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AbstractÐWe consider the problem of segmenting a digitized image consisting of two univariate populations. Assume a priori

knowledge allows incomplete assignment of voxels in the image, in the sense that a fraction of the voxels can be identified as

belonging to population �0, a second fraction to �1, and the remaining fraction have no a priori identification. Based upon estimates of

the short length scale spatial covariance of the image, we develop a method utilizing indicator kriging to complete the image

segmentation.

Index TermsÐImage segmentation, spatial thresholding, indicator kriging.

æ

1 INTRODUCTION

WE are interested in the problem of image segmentation
by thresholding for the two population univariate

case when an image consists of an object (population �1), of
possibly complicated shape, and a background (population
�0). Our work is motivated by three dimensional synchro-
tron X-ray computed tomographic (CAT) or laser scanning
confocal microscopic (LSCM) images of biphase materials,
such as rock samples, which for our purposes consist of a
material (object) and a void (background) phase. Identifying
the shape of the object is complicated by the partial voxel
(finite volume of resolution) effect as well as by other noise
due to tomographic reconstruction or data taking.

It is still common practice to use global thresholding to
segment such images, often choosing the threshold value to
enforce a bulk measurement of the porosity (volume
fraction of the void phase). Such thresholding produces
misclassification errors proportional to the percentage of
overlapping values common to the two univariate popula-
tions. There is also the possibility that the bulk porosity
measurement is in disagreement with the porosity of the
imaged subvolume.

The problem of image segmentation is widely studied in
character recognition, range imaging, medical imaging, and
remote sensing, with numerous approaches developed to
reduce misclassification errors from that produced by naive
thresholding. Pal and Pal [1] review various methods for
segmenting gray-scale images. Methods reviewed include
thresholding, iterative pixel classification based on relaxa-
tion, Markov random field or neural network based
methods, edge detection, and a method based on fuzzy
set theory. We also note the approach developed by Tek and
Kimia [2] which uses a shock-based morphogenetic
language where the growth of four types of shocks results
in a description of shape. More recently, several threshold-
ing methods have been evaluated by é.D. Trier and A.K.
Jain [3].

The method introduced in this paper can be classified as
a thresholding scheme. Image thresholding can be handled
globally, determining a single threshold for the entire
image, or locally, applying different thresholds in different
spatial regions. In either case, thresholding methods break
into two classes according to whether spatial information is
incorporated in the segmentation. By utilizing information
on higher moments, methods that incorporate spatial
dependence information offer the promise of greater
segmentation accuracy.

Examples of global thresholding methods that rely on
gray-level information and ignore spatial dependence
include those based upon maximization of an entropy
function [4], [5], [6], [7], maximization of class separability
[8], (the familiar K-means clustering algorithm [9] which
maximizes separability utilizing distance measure in gray
scale or color space also falls in this category), and
minimization of misclassification error [10], [11], [12]. As
an example that utilizes spatial information, the method by
O'Gorman [13] chooses that global threshold which best
preserves the connectivity of regions within the image. The
global thresholding methods of [14], [15], [16] incorporate
spatial information by means of a co-occurrence matrix.
Spatial constraints have been applied to the K-means
method using Gibbs random fields [17].

Examples of local thresholding methods that rely only on
gray-level information include the following. A threshold
can be determined for each voxel in the image, either by
utilizing the local mean and variance [18], the local contrast
[19], or by a biased running average [20]. The image can be
partitioned into several nonoverlapping blocks and a
threshold for each block computed independently, for
example by a bimodal fit [21], [22]. Spatial discontinuity
in the local threshold value can be avoided by interpolation
over the entire image to yield a smooth threshold surface
[11], [23].

To incorporate spatial information in local thresholding,
Yanowitz and Bruckstein [24] utilize edge information.
Edges are detected as local maxima in the image gradient.
The gray level of the edge pixels are used as local
thresholds. The local thresholds are then interpolated to
obtain a threshold surface. In contrast, Mardia and Hains-
worth [25] developed a general class of methods which use
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local spatial information in terms of the two point
covariance function for the image.

In this paper, we present a thresholding method that
utilizes the spatial covariance of the image in conjunction
with indicator kriging to determine object edges. Use of
indicator kriging makes the thresholding local and guaran-
tees smoothness in the threshold surface. Implementation of
the method requires a priori population identification of
some percentage of the image. In practice, this is not
difficult to achieve. For example, based upon the gray-level
histogram, it is often possible to identify the population
type of much of the image (e.g., those voxels lying interior
to objects in the image) with negligible identification error.
The majority of the identification problem comes from
object-edge voxels. Thus, a first pass over the image
produces population assignments for a fraction of the (in
general, nonedge) voxels, leaving a remaining fraction
unidentified. We then utilize minimum variance estimation
(kriging) to complete the segmentation of the image.

In appearance, our method has similarities to the general
class of spatial thresholding algorithms developed by
Mardia and Hainsworth [25]. However the Mardia-Hains-
worth (MH) method relies on the maximization of a score
function which is parameterized by the unknown means,
standard deviations, and correlation functions of the
populations in the image. Additionally, the score function
is based upon an underlying assumption of Gaussian
statistics. If prior information of these parameters is
available, the MH algorithm is single-pass; if prior informa-
tion is unavailable, an iterative method [26] is used until a
self-consistent solution is obtained.

Our algorithm, based upon indicator kriging, is a
nonparametric formulation, requiring only the estimation
of the spatial covariance function for an indicator variable.
In practice, information of the covariance function only over
a limited range of short length scales is required.

