
��������	�
��
������
������	���
�����
����������
�����������
����
�����

Daniel Thalmann, Jean-Sébastien Monzani
Computer Graphics Lab

EPFL, Switzerland

����	����
���������	�
 �����
��
 ��
���
 ��
 ���

����
����
 �����
�

�������

���
 ���

���
 ��������
 �������
 ��
���
 ����

����	�����������
 ����	�����
 ���
�����
 ���
�
 ��
 ��
 ���
 ����

���
 ��
��	����
����
 ���
��
�������������
���
�����
��
�����
�

�!��
 ������

 ��
 ������
 ���
 �����
 ����
 ���
 �����
 ��

�
���
���
 ����	�����
 ���
 �����	����
 ����	�����
 "�
 ������

�����
 �����
 �����
 ���

�����
 ���
 ����������#
 $%

���������
���

�����
�����

�����
�������
�����
��
����
��

���
��
��������
����
�

�����
��
������
����
����	���������
"���

�������
 ��
 �������
 ���
 �����
 ��
 ��
 ��������

�����
 ��
 ����

������
 &%
 '�������
 ��
����������

�����
 �����
 ���

����������
��
�
���
����
������
(��
��
���

�!��
������

��

��
����
����

�����
���
��
��
����
���

��
������
��
����

������
)���

�����
���
��
�������
���
��� ����
���������

���
����
���
������
���
��������

1 Introduction

Virtual humans simulations are becoming each time
more popular. Nowadays many systems are available to
animate virtual humans. Such systems encompass several
different domains as: autonomous agents in virtual
environments, human factors analysis, training, education,
virtual prototyping, simulation-based design, and
entertainment. Virtual humans (see Fig.1) are commonly
used nowadays in the entertainment industry, and most
specifically in movies and video games. If the quality of
pictures has been dramatically improved during the last
years, the animation is still a major bottleneck in production.
For movies, one can afford to spend months in order to
produce a realistic animation for each character, but for real-
time applications (and this is particularly true in video
games) it is still very difficult to handle the behavior of
virtual agents, especially when we try to make them
autonomous. In Behavioral Animation, virtual humans
acquire the capabilities of perceiving their environment and
are able to react and make decisions, depending on this input
(it is important to note that agents need to be situated in a
common environment: otherwise, no interaction is possible).
The question that we are facing is: how to populate virtual
environments with virtual humans so that they can behave
autonomously. Autonomy will be judged as their
capabilities to:

• react to changes in the environment (including
other agents)

• reason and make decisions by themselves, based on
acquired information or internal stimuli.

Figure 1. Virtual Humans

2 Behavior

It is indeed not easy to define the notion of behaviour:
quoting the Merriam-Webster dictionary, it can be seen as a:
the manner of conducting oneself, b: anything that an
organism does involving action and response to stimulation,
c: the response of an individual, group, or species to its
environment. Starting with a system capable of displaying
and animating virtual creatures (and especially humans), one
can see as a “behaviour” some very simple actions like
“turning head to the left” to very general goals such as “go
to the closest bank in the city and withdraw enough money
to buy something to eat”. In this paper, we will generally use
terms such as actions or gesture to refer to the most simple
behaviours that an agent is able to perform and employ
behaviour for more abstract capabilities, such as executing a
sequence of actions. Combining actions altogether is indeed
a behaviour, even if it also involves some geometric
knowledge: for instance, it is possible to walk while taking a
book in our hands, while it is impossible to sit and walk at
the same time, simply because these two actions are
controlling the same body elements. We can see in Figure 2
a typical behavioral engine.��

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

Figure 2. A typical behavioral engine

In the context of Virtual Humans, a Motion Control

Method (MCM) specifies how the Virtual Human is
animated and may be characterized according to the type of
information it privileged in animating this Virtual Human.
For example, in a keyframe system for an articulated body,
the privileged information to be The problem is basically to
be able to generate variety among a finite set of motion
requests and then to apply it to either an individual or a
member of a crowd. A single autonomous agent and a
member of the crowd present the same kind of
’individuality’. The only difference is at the level of the
modules that control the main set of actions. With this
formulation, one can also see that the personality of an agent
(i.e. the set of noisy actions) can be preserved whenever it is
in a crowd, alone. Figure 3 shows Virtual Humans in a city
park.

Figure 3. Virtual Humans in a city park

The problem is basically to be able to generate variety
among a finite set of motion requests and then to apply it to
either an individual or a member of a crowd. A single
autonomous agent and a member of the crowd present the
same kind of ’individuality’. The only difference is at the
level of the modules that control the main set of actions.
With this formulation, one can also see that the personality
of an agent (i.e. the set of noisy actions) can be preserved
whenever it is in a crowd, alone.

