
Line-Based Face Recognition
under Varying Pose

Olivier de Vel and Stefan Aeberhard

AbstractÐMuch research in human face recognition involves fronto-parallel face

images, constrained rotations in and out of the plane, and operates under strict

imaging conditions such as controlled illumination and limited facial expressions.

Face recognition using multiple views in the viewing sphere is a more difficult task

since face rotations out of the imaging plane can introduce occlusion of facial

structures. In this paper, we propose a novel image-based face recognition

algorithm that uses a set of random rectilinear line segments of 2D face image

views as the underlying image representation, together with a nearest-neighbor

classifier as the line matching scheme. The combination of 1D line segments

exploits the inherent coherence in one or more 2D face image views in the viewing

sphere. The algorithm achieves high generalization recognition rates for rotations

both in and out of the plane, is robust to scaling, and is computationally efficient.

Results show that the classification accuracy of the algorithm is superior

compared with benchmark algorithms and is able to recognize test views in quasi-

real-time.

Index TermsÐFace recognition, line-based algorithm, classification accuracy,

varying pose, real-time performance.

æ

1 INTRODUCTION

AUTOMATED face recognition (AFR) has attracted much interest
over the past few years. Such interest has been motivated by the
growth in applications in many areas, including face identification
in law enforcement and forensics, user authentication in building
access or automatic transaction machines, indexing of, and
searching for, faces in video databases, intelligent user interfaces,
etc. AFR generally consists of different components, namely face
detection, to determine the position and size of a human face in an
image (see, for example, Sung and Poggio [18]), face recognition to
compare an input face against models of faces that are stored in a
database of known faces and indicating if a match is found, and
face verification for the purpose of authentication and/or identifica-
tion. In this paper, we study the face recognition and assume that
the face location in the image is known.

Unfortunately, face recognition is difficult for a variety of
reasons. First, different faces may appear very similar, thereby
necessitating an exacting discriminant task. Second, different
views of the same face may appear quite different due to imaging
constraints, such as changes in illumination and variability in facial
expressions, and due to the presence of accessories, such as glasses,
beards, etc. Finally, when the face undergoes rotations out of the
imaging plane, a large amount of detailed facial structure may be
occluded. Therefore, in many implementations of face recognition
algorithms, images are taken in a constrained environment with
controlled illumination, minimal occlusions of facial structures,
uncluttered background, and so on.

The most popular approaches in the face recognition literature
are mainly identified by their differences in the input representa-
tion. Two major input representations are used, namely the
geometric, feature-based approach and the example- or image-

based approach. The matching procedure of input and model faces
used in the majority of the geometric or image-based approaches
utilizes fairly standard distance metrics like the Euclidean distance
and correlation.

The feature-based technique extracts and normalizes a vector of
geometric descriptors of biometric facial components such as the
eyebrow thickness, nose anchor points, chin shape, zygomatic
breadth, etc. The vector is then compared with, or matched against,
the stored model face vectors. This approach, however, requires
the solution of the correspondence problem, that is, the facial
vector components must refer to the facial features in the image.
Also, model face generation can be time consuming, particularly
for large face databases, and the complexity of geometrical
descriptors can be restrictive. Model generation and matching
with non-fronto-parallel poses and varying illumination are more
complex and can only be achieved at the expense of increased
computation times (for example, Brunelli [4]). The technique was
pioneered by Kanade [10] and, more recently, by workers such as
Brunelli and Poggio [5].

The motivation for the image-based approach is its inherent
simplicity compared with the feature-based approach, owing to
the fact that it does not use any detailed biometric knowledge of
the human face. Image-based techniques include any variation in
face appearance due to changes in pose and lighting by simply
storing many different 2D views of the face. These techniques use
either the pixel-based bidimensional array representation of the
entire face image or a set of transformed (e.g., gradient filtered)
images or template subimages of facial features as the image
representation. An image-based metric, such as correlation, is then
used to match the resulting image with the set of model images.
Two popular methods are used in the context of image-based face
recognition techniques, namely template-based and neural net-
works. In the template-based approach, the face is represented as a
set of templates of the major facial features which are then matched
with the prototypical model face templates (see, for example,
Baron [3]). Extensions to this technique include low dimensional
coding to simplify the template representation and improve the
performance of the template matching process (see, for example,
the ªeigenfacesº of Turk and Pentland [19]) or wavelets, stochastic
modeling with Hidden Markov Models (HMMs) ([17]), and elastic
face transforms to model the deformation of the face under a
rotation in depth ([22]). Neural network-based image techniques
use an input image representation that is the gray-level pixel-based
image or transformed image which is used as an input to one of a
variety of neural network architectures, including multilayer,
radial basis functions and auto-associative networks (see, for
example, Edelman et al. [9]).