In Section 2, we briefly review the concepts of ordinary
and indicator kriging. In Section 3, we also briefly review
the MH method to show the similarity in appearance with
our algorithm. In Section 4, we develop the details of our
indicator kriging method. In Section 5, we present results of
kriging based segmentation for synthetic images and for
CAT and LSCM images of rock samples and compare our
results against the MH method, AMT-MF [25].

2 INDICATOR KRIGING

Consider an unknown value z�x0� at the spatial location x0

interpreted as an outcome of a random variable (RV) Z�x0�.
The n data values z�x��; � � 1; . . . ; n are likewise inter-
preted as n outcomes of n RVs Z�x��. We assume that the
n� 1 RVs are related to the same attribute (e.g., x-ray
attenuation coefficient in CAT images, fluorescence inten-
sity in LSCM images) and are characterized by their
common (unknown) mean

EfZ�x��g � m; � � 1; . . . ; n; �1�
and stationary spatial covariance

CovfZ�x��; Z�x��g � C�x� ÿ x��: �2�

A very readable introduction to kriging can be found in

[27]. The basic idea is to produce an estimate

Z��x0� � �0 �
Xn
��1

��Z�x�� �3�

of the unknown RV Z�x0� by linear regression, i.e., by a

linear combination of the known RVs Z�x�� plus a possible

shift �0. Unlike classical regression, the data values are not

ªindependent,º but have correlation given by (2). The n� 1

parameters �i; i � 0; . . .n are chosen to ensure Z��x0� is a

good estimator of Z�x0�. The usual choice is to require that

Z� be an unbiased estimator (i.e., the expected value of the

error RV, Z�x0� ÿ Z��x0�, be zero) and that the variance of

the error RV be minimized, regardless of the value of the

unknown mean m. This leads to a constrained minimization

problem; the unknown � values are given by the following

ªconstrained normalº system of linear equations, also

known as the ordinary kriging system

Pn
��1

��C�x� ÿ x�� � � � C�x� ÿ x0�; � � 1; . . . ; n;Pn
��1

�� � 1;

�0 � 0;

8>>>><>>>>: �4�

where � is a Lagrange multiplier introduced to ensure the

constraint. If the spatial covariance (2) is positive definite,

the solution to (4) is unique.
Ordinary kriging has the exactitude property that if the

unknown value position x0 is taken to be one of the known

data positions, say x�0 , then the values of �� from the

solution of (4) applied to (3) give Z��x0� � Z�x�0 �. Thus, the

surface Z��x0� honors the data values at data locations.
Ordinary kriging provides an ªoptimalº (as defined)

value estimate at the location x0 and provides as well an

error variance for the estimate. However, in the image

segmentation problem, a model which provides an esti-

mated value at a location is less useful than a model which

provides the probability that an unknown at an unsampled

location is greater than a given threshold value. Indicator

kriging provides this capability, capitalizing on the propor-

tion of neighboring data valued above the same threshold,

and accounting for the proximity of each datum to the

unsampled location.
Define the indicator variables

i�zc;x�� � 1; if z�x�� � zc;
0; otherwise:

�
�5�

A linear estimate of the conditional probability that z�x0� is

not greater than a given threshold zc is given [28] by

P �zc;x0jn� � Probfz�x0� � zcjng
� Pn

��1

���zc;x0�i�zc;x�� �6�

with ���zc;x0� � 0. Denoting the covariance of the indicator

values i�zc;x�� by CI�zc;h�, the weights ���zc;x0� are given

[28] by the ordinary kriging system
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Pn
��1

���zc;x0�CI�zc;x� ÿ x�� � ��zc;x0�
� CI�zc;x� ÿ x0�; � � 1; . . . ; n;Pn

��1

���zc;x0� � 1:

8>>>><>>>>: �7�

Negative weights in the solution of (7) have the potential of
producing negative probabilities in (6). If negative weights
occur, we adjust the weights using the simple, robust, a
posteriori scheme proposed in [29]. Let x
; 
 � 1; . . . ; p
denote the subset of locations where the weights are
negative, �� denote the average magnitude of the negative
weights, and �C denote the average covariance.

�C � 1

p

Xp

�1

CI�x0 ÿ x
� �8�

between x0 and the negative weight locations. The negative
weights are set to zero. Positive weights smaller than ��
whose covariance to the location x0 is smaller than �C are
also set to zero. The remaining positive weights are
renormalized uniformly to sum to one.

Indicator kriging preserves the exactitude requirement of
honoring the data values at data locations, specifically

P �zc;x�0 jn� � i�zc;x�0 � �9�
The estimate (6) does not necessarily preserve ordering; i.e.,
does not preserve

zc1
� zc2

�)P �zc1
;x0jn� � P �zc2

;x0jn� �10�
This order relation problem must be dealt with; see (21) and
related discussion below.

3 MARDIA-HAINSWORTH SPATIAL THRESHOLDING

Consider an image with two populations �i; i � 0; 1, with
associated a priori probabilities �0; �1, such that �0 � �1 � 1.
Let z�x� denote the gray level of any voxel x in the image.
For population �i, assume z�x� is an outcome of a
stationary isotropic Gaussian process Z�x�, i.e.,

Z � N��i; �i�; Cov�Z�x�; Z�y�� � �2
i ��jxÿ yj�: �11�

Here ��jxÿ yj� is the spatial correlation function for Z�x�,
which is related to the spatial covariance C�xÿ y� of (2) by
��xÿ y� � C�xÿ y�=�2

i . As the process is assumed station-
ary and isotropic, ��xÿ y� � ��jxÿ yj�. Mardia and Hains-
worth further assume local spatial continuity [30] in that,
for a small neighborhood, these assumptions hold at x with
high probability.

