that of the ground sur-
face and is canceled by the 2D registration. All other scene parts that have different 2D motions (i.e., parallax motion or independent motion) are
misregistered. (e) The selected point of reference (a point on a tree at the bottom left of the image) highlighted by a white circle. (f) The measure
of 3D-inconsistency of each point in the image with the tree point. Bright regions indicate violations in 3D rigidity detected over three frames with
respect to the selected tree point. These regions correspond to the three cars (in the reference image). Regions close to the image boundary
were ignored. All other regions of the image appear to move 3D-consistently with the tree point.
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The goal in taking this approach is to develop a strategy
for moving object detection, so that the analysis performed
is tuned to match the complexity of the problem and the
availability of information at any time. This paper describes
the core elements of such a strategy. The integration of these
elements into a single algorithm remains a task for our fu-
ture research.

APPENDIX A
DERIVATION OF THE PLANE + PARALLAX
DECOMPOSITION

In this appendix, we rederive the decomposition of image
motion into the image motion of a planar surface (a homo-
graphy) and residual parallax displacements.

Let 
r
P X Y Z T= , ,0 5  and 

r
′ = ′ ′ ′P X Y Z T, ,0 5  denote the Car-

tesian coordinates of a scene point with respect to two dif-
ferent camera views, respectively. An arbitrary 3D rigid
coordinate transformation between 

r
P  and 

r
′P  can be ex-

pressed by:
r r r
′ = + ′P RP T ,                                  (9)

where R represents the rotation between the two camera
coordinate systems, 

r
′ = ′ ′ ′T T T TX Y Z, ,2 7  denotes the 3D trans-

lation in between the two views as expressed in the coordi-
nate system of the second camera, and 

r
T =

T T T R TX Y Z, ,2 7 = − ′−1 r  denotes the same quantity in the co-
ordinate system of the first camera.

Let Π denote an arbitrary 3D planar surface (real or vir-
tual). Let 

r
N  denote its normal as expressed in the coordi-

nate system of the first camera, and 
r

′N  denote the same
quantity in the coordinate system of the second camera.
Any point 

r
P ∈ ∏  satisfies the equation 

r r
N P dT = π  (and

similarly 
r r

′ ′ = ′N P dT
π ). For a general scene point 

r
P :

r r
N P d HT = +π
r r

′ ′ = ′ +N P d HT
π                                 (10)

where H denotes the perpendicular distance of 
r
P  from the

plane Π. Note that H is invariant with respect to the two
camera coordinate systems (see Fig. 3).

By inverting (9), we obtain
r r r
P R P R T= ′ − ′− −1 1

= ′ +−R P T1 r r
                                      (11)

From (10), we derive
r r

′ ′ −
′ =

N P H
d

T

π
1                                (12)

Substituting this in (11) obtains

r r r
r r

P R P T
N P H

d

T

= ′ +
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′
−1 4 9

π
                      (13)
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�
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TN
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H
d T

T
1

r r
r r

π π
.                    (14)

Let 
r r
p x y KP

T
Z= =, ,1 11 6  and 

r r
′ = ′ ′ = ′ ′′p x y K P

T
Z, ,1 11 6  de-

note the images of the scene point P in the two camera
views as expressed in homogeneous coordinates. K and K′
are 3 × 3 matrices representing the internal calibration pa-
rameters of the two cameras. In general K has the following
form [11]:

K
a b c

d e=
�
!
  

"
$
##0

0 0 1
.

Also, define 
r r
t t t t KTx y z

T
= =, ,4 9 . (Note that

KP Z K P Z
z z

r r3 8 3 8= ′ ′ = ′, , and tz = TZ.) Multiplying both

sides of (14) by 1
′Z K  gives:
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H
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r r1 1

π π
             (15)

Hence,

r r r
p A p

H
d Z t> ′ ′ − ′ ′π

,                             (16)

where > denotes equality up to an arbitrary scale.

′ = + ′− ′
′

−A K R KTN
d

T1 1
r r

π4 9  is a 3 × 3 matrix which represents

the coordinate transformation of the planar surface Π be-
tween the two camera views, i.e., the homography between
the two views due to the plane Π. Scaling both sides by
their third component (i.e., projection) gives the equality:
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where ′a3  denotes the third row of the matrix A′. Moreover
by considering the third component of the vector (15), we
obtain

Z
Z a p

HT
d Z

z

′ = ′ ′ − ′ ′3
r

π
.                             (20)

Substituting this into (19), we obtain
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                   (21)

When Tz ≠ 0, let 
r r
e tTz

= 1  denote the epipole in the first im-

age. Then,

r
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                    (22)

On the other hand, when Tz = 0, we obtain

r
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The point denoted by the vector ′ ′
′ ′

A p
a p

r

r
3

 is of special interest,

since it represents the location to which the point 
r
′p  is

transformed due to the homography A′. In Fig. 3, this is

denoted as the point pw
→

. Also, we define γ = H
Z , which is

the 3D projective structure (γ) of 
r
P  with respect to the planar

surface Π. Substituting these into (22) and (23) yields:
when Tz ≠ 0:
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d p ew
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��
�
��

→ →γ
π

                          (24)

and when Tz = 0:

r r
p p d tw= − ′

→ γ
π

                               (25)

Rewriting (24) in the form of image displacements yields
(in homogeneous coordinates):

r r r r
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d p ew

Z
wγ

π
.                (26)

Define 
r r r
u p p u v

T= ′ − = , , 02 7 , where (u, v)T is the measurable
2D image displacement vector of the image point 

r
p  between

the two frames. Similarly, define u p p u vw
T

π π π
→ →

= ′ − =
r

, , 02 7
and 

r rµ γ
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u u= +

→
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uπ
→

 denotes the planar part of the 2D image displacement
(i.e., the homography due to Π), and 

rµ  denotes the residual
parallax 2D displacement.

When Tz = 0 then, from Eq. (25): 
r r
µ γ

π
= ′d t .

APPENDIX B
THE PARALLAX-BASED SHAPE CONSTRAINT

In this appendix, we prove Theorem 1, i.e., we derive (7).

Let µ1
→

 and µ2
→

 be the planar-parallax displacement vec-
tors of two points that belong to the static background.
From (6), we know that

µ γ µ γ
π π

1 1 2 2
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T
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z zr r r r
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Therefore,
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This last step eliminated the epipole 
r
e . Equation (29) entails

that the vectors on both sides of the equation are parallel.

Since γ γ
π1 2

T
d

Z
′  is a scalar, we get: µ γ µ γ1 wp
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��2 2 1 ∆ ,

where ∆p p pw w w2 1

→ → →= −�
��

�
�� . This leads to the pairwise parallax

constraint
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where 
r
v⊥  signifies a vector perpendicular to 

r
v . When TZ = 0,

a constraint stronger than (30) can be derived:

µ γ µ γ1 2 2 1 0
→ →

−�
��

�
�� = , however, (30), still holds. This is im-

portant, as we do not have a priori knowledge of TZ to dis-
tinguish between the two cases.

From (30), we can easily derive:
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which is the same as (7) of Theorem 1.
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