To create this flexible Virtual Humans with
individualities, there are mainly two approaches:

• Recording the motion using motion capture
systems (magnetic or optical), then to try to alterate
such a motion to create this individuality. This
process is tedious and there is no reliable method at
this stage.

• Creating computational models which are
controlled by a few parameters. One of the major
problem is to find such models and to compose
them to create complex motion. Such models can
be created for walking, running, grasping, but also
for interaction, groups, and crowds.

3 Motion capture and retargeting

3.1 Introduction

The first approach consists in recording the motion (Fig.
4) using motion capture systems (magnetic or optical), then
to try to alterate such a motion to create this individuality.

.

Figure 4. Motion capture

This process is tedious and there is no reliable method at

this stage. Even if it is fairly easy to correct one posture by
modifying its angular parameters (with an Inverse
Kinematics engine, for instance), it becomes a difficult task

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

to perform this over the whole motion sequence while
ensuring that some spatial constraints are respected over a
certain time range, and that no discontinuities arise. When
one tries to adapt a captured motion to a different character,
the constraints are usually violated, leading to problems
such as the feet going into the ground or a hand unable to
reach an object that the character should grab. The problem
of adaptation and adjustment is usually referred to as the
Motion Retargeting ProblemWitkin and Popovic [1]
proposed a technique for editing motions, by modifying the
motion curves through warping functions and produced
some of the first interesting results. In a more recent paper
[2], they have extended their method to handle physical
elements, such as mass and gravity, and also described how
to use characters with different numbers of degrees of
freedom. Their algorithm is based on the reduction of the
character to an abstract character which is much simpler and
only contains the degrees of freedom that are useful for a
particular animation. The edition and modification are then
computed on this simplified character and mapped again
onto the end user skeleton. Bruderlin and Williams [3] have
described some basic facilities to change the animation, by
modifying the motion parameter curves. The user can define
a particular posture at time t, and the system is then
responsible for smoothly blending the motion around t .
They also introduced the notion of motion displacement
map, which is an offset added to each motion curve. The
Motion Retargeting Problem term was brought up by
Michael Gleicher [4] . He designed a space-time constraints
solver, into which every constraint is added, leading to a big
optimisation problem. He mainly focused on optimising his
solver, to avoid enormous computation time, and achieved
very good results. Bindiganavale and Badler [5] also
addressed the motion retargeting problem, introducing new
elements: using the zero-crossing of the second derivative to
detect significant changes in the motion, visual attention
tracking (and the way to handle the gaze direction) and
applying Inverse Kinematics to enforce constraints, by
defining six sub-chains (the two arms and legs, the spine and
the neck). Finally, Lee and Shin [6] used in their system a
coarse-to-fine hierarchy of B-splines to interpolate the
solutions computed by their Inverse Kinematics solver.
They also reduced the complexity of the IK problem by
analytically handling the degrees of freedom for the four
human limbs

Lim and Thalmann [7] have addressed an issue of
solving customers’ problems when applying evolutionary
computation. Rather than the seemingly more impressive
approach of wow-it-all-evolved- from-nothing, tinkering
with existing models can be a more pragmatic approach in
doing so. Using interactive evolution, they experimentally
validate this point on setting parameters of a human walk
model for computer animation while previous applications
are mostly about evolving motion controllers of far simpler

creatures from scratch. Figure 5 shows an example of such
application of evolutionary computation.

Figure 5. Evolutionary Computation: the original motion of

the first row has evolved into the motion in rows 2 and 3

3.2 Using an intermediate skeleton

Given a captured motion associated to its Performer
Skeleton, Monzani et al. [8] decompose the problem of
retargeting the motion to the *��
 +���
) ������� into two
steps

• First, computing the Intermediate Skeleton
matrices by orienting the Intermediate Skeleton
bones to reflect the Performer Skeleton posture
,-�����
'��	����r).

• Second, setting the End User Skeleton matrices to
the local values of the corresponding Intermediate
Skeleton matrices.

The first task is to convert the motion from one hierarchy

to a completely different one. The Intermediate Skeleton
model is introduced to solve this, implying three more
subtasks: manually set at the beginning the correspondences
between the two hierarchies, create the Intermediate
Skeleton and convert the movement. It is then possible to
correct the resulting motion and make it enforce Cartesian
constraints by using Inverse Kinematics. When considering
motion conversion between different skeletons, one quickly
notices that it is very difficult to directly map the Performer
Skeleton values onto the End User Skeleton, due to their
different proportions, hierarchies and axis systems. This
raised the idea of having an Intermediate Skeleton:
depending on the Performer Skeleton posture, its bones are

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

reoriented to match the same directions. We have then an
easy mapping of the Intermediate Skeleton values onto the
End User Skeleton. The first step is to compute the
Intermediate Skeleton (Anatomic Binding module). During
the animation, motion conversion takes two passes (sse
Fig.6), through the Motion Converter and the Motion
Composer (which has a graphical user interface).