Consider an arbitrary voxel x0 in the image. We wish to
assign the observation z�x0� to one of the populations �i.
Let fxpg; p � 1; . . . ; s be some neighborhood of x0 and let
Zp � Z�xp�. Consider the linear combination of random
variables of this neighborhood

G �
Xs
p�0


pZp; �12�

for respective (as yet arbitrary) weights 
p assigned to Zp.
Then, for population �i, under the assumption of local
spatial continuity, G is a Gaussian random field,

G � N���i ; ��i �;
Cov�G�xp�; G�xq�� � ��i 2��jxp ÿ xqj�; �13�

where

��i � �2�i; �2 � Ps
p�0


p;

��i
2 � �2�2

i ; �2 � Ps
p�0

Ps
q�0


p��jxp ÿ xqj�
q:
�14�

The MH method [25] assigns the observation z�x0� to that

population which maximizes the score

Si � log�i ÿ 1

2

�Gÿ ��i �2
��i

2
ÿ 1

2
log�2���i 2�: �15�

As G is a Gaussian variable, this is equivalent to the Bayes'

allocation rule which assigns an observed outcome of G to

that population �i which maximizes the likelihood �jLj�G�
where Lj�G� is the likelihood of G under �j. Thus, the

value(s) G� at which S0 � S1 provide global threshold

values by which the population assignments can be

determined. These results hold for any choice of the

weights 
p, however, only cases �2 > 0 make physical sense.
MH investigate two choices for the weights. In their first

choice, the weights 
p satisfy the linear system

Xs
q�0

��jxp ÿ xqj�
q � 1: �16�

This choice is appropriate [31] when, instead of maximizing

(15), one maximizes the modified score

S�i �
�i
�2
�Gÿ �2�i=2�: �17�

Maximizing (17) is equivalent to maximizing (15) when

�0 � �1 � 0:5 and �0 � �1 � �. Their second choice utilizes

mean weighting


p � 1=�s� 1� �18�
which incorporates the spatial correlation structure only in

the computation of ��i and not in ��i .
When prior knowledge of the statistical variables �i, �i,

�i; i � 0; 1 and ��jxp ÿ xqj� for an image is unknown (the

usual case), MH adopt an iterative scheme based on [26]. In

each iteration, estimates for �i, �i, �i; and ��jxp ÿ xqj� are

generated based on current population assignments. While

the iterative method of [26] converges [32], it can generate

different solutions for different initial conditions. This

presumably also holds for the MH method.

4 INDICATOR KRIGING BASED SEGMENTATION

Our kriging based segmentation algorithm is a two pass

algorithm over the image. In the first pass, partial

population assignment is done based upon a thresholding

window. We refer to this first pass as the thresholding or a

priori population assignment step. In the second pass, the

remainder of the population assignment is achieved by

indicator kriging; we refer to this as the kriging step.
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4.1 Thresholding Step

Consider the small section of a CAT image of a slice of
basalt (imaged at 20 micron resolution) shown in Fig. 1a.
The histogram of the entire slice is displayed in Fig. 1b. The
histogram is typical of two populations, each of a univariate
process Z�x� (for CAT scans the histogramed variable is the
X-ray attenuation coefficient). Here, the lower peak is
associated with the void phase, the upper peak with the
material phase. Consider the two threshold values T0 and T1

indicated by the dashed lines on the histogram. (We discuss
methods for choosing these threshold values below.
Conceptually, these values can be chosen based upon some
a priori knowledge of the image, in practice we employ
methods based upon examination of the gray scale
histogram of the image intensity.) The histogram region
between the threshold values isolates the problematic
segmentation range. As can be seen from Fig. 1c, which
shows the spatial distribution of the voxels in the three X-
ray coefficient ranges delineated by the two thresholds z �
T0 (colored gray in Fig. 1c), T0 < z < T1 (white), and T1 � z
(black), most of the unidentified voxels lie on the material/
void boundary. In the threshold step, the gray/black voxels
are labeled as belonging, respectively, to void/material
populations, the white voxels remain without population
assignment.

4.2 Kriging Step

Let x0 denote the spatial location of an unclassified voxel;
let x�; � � 1; . . . ; n denote the spatial locations of voxels in a
neighborhood of x0. The neighborhood will be called a

kriging window. A representative voxel x0 and a digitized

circular neighborhood of x0 are illustrated in Fig. 1d. From

(6), the probability P �Ti;x0jn� � Probfz�x0� � Tig is esti-

mated by

P �Ti;x0jn� �
Xn
��1

���Ti;x0�i�Ti;x��; i � 0; 1: �19�

P �T0;x0jn� represents the probability that the unknown

voxel belongs to population �0 and 1ÿ P �T1;x0jn� repre-

sents the probability it belongs to �1. The kriging step

assigns

Z�x0� 2
(

�0 if P �T0;x0jn� > 1ÿ P �T1;x0jn�;
�1 otherwise:

�20�

If the kriging window is always centered on the unclassified

voxel and does not change shape or size, the kriging system

(7) is independent of x0; system (7) need be solved only

once and the same weights ���T0;x0� and ���T1;x0� are

applied in calculating the probabilities P �T0;x0jn� and

P �T1;x0jn� for all x0. Negative weights are adjusted as

discussed earlier.
The radius of the kriging window should be on the order

of the correlation lengths of CI�Ti; ��, while still large

enough to contain a sufficient number of known data

points. In the 2D examples in Section 5, we used circular

windows of radius 3 centered at x0 (n � 28). For x0 near the

boundary of the image, the kriging window may extend

beyond the boundary. To avoid recomputing (7) for a

modified kriging window, we assign i�T0;x� � i�T1;x� �
0:5 for any location x in the unmodified kriging window

that lies exterior to the image boundary.
We reduce the severity of the order relation problem (10)

of indicator kriging utilizing the suggestion in [33] by

smoothing the indicator function using the cumulative

density function F �z� estimated from the original data. The

smoothed indicator function, î�Ti;x�� is given by

î�Ti;x�� �
1 if z�x�� < Ti ÿ sli;
0 if z�x�� > Ti � sri ;

F �Ti�sri �ÿF �z�x���
F �Ti�sri �ÿF �Tiÿsli�

otherwise:

8><>: �21�

Here, sl0 � sr1 � 0, and sr0 � sl1 � ��0T1 � �1T0�=��0 � �1�
where �0 and �1 are, respectively, the standard deviations

of the thresholded �0 and �1 population voxels. This

smoothed indicator function is used in (19); the indicator

covariances CI�T0; �� and CI�T1; �� needed in the kriging

system (7) are computed directly from the indicator data

î�T0; �� and î�T1; ��, respectively.
Note that the original data values z�x�� are used in (21)

for all voxels x� in the neighborhood of x0 to guarantee the

kriging step produces a unique result that is not dependent

of the order in which the unclassified voxels are considered.
This completes the description of the basic form of the

indicator kriging based segmentation. We consider now

methods of choosing the T0, T1 values in the thresholding

step. We also discuss a modification of the basic two step

algorithm to further filter errors.
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Fig. 1. (a) A portion of a CAT image of a slice of basalt imaged at 20
micron resolution. (b) The X-ray attenuation coefficient histogram for the
entire sample. (c) A priori identification of the image into partial
population assignments: grain (black), void (gray), unassigned (white),
based upon the thresholds T0 and T1 shown in (b). (d) Illustration of a
two dimensional kriging window used in determining the population
assignment for voxel x0.



4.3 Determination of T0, T1

4.3.1 Entropy Method

Applying information theory [34], Pun [6], Kapur et al. [5],
and Johannsen and Bille [4] have developed segmentation
methods based upon choice of a single threshold which
maximize entropy functions derived from the original gray-
scale distributions of the image. We use the entropy
function  �z� described in [5] to determine the thresholds
T0 and T1. Based on the entropy maximizing value z�, we
choose the thresholds T0 and T1 as

T0 � max
z<z�
fz :  �z� � �1ÿ re� �z��g;

T1 � min
z>z�
fz :  �z� � �1ÿ re� �z��g; �22�

where re 2 �0; 1�. The parameter re is to be chosen to fit the
requirements of the data. We will refer to indicator kriging
segmentation using entropy based thresholding as the IKE

method.

4.3.2 Binormal Mixture

As a second approach, if both populations are suspected of
being univariate normal, �i � N��i; �i�; i � 0; 1, the histo-
gram will have the form

f�z� �
X1

i�0

�i
1

�i
������
2�
p expÿ�zÿ�i�

2=�2�2
i �; �23�

where the populations are labeled such that �0 < �1. There
are various algorithms [35] to estimate the parameters �i; �i,
i � 0; 1 from an observed histogram; we utilize the EM
algorithm [35].

Once these parameters have been estimated, consider the
values

z0 � min��0 � rb�0; �1�;
z1 � max��1 ÿ rb�1; �0�; �24�

where rb is a positive constant to be discussed. Depending
on the relative sizes of rb�0 and rb�1, there are two cases,
either z0 < z1, in which case we define the two populations
as being ªwell-separatedº with respect to rb, or z0 > z1, and
the two populations are ªpoorly separatedº with respect to
rb. In either case, we set the thresholds as

T0 � min�z0; z1�;
T1 � max�z0; z1�: �25�

The choice of rb is influenced by the fraction of voxels
having gray-level values z 2 �zmin; T0� [ �T1; zmax� that are

misclassified by the choice of T0 and T1. The shaded areas in

Fig. 2 represent the fraction M of such voxels that are

misidentified by the choice of T0 and T1. M is given by

M�rb� � �0 1ÿ �
T1 ÿ �0

�0

� �� �
� �1�

T0 ÿ �1

�1

� �
; �26�

where ��x� is the standardized normal cumulative density

function. Analogously, the fraction R of voxels having gray

level in the range �zmin; T0� [ �T1; zmax� that are correctly

identified due to the choice of T0 and T1 is

R�rb� � �0�
T0 ÿ �0

�0

� �
� �1 1ÿ �

T1 ÿ �1

�1

� �� �
: �27�
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Fig. 2. Voxel misidentification under choice of T0 and T1.

Fig. 3. Kriging based segmentation results for the synthetic data set (a).
The test image (b) created by adding Gaussian noise N�0; 0:4�. (c) The
histogram (open circles) for the test image, the binormal fit (solid line)
obtained using the EM algorithm, and thresholds T0 and T1 obtained with
rb � 1:96. (d) The IKM image obtained with rb � 1:96 thresholds values.
(e) The entropy function (solid line) for the test image showing the
thresholds T0 and T1 obtained with re � 0:02. Superposed (dotted lines)
is the histogram binormal fit. (f) The IKE image obtained using re � 0:02
threshold values.