Although geometric or image-based approaches are concep-
tually well-suited to face recognition, many of the techniques
developed to date have been demonstrated on small, simplistic
face databases with strict imaging constraints, requiring, in many
cases, large processing times for training and/or recognition. In
this paper, we propose a line-based face recognition technique
under varying pose that is computationally efficient, has good
recognition rates, handles face rotations both in and out of the
imaging plane, and is robust to variations in scale. The image
representation scheme used is a set of random one-dimensional
rectilinear line segments of the gray-level face image and the
matching scheme is an efficient nearest-neighbor classifier. The
motivation for our line-based face recognition scheme is that, even
though each line segment only predicts a correct face marginally
better than random, the combination of line segments from a unique
face image leads to a high probability of correct face classification.
This argument follows the same line of reasoning as employed for
image-based face recognition when compared with the geometric,
feature-based approach. That is, we extend the idea that 3D object
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recognition can effectively be undertaken using multiple redun-

dant 2D views of an object to the idea that a combination of a set of

randomly placed 1D line segments in a 2D object view exploits the

coherence in that view. Therefore, the simpler rectilinear line

segment primitive forms the basis for our image representation.

We shall demonstrate that the use of simpler 1D line segments as

the image representation model provides for better recognition

rates compared with other face recognition techniques and

executes in quasi-real-time. Related methods have been proposed

by different authors (see, for example, [23], [11]). These methods

have, however, used the length of a set of line segments (or

ªchordsº in the authors' terminology) as a means of measuring the

dissimilarity between shapes. In our method, we use the actual

intensity values of line segments as the information contained in a

given face. We present an overview of the performance of current

face recognition systems in Section 2. We then describe our face

recognition algorithm in Section 3 and present the face recognition

experiments with results and comparisons with other benchmark

algorithms in Sections 4 and 5.2, respectively. Finally, we conclude

and give future work in Section 6.

2 PERFORMANCE OF CURRENT FACE RECOGNITION

SYSTEMS

We review the comparative performance of some face recognition

systems that use the geometric or image-based approaches. A few

authors report comparisons of two or more systems. In a later

section, we will make a reference to the performance of some of

these systems when we provide results for our algorithm (see

Section 5.2). Achermann and Bunke [1] compare the eigenface

classifier, a classifier based on hidden Markov models (HMM), and

a profile classifier on a 30-person database with moderate pose

variation among the 10 views per person. The eigenface classifier

performed best (94.7 percent), followed by the HMM classifier

(90.0 percent) and the profile based classifier (85.0 percent).

Ranganath and Arun [15] compared radial basis functions and a

nearest-neighbor classifier, using 1) an eigenface-based and 2) a

wavelet-based image representation They observed that the radial

basis function classifier performed better than the nearest-neighbor

classifier and that the eigenface representation offered somewhat

better discrimination than did the wavelet-based representation.

Brunelli and Poggio [5] compared a feature based approach with a

template based approach on a 47-person database of frontal views.

The template-based technique achieved 100 percent correct

classification, while the feature-based method achieved 90 percent,

but was faster. Zhang et al. [24] compared three face recognition

methods: the eigenface approach, a two-network-based connec-

tionist approach, and a flexible template approach. The two

networks are an auto-associative network for feature extraction

and a classification network for recognition. With the template

approach, Gabor filters were used to preprocess the image and

elastic matching with an energy function was used for recognition.

The tests were performed on four individual databases and on the

combined set of 113 persons. The eigenface classifier was found to

perform well for the individual databases where illumination

conditions are constant, but performed badly (66 percent) on the

combined database because of different light conditions among the

databases. The flexible template approach performed well on all

data, including the combined database (93 percent). The two

neural networks did not perform well. A recent survey on face

recognition in general was compiled by Chellappa et al. [6];

Valentin et al. [21] surveyed the use of connectionist models in

particular.