Figure 6. Use of an intermediate skeleton for motion

retargeting

An example is shown in Figure 7. The Performer
Skeleton (on the right) is going to release an object at the
location specified by the ball, and the motion is retargeted
onto the End User Skeleton (on the left), by constraining its
right hand to also reach another location. When we first set
the starting time for the constraint, we notice that at frame
126, the Performer Skeleton hand is very close to the ball,
while the End User Skeleton right hand is too far from it.

4 Creating Computional models

The second approach consists in creating computational
models which are controlled by a few parameters. Motion
synthesis relies on numerical models which give the body
posture at a specific time. It is well suited for physically-
correct simulations, and especially for dynamics (like for
ball rebounds in a tennis game), but usually fails to
parameterise complex human motions. However, it can
produce good results in some specific cases, like synthesis
of walk [9] or Perlin’s work [10].One of the major problem
is to find such models and to compose them to create
complex motion. Such models can be created for walking or
grasping objects, but also for groups and crowds.

Figure 7. An example of motion retargeting

4.1 Walking

Walking has global and specific characteristics. From a
global point of view, every human-walking has comparable
joint angle variations. However, at a close-up, we notice that
individual walk characteristics are overlaid to the global
walking gait. Based on the walking engine described in
[9][11], walking is a specialized action in the animation
framework where the joint angle variations are synthesized
by a set of periodic motions which we briefly mention here:

• sinus functions with varying amplitudes and
frequencies for the humanoid’s global translations
(vertical, lateral and frontal) and the humanoid’s
pelvic motions (forward/backward, left/right and
torsion)

• periodic functions based on control points and
interpolating Hermite splines. They are applied to
the hip flexion, knee flexion, ankle flexion, chest
torsion, shoulder flexion and elbow flexion.

The parameters of the joint angle functions can be

modified in a configuration file in order to generate
personalized walking gaits, ranging from tired to energetic,
sad to happy, smart to silly. The algorithm also integrates an
automatic speed tuning mechanism which prevents sliding
on the supporting surface. Many high level parameters can
be adjusted dynamically, such as linear and angular velocity,
foot step locations and the global walk trajectory. The walk
engine has been augmented by a specialized action interface
and its full capacity is therefore available within the
animation framework. The specialized action directly
exports most common high level parameter adjustment
functions. For fine-tuning, it is still possible to explicitly
access the underlying motion generator. With a walking

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

engine integrated as a specialized action, a walking and
phoning human is easily done, simply by performing the
walk together with a ‘phone’-keyframe for example. In
Figure 8, we show some of the parameterized gaits achieved
through the specialized action interface.

Figure 8. Individualized walking

4.2 Grasping

For grasping object, it is common to consider three steps
[12]:

• An heuristic grasping decision is based on a grasp
taxonomy, Mas and Thalmann [13] proposed a
completely automatic grasping system for synthetic
actors. In particular, the system can decide to use a
pinch when the object is too small to be grasped by
more than two fingers or to use a two-handed grasp
when the object is too large.

• Inverse kinematics is used to find the final arm posture
• Spherical Multi-sensors are attached to the articulated

hand. Multi-sensor hand. They have both touch and
length sensor properties, and have been found very
efficient for synthetic actor grasping problem. A sensor
is activated for any collision with other objects or
sensors.

In case of large objects, such as furniture, grasping
simultaneously involves two or more persons. Therefore, we
focused on a multi-agent grasp action for encumbering
objects. As the object’s weight and geometry is distributed
over several hand support points of different agents, the
heuristic motion planning schemes have to be different than

the ones for an object grasp performed by a single
individual. For example, a large object might be grasped
frontally by the first agent and from behind by the second
agent (see Fig. 9).

Figure 9. Multi-agent carrying

The humanoid is the active agent, the balloon the passive

agent. We can reverse the role of active and passive agent,
e.g. the balloon can be active and the human passive (Fig.
10).

Figure 10. Is the human carrying the balloon or is the

balloon lifting the human into the air?

The choice of the active and passive agents depends on
which agent is supposed to control the other one – is the
human carrying the balloon or is the balloon lifting the
human into the air? By extension, any agent can be active
and passive at the same time, e.g. a box attaches a balloon
and is attached to a humanoid.

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

5 Crowds and groups

Animating crowds [14] is challenging both in character
animation and a virtual city modeling. Though different
textures and colors may be used, the similarity of the virtual
people would be soon detected by even non-experts, say,
“everybody walks the same in this virtual city!” . It is,
hence, useful to have a fast and intuitive way of generating
motions with different personalities depending on gender,
age, emotions, etc., from an example motion, say, a genuine
walking motion. The problem is basically to be able to
generate variety among a finite set of motion requests and
then to apply it to either an individual or a member of a
crowd. It also needs very good tools to tune the motion [15].