In a ªwell-separatedº case we can easily show that R�rb� �
��rb� and M�rb� � 1ÿ ��rb�. In a ªpoorly separatedº case
we have M�rb� � 1ÿ ��rb� and R�rb� � ��rb�. In either case,
M�rb� does not exceed 1ÿ ��rb�. In the examples shown in
Section 5, we consider the choices rb � 1:96, 1.0 and 0.0 for
which M�rb� cannot exceed 0.025, 0.159, and 0.5, respec-
tively. We will refer to indicator kriging segmentation using
binormal mixture based thresholding as the IKM method.

4.3.3 User Choice

In cases where the thresholds are picked based upon other
considerations, we shall refer to the resultant kriging based
segmentation as IKU.

4.4 Majority Filtering

As sketched in Fig. 2, segmentation of part of the image
using the thresholds T0 and T1 introduces misidentification
whose severity depends upon the separation T0 ÿ T1. As the
kriging step depends upon the a priori identification of the
voxels from the thresholding step, it is desirable to reduce
potential misidentification in the thresholding step as much
as possible. Majority filtering provides a simple, but fairly
effective way to remove uncorrelated isolated voxel noise,
and we have included it in our general algorithm as a clean-
up device only for those voxels whose population assignment is
determined by thresholding. Thus, after the thresholding step,
but before the kriging step, we implement a majority filter
(MF) sweep. This MF pass involves three voxel populations,
�0, �1 and unknown voxels. The unknown voxels are
ignored as follows. The MF window is centered only on a
threshold-assigned voxel. The population type of this voxel
is changed only if the majority of the voxels in the MF
window were threshold-assigned to be of the other known
population type. For each voxel x0 whose population type is
changed to �0 in the filtering sweep, we reset
î�T0;x0� � î�T1;x0� � 1; if changed to �1, we reset
î�T0;x0� � î�T1;x0� � 0.

We additionally perform a second MF pass after the
kriging step, again only over voxels whose population type was
determined by the thresholding step. This second sweep affects

threshold assigned voxels that lie in the neigborhood of
voxels whose population assignment is done by kriging.
The second MF pass is a classic two-population implemen-
tation. In both MF passes, the filtering window used is 32 in
2D (33 in 3D) and the threshold for majority is set at 60
percent.

The final indicator kriging based segmentation algorithm
we consider therefore consists of four steps:

. partial population assignment by thresholding,

. majority filtering on threshold assigned voxels,

. kriging on the remainder of the voxels to complete
population assignments,

. a final majority filtering sweep again over threshold
assigned voxels.

The thresholding step involves two sweeps through the
image, the first to compute the image histogram and the
second to perform thresholding assignments. The kriging
step involves three sweeps through the image, the first two
compute the covariance functions CI�T0; �� and CI�T1; ��, the
third performing the kriging assignment based upon (19).
Thus, the indicator kriging algorithm, with two majority
filtering steps, involves seven passes through the data set.

5 RESULTS

5.1 Synthetic Data

It is common to use gray-scale images (faces, buildings,
industrial objects, areal photographs) and binary images
(alpha-numeric characters and geometrical shapes), dis-
torted by imaging or controlled noise, to test segmentation
algorithms. Measuring the quality of segmentation of true
gray-scale images requires qualitative judgement or the
implementation of measures established according to hu-
man intuition concerning the ªgoodnessº of the segmenta-
tion. Zhang [36] surveys a number of such measures. It is
our preference to employ methods that quantify discre-
pancy between the true image and the segmented image. As
our concern is ultimately the segmentation of binary images
of a random geometry characterized spatially by a
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TABLE 1
Summary of the Segmentation Results for the 2D Synthetic Image

(SSA: Specific surface area)



covariance function that is stationary and isotropic (such as
porous media), it is natural to consider synthetic images of
geometrical objects in two- and three-dimensions. For ease
of presentation we discuss 2D images here. We therefore,
consider a well characterized synthetic data set obeying
such statistics; a population of randomly placed, over-
lapping discs of constant radius.

Setting the values T0 and T1 determines what fraction of
the image is segmented by kriging. The entropy measure
and binomial fit methods use a single parameter to set both
values. The usefulness of either of these ªautomatedº
means of determining the threshold values needs to be
determined. Our results allow some qualitative statements
to be made concerning the applicability of these two
methods.

The accuracy of the segmentation by the thresholding
and kriging steps must be examined as the fraction of the
image determined by the kriging step is varied. Let P �i�
denote the a priori probability for population i in the true

image. Let P �ijj� denote the conditional probability that a
location is assigned population i during a segmentation
procedure given that the location is population j in the true
image. For our two population images, we measure the
accuracy of a segmentation method by computing the
probability of error PE � P �0j1�P �1� � P �1j0�P �0�. (If an
image of n voxels is segmented, on average nPE will be
incorrectly assigned.)

We quantify the MF role by comparing the error
probability sum PE for thresholding alone to PE for the
same set of voxels following the first MF sweep over the
image.

We are specifically interested in the ability to recover
bulk image properties such as the porosity (void fraction)
and material-void specific surface area (SSA) of rock
images. The SSA is determined by counting voxel faces
that separate the material and void phases in the segmented
image and dividing by the total number of voxels in the
image. As we shall see from the results, it tends to be a more
sensitive measure of segmentation errors than is the
porosity. We quantify discrepancy in these measurements
using relative error

RE � jtrueÿmeasuredj=true: �28�
The majority of image analysis literature is concerned

with 2D images. Our specific interest is in segmentation of
volumetric data sets, consequently CPU time is of concern.
CPU times in our results are given for an SGI Indy R5000
running with sufficient memory so that paging is not an
issue.