3 AN EFFICIENT FACE RECOGNITION ALGORITHM

Here, we briefly outline the face recognition algorithm which is
based on a more general object recognition algorithm given in [7],
[8]. We are interested in classifying K faces, Fk (k � 1; . . . ;K�,
given Vk 2 ZZ� 2D image views of each unique face Fk, obtained by
regular sampling in the viewing sphere. The aim is to recognize
one of the K faces from one or more test image views.

A face image = is modeled as a regular lattice of w� h pixels,
with each pixel P having a depth equal to =P image planes. We
first classify the pixels in = into two classes, Cp;1 and Cp;2. Class Cp;1
consists of the background pixels in the face image = and class Cp;2
consists of all those pixels that represent a face in = such that
Cp;1 \ Cp;2 � �. We are interested in those pixels in Cp;2 with
neighbors in Cp;1 and call the set of those face boundary pixels �.

Consider l pixel values extracted along a straight line or
ªchordº between two points in the image, comprising of l�=P bits
of data. The number of line pixels (or line dimensionality) is small
enough for efficient classification but, of course, may not capture
the information necessary for correct classification. However, with
some reduced probability (larger than random), the line predicts
the correct face class. The algorithm we propose is based on the
observation that the classification of many such lines from a face
image = leads to an overall probability of correct classification
(PCC) which approaches 1. This observation serves as the main
motivation for the algorithm. An example set of face lines is shown
in Fig. 1.

For any two points B1 2 � and B2 2 � in an image view Vk such
that the Euclidean distance between B1 and B2 is greater than a
minimum Dmin, let L�B1; B2� � �L�1�; L�2�; . . .L�l�� be a vector of
length l, where l is the number of equi-spaced connected intensity
values L�q� � P �L�q (where q � 1; 2; . . . ; l) along the image recti-
linear segment from B1 to B2. We note that, in our algorithm, the
points B1 and B2 need not necessarily belong to the set of face
boundary pixels �. Indeed, rectilinear line segments may span any
two pixels that are inside the face boundary, i.e., B1; B2 � Cp;2. The
relative performance of the algorithm will depend on the coverage
of the face by the set of line segments and maximum performance
will generally be achieved when B1; B2 2 �. In this paper, we limit
our discussion to the case B1; B2 2 �.

The line segment length l is a constant parameter determined
a priori; larger values of l result in better classification rates at the
expense of increased processing times. All lines are scaled to the
value l by pixel interpolation. We call L�B1; B2� a lattice line,
denoted by L. The exact endpoints of L need not lie on a corner of
the boundary pixels B1 and B2.

For each face class Fk in the training set of Vk image views, we

randomly generate Nk � Vk �NVk lattice lines (NVk lines per image

view per face class), Li;k � �L�1�i;k ; L�2�i;k ; . . .L
�l�
i;k� for i � 1; 2 . . . ; Nk.
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Fig. 1. Example set of random lines in a face view.



There are M �PK
k�1 Nk such lattice lines for K face classes. The set

of lattice lines for all K face classes is given by:

	 �
[K
k�1

[Nk

i�1

Li;k:

We define the distance D�Lr;s;Lm;n� between two lattice lines
Lr;s and Lm;n as

D�Lr;s;Lm;n� �
Xl
q�1

��L�q�r;s ÿ �L�q�m;n ����2�;

for r;m � 1; 2 . . . ; Nk and s; n � 1; 2 . . . ;K, where � � ��Lr;s� ÿ
��Lm;n� and ��Lr;s� �

P
l Lr;s=l. The value of � has the effect of

shifting the two lines towards the same average value, making the
distance measure invariant to illumination intensity.

Consider now a set of test lines sampled from one or more face
views in the viewing sphere (for the same face subject). Given an
unseen test lattice line Lj where, generally, Lj 62 	, we define Lj;�
such that D�Lj;Lj;�� is a minimum, where Lj;� 2 	. The Nearest-
Neighbor Classifier (NNC) maps Lj to the class Fk to which Lj;�
belongs. That is, NNC�Lj� � Fk. We write Dj for D�Lj;Lj;��. We
note in passing that any classifier can be used to map Lj to the class
Fk to which Lj;� belongs. We choose the nearest-neighbor classifier
since it has a good performance over a range of problem domains
[2].

We assume that there are N test lines Lj for a given face,
where j � 1; 2; . . .N and, for each line, we have obtained an
Lj;� and a Dj. Let Dmax � k1 �max1�j�NfDjg (for some value
k1, where 0 < k1 � 1) and Dmin � min1�j�NfDjg. We define the
cumulative l1-norm error statistic for line Lj, errj �
�Pl

q�1�jL�q�1�
j;� ÿ L�q�j;� j�=�lÿ 1� for q � 1; 2; . . . lÿ 1 and the max-

imum cumulative error statistic, errmax � max1�i�Nferrig.
We define the measure of confidence that NNC�Lj� is correct,

confj:

confj �
0; if Dj > Dmaxh �DmaxÿDj�
�DmaxÿDmin�w1

ip1
h
� errj

errmax
�w2

ip2

otherwise:

(

where p1, p2, w1, and w2 2 IR�. The variables p1 and p2 control the
shape of the confidence function, whereas w1 and w2 are the weight
magnitudes of the distance and cumulative error statistic compo-
nents, respectively.

We now state the face recognition algorithm.

The Line-Based Face Recognition Algorithm:

To classify a face Ft for which we know its boundary pixel set �,

we randomly select N lattice lines Lj, j � 1; 2; . . .N . For each face

class Fk � 1; 2; . . .K, define TCk as TCk �
PN

j�1 confj, such that

NNC�Lj� � Fk. We assign Ft to class Fg such that TCg is

maximum. That is,

if TCg � max1�k�KfTCkg
then Fg  Ft for Fg � 1; 2; . . .K

Because Ft is assigned to class Fg based on the combination of
many assignments of individual lines, we may assess the like-
lihood that our decision is correct by the agreement within the line
assignments. Specifically, we define the confidence measure factor as
the ratio

CMF � �TCg ÿ TC
�2�
j �=TC

�2�
j ;

where TC
�2�
j is the second largest compounded confidence

measure that a class obtained. As our decision is based on the
maximum score, the associated confidence CMF is proportional to
the difference with the second largest score. The denominator
normalizes CMF for different numbers of testing lines.

It is a considerable advantage if a classifier were to supply a
confidence measure factor with its decision as the user is then
given information about which assignments are more likely to be
wrong so that extra caution can be exercised in those cases. Our
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Fig. 2. Example image views for one subject (ªs40º) from the ORL face database.

Fig. 3. PCC versus time for 17 values for the number of testing lines

N � 20; 30; . . . ; 110; 120; 150; 200; . . . ; 400. Here, the number of training lines

Nk � 200, the line dimensionality l � 32, and the confidence threshold

CMFmin � 0.



implementation makes use of the confidence measure factor by
means of several decision stages. First, the number of testing lines
is kept small, an initial decision is arrived at quickly, and the
confidence measure factor is evaluated. Second, if the confidence
measure factor is smaller than twice the minimum confidence
measure factor threshold CMFmin, then the number of testing lines
is doubled and a second decision is made at the cost of extra time.
Finally, if the second confidence measure factor is smaller than
CMFmin, the number of test lines is doubled again one last time.
Thus, by specifying a larger value for CMFmin, the number of test
lines will be increased and, hopefully, improve the rate of correct
classification (see the section on experimental results for confirma-
tion of this). However, by increasing the number of test lines, there
will be a commensurate increase in the time required for
classification. Therefore, depending on the application task at
hand, the user can choose whether to seek a high classification rate
at the expense of larger classification times or to achieve a lower
classification rate with an accompanying reduction in classification
times.

The above algorithm is surprisingly simple and, as we shall
demonstrate, is particularly effective in obtaining a high recogni-
tion rate performance, as well as achieving low computation times.
Moreover, the algorithm has some inherent advantages. First, due
to the randomized sampling of the image, the algorithm is robust
to rotations of the face in the plane. Second, we reason that
multiple views are even better suited to our 1D line-based
algorithm and are better able to handle head rotations out of the
plane than 2D view-based algorithms. Third, since the lines run
from one face-boundary to another and have fixed dimensionality,
the algorithm is also scale-invariant. Fourth, the choice of distance
measure ensures that it is tolerant to changes in illumination
intensity. Finally, because all lines are sampled from the entire
head section of the image, the algorithm is also robust to changes
in facial expressions and to the presence or absence of glasses or
other accessories. Unfortunately, the current algorithm is not
robust to changes in illumination direction, such as found in
outdoor settings, or successful in cluttered scenes (such as in a
video sequence).