As the MH class of methods also utilize the two-point
covariance of the image, we compare our results for this test
image to a method in the MH class of algorithms.
Specifically, we choose the MH recommended algorithm
AMT-MF of Section 5.1 in [25] which is an iterative
algorithm, alternating mean weighting (18) and majority
filtering each iteration. AMT-MF requires an initial thresh-
old estimate T0 to start the iteration. As a natural choice for
T0 for AMT-MF, we will use the mean value of the original
data.
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Fig. 4. Illustration of kriging based segmentation on a synthetic data set.
The test image (a) is created by adding log normal noise to the true
image (see Fig. 3a). (b) The histogram for the test image. The
segmented images obtained from (c) kriging based segmentation with
user supplied thresholds, (d) AMT-MF, (e) global thresholding.

TABLE 2
Summary of the Segmentation Results for the 2D Synthetic

Image With Log Normal Noise Added

(SSA: Specific surface area)



Finally, in the synthetic images we will compare against

naive global thresholding which, as mentioned earlier, is

still a common method for segmenting CAT and LSCM

images.

5.1.1 Gaussian Noise

Our 2D synthetic data set, Fig. 3a, consists of disks
representing the material phase �1 (z � 1) set in a back-
ground void phase �0 (z � 0). Each disk has radius 30; their
centers are randomly placed within the [0, 256] � [0, 256]
square. The image is then digitized on a 256 � 256 grid.
Spatially uncorrelated Gaussian noise

�i�x� � N�0; �i�; i � 0; 1;

is then added to phase i. The test example, Fig. 3b, is
generated using �0 � �1 � 0:4. The gray-level (image
intensity) histogram (open circles) for this data is shown
in Fig. 3c. As can be seen from the histogram, it is difficult to
make threshold decisions for this test image. Superimposed
(solid curve) is the binormal fit to the data using the EM
algorithm. The EM algorithm performs well in identifying
the binormal mixture in the histogram.

In IKM thresholding, the parameter rb determines the
threshold values T0, T1. In Table 1, we show results for
rb � 0:0, 1:0, and 1:96, corresponding to setting the thresh-
olds at the EM determined peak locations (rb � 0:0) and at
1.0 and 1.96 standard deviations distance from the
determined peak locations. For this test example, the two
population peaks in the histogram are separated by only 2.5
standard deviations. As a result of (25), the choice rb � 1:0
produces the smallest T1 ÿ T0 interval.

For the three values of rb shown in Table 1, the
percentage of the image population assignment determined
by kriging varies from approximately 9 to 50 percent. PE
for the thresholding step shows strong sensitivity to the
fraction of the image population determined by threshold-
ing. The first MF sweep is effective in reducing PE for the
thresholded voxels, largely eliminating the sensitivity of the
error to the percentage of the image thresholded. In contrast
to the thresholding step, PE for the kriging step shows
relative insensitivity to the fraction of the image kriged. PE
for the whole image is reduced even more by the second MF
sweep over the thresholded population.

The porosity is relatively insensitive to changing rb over
these three values, however, the specific surface area error
is very sensitive to the thresholding window choice. As
expected from the algorithm, CPU times show a linear
dependence on the percent of the image that is kriged.
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Fig. 5. Comparison of kriging based and Mardia-Hainsworth segmenta-
tion for the 2D synthetic data set with correlated Gaussian (left column)

and log-normal (right column) noise. (a)-(b) Test images. (c)-(d)

Histogram for each test image showing thresholds. (e)-(f) Kriging based

segmentation. (g)-(h) AMT-MF segmentation.

TABLE 3
Summary of the Segmentation Results for the 2D Synthetic

Image With Correlated Gaussian and Log Normal Noise Added

(SSA: Specific surface area)



The entropy function is shown in Fig. 3e. We investi-
gated thresholds chosen for re in the range [0.005, 0.02].
Summaries for re � 0:005, 0.01 and 0.02 based segmenta-
tions are given in Table 1. The re � 0:02 threshold window
is shown in Fig. 3e superimposed upon the EM binormal fit.

As the IKE and IKM methods differ only in threshold
determinations, the results for PE for both these methods
show the same trends. For the same approximate values of
percentage of image kriged, the IKE results for values of PE
and RE are generally somewhat worse.

The AMT-MF segmentation is also summarized in
Table 1. The AMT-MF segmentation of this image
converged in seven iterations. In terms of error probability
and porosity, the results from the AMT-MF segmentation
are slightly better than indicator kriging based segmenta-
tions for this test image, although its specific surface area
determination is slightly worse than four of the six
indication kriging based results.

The results of naive global thresholding step at a value of
T � 0:287 followed by a single sweep of majority filtering
are also given. The thresholding step produces almost
perfect porosity (which, in fact, is how this threshold value
was chosen), however, at high probability of voxel mis-
assignment. Again, the efficiency of the MF sweep in
cleaning a thresholding segmentation is evident. While the
naive thresholding produces a porosity correct to within 10
percent relative error, the specific surface relative error is
101 percent.