4 FACE DATABASES AND EXPERIMENTAL

METHODOLOGY

In order to evaluate the performance of the algorithm, we used two
face databases, namely the University of Bern (UB) [20] and the
Olivetti & Oracle Research Laboratory (ORL) [14] face databases.
The UB face database contains 10 frontal face images for each of 30
persons acquired under controlled lighting conditions. The
database is characterized by small changes in facial expressions
and intermediate changes (�30 degrees out of the plane) in head
pose, with two images for each of the poses right, left, up, down,
and straight. The ORL face database consists of 10 frontal face
images for each of 40 persons (four female and 36 male subjects).
There are intermediate changes in facial expression and unstruc-
tured intermediate changes (�20 degrees) in head pose. Some
people wear glasses in some images and the images were taken
under different lighting conditions. Fig. 2 shows a typical set of 10
image views for one person in the ORL face database. In our
experiments, we combined the two databases to form one larger
one containing 700 face images of 70 people. The data set was used
to assess the classification rate of our algorithm by cross-validation,
using five images per person for training and the other five for
testing.
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Fig. 4. PCC versus time for nine values for the number of training lines Nk �
50; 70; 100; 150; 200; 250; 300; 250; 400 with N � 150, l � 32, and CMFmin � 0.

Fig. 5. PCC versus time for eight values of the minimum confidence measure

CMFmin � 0; 0:05; 0:10 . . . ; 0:30; 0:40 with Nk � 300, N � 50, and l � 32.

Fig. 6. PCC versus time for seven values of the minimum confidence measure

CMFmin � 0; 0:05; 0:10; 0:15; 0:20; 0:30; 0:40 with Nk � 300, N � 100, and l � 32.



5 EXPERIMENTAL RESULTS

Prior to evaluating the overall performance of the algorithm for the
combined face database, various parameters were optimized.
These included the number of training lines (Nk), the number of
test lines (N), the line dimensionality (l), and the decision
confidence measure factor (CMF ).

5.1 Evaluation of Parameters

In order to investigate the effect of various parameter settings on
classification time and correctness, we ran four experiments,
varying one parameter at a time. In each experiment, the
parameters were resampled over the combined face database.
For example, for evaluating the probability of correct classification
(PCC) for different numbers of test lines, each set of test lines was
obtained by resampling the combined face database.

The results are presented in Figs. 3, 4, 5, 6, and 7. The vertical
axis shows the classification accuracy (probability of correct
classification, PCC) as a percentage, the horizontal axis represents
the computation time in seconds, per view. Each figure shows two
lines, the upper line indicates the percentage of correctly classified
persons based on the majority of the view classifications (i.e., a
majority vote of the classification results of the five views in the
viewing sphere), the lower line shows the percentage of correctly
classified individual views. Each point on both lines corresponds to
one of the parameter settings (see the figure caption for their
values). Each graph also shows the standard deviations obtained

for the 10 repetitions undertaken for each experiment. For each
repetition, the training and test lines were resampled and the PCC
recorded.

In the first experiment, the number of test lines N was varied
from 20 to 400 (17 values in total). The number of training lines, Nk,
was set to 200, the line dimensionality was set to l � 32, and the
minimum confidence factor was set to zero. This corresponds to a
ratio in the number of training pixels to image size equal to 0.078,
equivalent to an effective dimensionality reduction for model
storage by a factor equal to 12.8. Fig. 3 shows the results. As
expected, both the computation time and the classification
accuracy increase almost monotonically with the number of test
lines. The increase in time is approximately linear, while the
accuracy first increases rapidly and then levels out. A distinctive
ªkneeº in the curve of the percentage of correctly classified persons
occurs at about N � 100 test lines with a classification accuracy of
approximately 95 percent.