5.1.2 Log±Normal Noise

The Mardia-Hainsworth algorithm, AMT-MF, assumes the
populations �0 and �1 are Gaussian. In fact a number of
segmentation algorithms likewise utilize an underlying
assumption of Gaussian distribution. The indicator kriging
based method does not assume any specific distribution. In
a second test, we compare the indicator kriging based
segmentation method and AMT-MF on an image with non-
Gaussian noise. Spatially uncorrelated log normal noise
�i�x�,

log �i�x� � N�0; �i�; i � 0; 1; �0 � �1 � 0:6;

is added to the synthetic image of Fig. 3a; the resultant test
image is shown in Fig. 4a. The histogram of image
intensities is shown in Fig. 4b. Both the Gaussian mixture
and entropy methods fail to provide reasonable thresholds
for this data set, instead user provided cutoffs are
employed. Quantitative analysis of the results are presented
in Table 2, where the indicator kriging segmentation is
compared with AMT-MF and with global thresholding with
the threshold chosen as the interpeak minimum. The
respective segmentated images are shown in Figs. 4c, 4d,
and 4e.

While AMT-MF worked well for the 2D Gaussian noise
test image and poorly for the log normal noise test image,
indicator kriging based segmentation works equally well
for both test images.

5.1.3 Correlated Noise

Correlated noise provides a more difficult test since it
introduces random structures into the image on length

scales determined by the correlation length. Fig. 5a shows
the test image with spatially correlated Gaussian noise

�i�x� � N�0; 0:3�; i � 0; 1;
Cov��i�x�; �i�y�� � �0:3�2ejxÿyj=4;

added. The histogram for the image is shown in Fig. 5c; the

correlation length of 4 creates structures on length scales

smaller that the disk radius. The kriged image using the

thresholds shown in Fig. 5c is given in Fig. 5e; the AMT-MF

image is given in Fig. 5g. Figs. 5b, 5d, 5f, and 5h show the

corresponding images when correlated log-normal noise

log �i�x� � N�0; 0:4�; i � 0; 1;
Cov�log �i�x�; log �i�y�� � �0:4�2ejxÿyj=4;

is added. In Fig. 5f, as in all of our segmented images, the
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Fig. 6. Illustration of kriging based segmentation on the 100 micron
diameter glass bead data set image (a). (b) The entropy function (solid
line) for this image showing the thresholds T0 and T1 obtained with
re � 0:005. The image intensity histogram (open circles) is super-
imposed. (c) The resultant segmented image. (d) The histogram (open
circles) for the image; the binormal fit (solid line) obtained using the EM
algorithm; the thresholds T0 and T1 obtained with rb � 1:96. (e) The
segmented image obtained for rb � 0:0. (f) The AMT-MF segmented
image.



void phase is white, however, for this segmented image we
display the material phase in two tones, black and gray. The
black voxels are material voxels whose population assign-
ment is determined by the thresholding step, gray voxels
are determined during the kriging step. This figure nicely
demonstrates the segmentation ability of the kriging step.

Table 3 summarizes the accuracy of the segmentations.
In general, we find that the Mardia Hainsworth method is
slightly better when the noise is correlated Gaussian,
however, the nonparametric kriging method is much better
when the correlated noise is non-Gaussian.

5.2 Real Data

We apply the kriging based segmentation method and, for
comparison, the AMT-MF method to imaged samples of
Berea sandstone, vesiculated basalt, and a glass bead pack.
Berea sandstone is one of the two most commonly studied
sandstones, having relevance to the oil reservoir industry.
The pore structure of vesiculated basalts is important in
volcanolgy and has relevance to contaminated waste
storage. A random packing of glass beads is a classic model
of rock microgeometry. Two of the samples were imaged
using CAT, the third by LSCM. For simplicity of presenta-
tion, we analyze representative 2D slices from volumetric
images of these samples.

5.2.1 Glass BeadsÐCAT Image

We consider a 250� 250 voxel section of a single slice from
a 3D random packing of 100 micron diameter glass beads
imaged at 5 micron resolution using CAT [37]. The synthetic
data sets closely approximate such a data set.

The raw image is shown in Fig. 6a. The entropy for the
histogram is shown in Fig. 6b. We investigated setting
thresholds using re in the range 0:005 to 0:07. The re � 0:005
thresholds are shown in Fig. 6b and the resultant segmented
image is shown in Fig. 6c. Summary classification results for
the two extremes considered, re � 0:005 and re � 0:07, are
presented in Table 4.

The image histogram and binormal EM fit are shown in
Fig. 6d. The upper (material) peak is well fit, the lower (void
space) peak is not well fit. We investigate segmentation for
rb in the range 0:0 to 1:96. The rb � 1:96 thresholds are
displayed on Fig. 6d, the rb � 0:0 thresholds correspond to
the fitted peak maxima. Since the window determined by
the rb � 1:96 thresholds is extremely narrow, of the two, one
would place more confidence in the rb � 0:0 segmentation.
The rb � 0:0 segmented image is shown in Fig. 6e. The IKM

porosity results are consistently higher than the IKE results
(see Table 4). This is due to the fact that, for comparable
values of T1, the IKM selected value for T0 consistently lies
to the right of the IKE selected value. Ultimately this results
from the poor EM fit to the void peak in the image intensity
histogram.

The AMT-MF segmentation, Fig. 6f results in porosity
and corresponding specific surface area values that are
higher than the other segmentations.

Visual inspection of the segmentations in Fig. 6 suggests
that a correct segmentation would lie somewhere between
the IKE and IKM results. While the IKE image has too much
interbead ªcementing,º the IKM results tend to miss some
faint beads (see especially the sizable missing bead in the
upper left hand corner of the picture). The AMT-MF result
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TABLE 4
Summary of the Segmentation Results for the Three Real Images



is clearly overestimating the porosity and underestimating
the specific surface area. Note the indicator kriging
segmentations run at least three times faster than the
AMT-MF segmentation.

5.2.2 Berea SandstoneÐLSCM Image

The second data set consists of a slice of Berea sandstone,
512� 512 voxels, imaged at 1 micron resolution by LSCM
[38]. The raw image is shown in Fig. 7a. As can be seen from
the histogram, Fig. 7b, the image is far from a mixture of two
normals. For LSCM imaging of rocks a fluorescent dye is
injected into the void space. The signal from the void space is
extremely narrow, in this case the majority of the void space
signal occupies a single bin (bin 0 in Fig. 7b) in the reflected
light intensity spectrum which was digitized into 256 bins.

The extremely well-defined void peak from this LSCM
image defeats attempts to select a priori population thresh-
olds by either the binormal mixture or entropy methods.
We therefore resort to user specified thresholds. Using T0 �
10 and T1 � 50 to bracket the inter-peak region, the
segmented image produced is shown in Fig. 7c. We also
explore a wider threshold window, using T0 � 10, T1 � 100.
As shown in Table 4, the porosities of these two segmented
images agree to within 1.04 percent; their specific surface
areas agree to 0.0015.

The AMT-MF segmented image is shown in Fig. 7d,
visually the porosity appears underestimated. For this
image, we have some numerical suggestion that the final
segmented result for the AMT-MF segmentation converges
to a solution that is independent of the initial threshold T0

choice. For example if, instead of the mean value of 121.5,

an initial threshold of T0 � 27 is chosen, the AMT-MF
algorithm converges to exactly the same segmented image
as for the mean value choice. Note the extreme difference in
CPU times between the kriged and AMT-MF segmentations
for this image.

5.2.3 Vesiculated BasaltÐCAT Image

The final sample is a basalt from a vesiculated lava flow
imaged at 20 micron resolution by CAT. The sample is a
200� 200 voxel subset of a larger slice image; the raw data
is shown in Fig. 8a. The histogram, Fig. 8b (open circles), is
well fit by two normally distributed populations (solid
lines). The T0 and T1 values for rb � 0:0 are shown. For these
threshold values 48.55 percent of the population is kriged.
The resultant segmented image is in Fig. 8c. Table 4 shows
the summary of this IKM segmentation as well as that for
rb � 1:96. Interestingly, although rb � 1:96 produces an
extremely narrow thresholding window resulting in only
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Fig. 7. Illustration of kriging based segmentation on the Berea sandstone
data set (a). (b) The histogram and user selected thresholds T0 � 10 and

T1 � 50. (c) The segmented image based upon these user selected

thresholds. (d) The AMT-MF segmented image.

Fig. 8. Illustration of kriging based segmentation on the basalt data set
(a). (b) The histogram and binormal mixture selected thresholds T0 and
T1 for rb � 0:0. (c) The segmented image based upon mixture selected
thresholds. (d) The entropy function and re � 0:005 based threshold
values for T0, T1. (e) The segmented image based upon the re � 0:005
thresholds. (f) The AMT-MF segmented image.



0.74 percent of the imaged being kriged, the results are in
good agreement with the rb � 0:0 segmentation.

Results for thresholds picked by the entropy method
with re � 0:005 and re � 0:05 are also shown in Table 4. The
entropy function is shown in Fig. 8d along with the re �
0:005 threshold values. The segmented image for this
threshold choice is shown in Fig. 8e. The IKE segmentation
with re � 0:05 is in good agreement with both the IKM

segmentations; the re � 0:005 segmentation results are
slightly low in porosity and specific surface area.

Finally, the AMT-MF segmentation is shown in Fig. 8f
and summarized in Table 4. It produces slightly lower
porosity and surface area results than three of the indicator
kriging threshold segmentations. The CPU time for the
AMT-MF segmentation exceeds those of the indicator
kriging by a factor of at least 2.5.

6 DISCUSSION

The indicator kriging based segmentation method devel-
oped here is intended for two population, 2D and 3D
images characterized by a stationary, isotropic two-point
covariance function. It requires a priori partial identification
of some of the image, and completes the segmentation via
indicator kriging utilizing data-based estimates of the
required indicator covariance functions.

We implement the a priori partial image assignment by a
thresholding window on the image intensity histogram,
choosing two thresholds T0 and T1 so that voxels having
intensities below T0 are classified as population �0 and
above T1 are classified as population �1. Choice of the
threshold values controls the amount of a priori assignment
misidentification error as well as the fraction of voxels
whose identification is determined by the indicator kriging
step.

Each of the two methods, binormal mixture and
entropy function, investigated as means to automate the
determination of the thresholds provide a single para-
meter to control threshold placements. Based upon the
results displayed here and our experience, we find that
the binormal mixture method tends to provide slightly
better results. For either method, it is important to
experiment with values for parameters re and rb, in
general wider threshold windows lying within the
interpeak region are to be preferred. However, we have
noted several cases where the interpeak threshold
window can be narrowed with little change in the final
results but at a savings of factors of 2 or 3 in CPU time.

For images in which non-Gaussian noise is evident,
neither method may be appropriate and it is necessary to
utilize human judgement in adjusting the thresholds.

In general, we find the indicator kriging based segmen-
tations to be an improvement over the AMT-MF method of
Mardia and Hainsworth, both in terms of quality of solution
and in CPU time. This is especially true for images in which
non-Gaussian noise is evident.

A C++ copy of the kriging based segmentation code is
available from the authors by request.
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