In the second experiment, the number of training lines was
varied from 50 to 400 (nine values in total). The number of testing
lines was fixed at 150, the line dimensionality was set to 32, and the
minimum confidence parameter was set to 0. Fig. 4 shows the
results.

Again, as expected, both the time and the classification accuracy
increase with increased number of training lines. However, the
shapes of the curves are flatter than those for the test lines (Fig. 3),
i.e., there is no distinctive ªkneeº where the curve flattens out. This
is as expected, as increasing the number of training lines increases
the PCC of a test line, while increasing the number of test lines
only decreases the variance in the procedure that forms a decision
from the classifications of all test lines. Once that variance is
reduced significantly, the inaccuracy due to a finite number of
training views dominates and the curve flattens out.

In the third experiment, the minimum confidence measure
factor value was varied from 0.0 to 0.4 (eight values in total). The
number of training lines was set to 300, the initial number of
testing lines set to 50, and the line dimensionality set to 32. The
results are shown in Fig. 5. The experiment was repeated with the
number of initial testing lines set to 100 (see Fig. 6). Both Fig. 5 and
Fig. 6 look very similar, with the larger values of the minimum
confidence factor resulting in larger computation times. However,
an improved accuracy for the case when the initial number of test
lines is doubled is observed. On the other hand, both figures
converge to a similar classification accuracy. For example, for a
time equal to 0.7 sec, both cases achieve near 100 percent accuracy
for the people and greater than 90 percent accuracy for the views.
This means we can decrease the number of initial testing lines
without ill-effect so long we increase the minimum confidence
measure factor accordingly and vice versa.

In the last experiment, the line dimensionality l was varied from
8 to 64 (nine values in total). The number of training lines was set
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Fig. 7. PCC versus time for nine values of the line dimensionality l �
8; 12; 16; 24; 32; 40; 48; 56; 64 with Nk � 300, N � 100, and CMFmin � 0:10.

TABLE 1
Face and View Recognition Rates for Random and Selected Sampling of Training Poses for the Combined Face-Database



to 300, the initial number of testing lines was set to 100 and the

minimum confidence value was set to 0.1. The results are shown in

Fig. 7. The classification accuracy first increases rapidly, then

stabilizes, with the change occurring between l � 16 and 24. The

timings first decrease, then increase. This is because the confidence

value is not set to zero and small dimensionalities triggered

frequent increases in the number of test lines. However, it is

perhaps surprising that, for l � 16, the classification rate for

persons is already near 100 percent.
The results indicate that, despite very low PCC of individual

lines (we observed values around 0.1), combining a large number

of such classification results in an overall PCC which is much

higher. In fact, the graphs indicate that, as the number of training

lines goes to infinity, the PCC approaches 1.0. In the following

section, we present results for the combined face database using

optimal parameter values. The number of training and test lines

per face view were chosen to be equal to 200 and 80, respectively, a

dimensionality of 32 and minimum confidence measure factor

equal to 0.4 were selected.

5.2 Face and View Recognition Performance Results

We ran two sets of experiments using the optimal parameter

values. In the first set, we selected the training set by inspection in

order to provide a good cover of the varying head positions and

facial expressions. In the second set of experiments, we randomly

selected the image views, repeating the process three times. We

expect to obtain an inferior recognition rate for the random

sampling of the training set compared with the selected sampling.

Most real-world applications would allow selecting good training

views, as with our first approach. However, in some applications

such as video sequences, random sampling is more realistic. We

also evaluated the algorithm for both face recognition and view

recognition. That is, in the former case, the algorithm is presented

with all the test image views for a given face, whereas, in the latter

case, the algorithm is presented with just a single test view (as

would be found in, for example, an access control situation).

Again, we expect lower recognition performance results for the

view recognition as compared with the face recognition.
Table 1 shows the results obtained for both the regular

(selected) and random set of training and test views and, for both

face and view recognition, for the combined face database. Also
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Fig. 8. Example misclassification of a test view for five training views of two people from the ORL database (see text for explanation).

Fig. 9. Example misclassification of a test view for five training views of two people from the UB database (see text for explanation).



shown are the maximum and minimum recognition rates obtained
in all experiments.

With selective (nonrandom) view cover, we found that
100 percent of people are correctly classified if approximately
0.7 sec or more is spent per view to form the decision. Further
experiments have shown that we can reduce the test times at the
expense of a reduced recognition rateÐapproximately 85 percent
of people were correctly classified if a maximum of 0.1 sec was
allowed. On the other hand, a significant improvement in the view
recognition rate can be achieved if a higher test time is
allowedÐnearly 100 percent of all views are correctly classified
if up to 5 sec is used for testing. For random sampling, we observe
slightly reduced recognition rates and fractionally longer test times
(per view). The results confirm that a relatively small number of
views is sufficient for good view-based classification performance
if the test views are sufficiently covered by the training views.

Figs. 8 and 9 show examples of a face view instance that was
misclassified by the algorithm in one of the experiments. The
second and third rows of faces are training examples of two people
(one person for the second row and one for the third row). The first
row shows the test image view corresponding to the person in the
third row that was misclassified as the person in the second row.
As can be seen, it is not always straightforward to discriminate
between the two pople in some poses.

We also tested our method on the individual databases. Our
method achieved 100 percent correct recognition of views on the
ORL database using an average of 3.9 sec per view for testing and
100 percent recognition of views on the Bern database using, on
average, 1.5 sec per view. More computation time is spent
classifying views from the ORL database because it contains many
more views which are difficult to recognize. The parameter
settings for these results were: 500 training lines, 120 initial testing
lines, the line dimensionality was 24, and the minimum confidence
factor was set to 0.5. For comparison, we include some benchmark
results obtained by other workers on the same face databases (see
Section2). Samaria [16] used the HMM implementation, Zhang
et al. [24] implemented both the eigenface and elastic matching
algorithms, Lin et al. [13] use intensity and edge information with a
neural network, Lawrence et al. [12] tested local image sampling
with two neural networks as well as the eigenface classifier, and
Achermann and Bunke [1] used a combination of eigenface, HMM

and profile classifiers. Their results are summarized in Table 2.
Some of the benchmark results obtained from the author references
did not clearly state how each test view was chosen (e.g., whether
or not the views were selected randomly or uniformly from the set
of poses). We state our results for the line-based algorithm for the
combined face database in the last row of the table. We include
results for both the minimum and maximum view recognition
rates obtained for a maximum computation time equal to 5 sec per
test view.

As can be observed, our worst-case result on the combined
databases is no worse than the best result of any of the benchmarks
on the individual databasesÐeven when compared with combined
classifiers used in Achermann and Bunke's experiments. Our best-
case result gives a zero error recognition rate, a result not achieved
by any of the other classifier methods. Furthermore, none of the
benchmarks give results for the execution times (which, we
suspect, are larger than our results for comparable classification
accuracies). Our test time results are quite adequate for real-time
applications such as security access and video sequence tracking.

6 CONCLUSIONS

We have described a computationally efficient view-based face
recognition algorithm using random rectilinear line segments of
face images. The algorithm is robust to rotations in, and out of, the
plane, robust to variations in scale, and is robust to changes in
illumination intensity and to changes in facial expressions.
Experiments have demonstrated that the algorithm is superior
compared with available benchmark algorithms and is able to
recognize test views in quasi real-time. The relatively good
performance of the algorithm is due to the fact that a combination
of 1D line segments effectively exploits the inherent coherence in a
2D face image view. Even though each line segment only predicts a
correct face marginally better than random, the combination of line
segments leads to a high probability of correct face classification.

The main drawback of our technique lies in the assumption that
the face detection has been undertaken prior to the application of
the line-based algorithm and that the face boundaries are available.
If the boundaries are largely occluded or indistinguishable from
the background, then the performance of the current algorithm will
be reduced. We are currently investigating modifications to the
algorithm that will account for the absence of face boundaries.

REFERENCES

[1] B. Achermann and H. Bunke, ªCombination of Face Classifiers for Person
Identification,º Technical Report IAM±96±002, Institut fuÈ r Informatik und
Angewandte Mathematik, UniversitaÈt Bern, 1996.

[2] S. Aeberhard, D. Coomans, and O. de Vel, ªComparative Analysis of
Pattern Classifiers in a High Dimensional Setting,º Pattern Recognition,
vol. 24, pp. 1,065-1,077, 1994.

[3] R. Baron, ªMechanisms of Human Facial Recognition,º Int'l J. Man Machine
Studies, vol. 15, pp. 137-178, 1981.

[4] R. Brunelli, ªEstimation of Pose and Illuminant Direction for Face
Processing,º Image and Vision Computing, vol. 15, pp. 741-748, 1997.

[5] R. Brunelli and T. Poggio, ªFace Recognition: Features versus Templates,º
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, pp. 1,042-1,052,
1993.

[6] R. Chellappa, C. Wilson, and S. Sirohey, ªHuman and Maching Recognition
of Faces: A Survey,º Proc. IEEE, vol. 83, pp. 705-740, 1995.

[7] O. de Vel and S. Aeberhard, ªView-Based Object Recognition Using Image
Lines,º Technical Report 97±09, Dept. of Computer Science, James Cook
Univ., Australia, 1997.

[8] O. de Vel and S. Aeberhard, ªObject Recognition Using Random Image-
Lines,º Image and Vision Computing, 1999 (to appear).

[9] S. Edelman, D. Reisfield, and Y. Yeshurun, ªLearning to Recognize Faces
from Examples,º Lecture Notes in Computer Science, vol. 588, 787-791, 1992.

[10] T. Kanade, ªPicture Processing by Computer Complex and Recognition of
Human Faces,º technical report, Dept of Information Sciences, Kyoto Univ.,
1973.

[11] D. Lavine, B. Lambird, and L. Kamal, ªRecognition of Spatial Point
Patterns,º Proc. IEEE Conf. Pattern Recognition and Image Processing, pp. 49-
53, 1981.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 10, OCTOBER 1999 1087

TABLE 2
Comparative Recognition Rates for ORL and Bern Face Databases



[12] S. Lawrence, C. Giles, A. Tsoi, and A. Back, ªFace Recognition: A
Convolutional Neural Network Approach,º IEEE Trans. Neural Networks,
vol. 8, pp. 98-113, 1997.

[13] S. Lin, S. Kung, and L. Lin, ªFace Recognition/Detection by Probabilistic
Decision-Based Neural Network,º IEEE Trans. Neural Networks, vol. 8,
pp. 114-132, 1997.

[14] Olivetti & Oracle Research Laboratory, The Olivetti & Oracle Research
Laboratory Face Database of Faces, http://www.cam-orl.co.uk/facedata-
base.html.

[15] S. Ranganath and K. Arun, ªFace Recognition Using Transform Features
and Neural Networks,º Pattern Recognition, vol. 30, pp. 1,615-1,622, 1997.

[16] F. Samaria, ªFace Recognition Using Hidden Markov Models,º PhD thesis,
Univ. of Cambridge, Cambridge, U.K., 1994.

[17] F. Samaria and A. Harter, ªParametrisation of a Stochastic Model for
Human Face Identification,º Proc. Second IEEE Workshop Applications of
Computer Vision, Sarasota, Fla., Dec. 1994.

[18] K. Sung and T. Poggio, ªExample-Based Learning for View-Based Human
Face Detection,º IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20,
pp. 39-51, 1998.

[19] M. Turk and A. Pentland, ªEigenfaces for Recognition,º J. Cognitive
Neuroscience, vol. 3, pp. 71-86, 1991.

[20] University of Bern, Bern, Switzerland, University of Bern Face Database,
ftp://iamftp.unibe.ch/pub/Images/FaceImages/.

[21] D. Valentin, H. Abdi, A. O'Tolle, and G. Cottrell, ªConnectionist Models of
Face Processing: A Survey,º Pattern Recognition, vol. 27, pp. 1,209-1,230,
1994.

[22] L. Wiskott, J. Fellous, N. Kruger, and C. von der Malsburg, ªFace
Recognition by Elastic Bunch Graph Matching,º IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 19, pp. 775-?, 1997.

[23] Z. You and A. Jain, ªPerformance Evaluation of Shape Matching via Chord
Length Distribution,º Computer Vision, Graphics, and Image Processing,
vol. 28, pp. 185-198, 1984.

[24] J. Zhang, Y. Yan, and M. Lades, ªFace Recognition: Eigenface, Elastic
Matching, and Neural Nets,º Proc. IEEE, vol. 85, pp. 1,423-1,435, 1997.

1088 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 10, OCTOBER 1999