Reynolds [16] described distributed behavioral model for
simulating aggregate motion of a flock of birds. The flock is
simulated as a particle system, with the simulated birds
(called boids) being the particles. Each boid is implemented
as an independent actor that navigates according to its local
perception of the dynamic environment, the laws of
simulated physics, and a set of behaviors where the boids try
to avoid collisions with one another and with other objects
in their environment, match velocities with nearby flock
mates and move towards center of the flock .The aggregate
motion of the simulated flock is the result of the dense
interaction of these relatively simple behaviors of the
individual simulated birds. Bouvier [17],[18] used
combination of particle systems and transition networks to
model human crowds in visualization of urban spaces.
Lower level enabled people to avoid obstacles using
attraction and repulsion forces analogous to physical electric
forces. Higher level behavior is modeled by transition
networks with transitions depending on timing, visiting of
certain points, changes of local densities and global events.
Brogan and Hodgins [19] simulated group behavior for
systems with significant dynamics. They presented
algorithm for controlling the movements of creatures
traveling as a group. Algorithm has a two steps: first a
perception model determines the creatures and obstacles
visible to each individual and then a placement algorithm
determines the desired position for each individual given the
locations and velocities of perceived creatures and obstacles.
Simulated systems included groups of legged robots, bicycle
riders and point-mass systems.

Musse and Thalmann’s [14] proposed solution addresses
two main issues: i) crowd structure and ii) crowd behavior.
Considering crowd structure, our approach deals with a
hierarchy composed of crowd, groups and agents, where the
groups are the most complex structure containing the
information to be distributed among the individuals.
Concerning crowd behavior, our virtual agents are endowed
with different levels of autonomy. They can either act
according to an innate and scripted crowd behavior
(programmed behavior), react as a function of triggered
events (reactive or autonomous behavior) or be guided by an

interactive process during simulation (guided behavior). The
term <guided crowds> is introduced to define the groups of
virtual agents that can be externally controlled in real time
[20]. Figure 11 shows a crowd guided by a leader.

Figure 11. Crowd guided by a leader

The intelligence, memory, intention and perception are

focalized in the group structure. Also, each group can obtain
one leader. This leader can be chosen randomly by the
crowd system, defined by the user or can emerge from the
sociological rules. Concerning the crowd control features,
The crowd aims at providing autonomous, guided and
programmed crowds. Varying degrees of autonomy can be
applied depending on the complexity of the problem.
Externally controlled groups, <guided groups>, no longer
obey their scripted behavior, but act according to the
external specification. At a lower level, the individuals have
a repertoire of basic behaviors that we call innate behaviors.
An innate behavior is defined as an “inborn” way to behave.
Examples of individual innate behaviors are goal seeking
behavior, the ability to follow scripted or guided
events/reactions, the way trajectories are processed and
collision avoided. While the innate behaviors are included in
the model, the specification of scripted behaviors is done by
means of a script language. The groups of virtual agents
whom we call <programmed groups> apply the scripted
behaviors and do not need user intervention during
simulation. Using the script language, the user can directly
specify the crowd or group behaviors. In the first case, the
system automatically distributes the crowd behaviors among
the existing groups. Events and reactions have been used to
represent behavioral rules. This reactive character of the
simulation can be programmed in the script language
(scripted control) or directly given by an external controller.
We call the groups of virtual agents who apply the
behavioral rules <autonomous groups>.

The train station simulation (Figure 12) includes many
different actions and places, where several people are
present and doing different things. Possible actions include
“buying a ticket”, “going to shop“, ”meeting someone”,
“waiting for someone”, “making a telephone call”,
“checking the timetable”, etc. This simulation uses external
control (RBBS [21][22]) to guide some crowd behaviors in
real time.

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

Figure 12. Train station simulation.

For emergent crowds, Ulicny and Thalmann [23] proposed a
behavior model based on combination of rules [22],[24] and
finite state machines [25],[26] for controlling agent’s
behavior using layered approach. First layer deals with the
selection of higher-level complex behavior appropriate to
agent’s situation, second layer implements these behaviors
using low-level actions provided by the virtual human [27].
At the higher level, rules select complex behaviors (such as
flee) according to agent’s state (constituted by attributes) and
the state of the virtual environment (conveyed by events). In
rules, it is specified for whom (e.g. particular agent, or
agents in particular group) and when the rule is applicable
(e.g. at defined time, after receiving event or when some
attribute reached specified value), and what is the
consequence of rule firing (e.g. change of agent’s high-level
behavior or attribute). Example of such rule is:

 FOR ALL

WHEN EVENT = in_danger_area AND
ATTRIBUTE fear > 50%

 THEN BEHAVIOR FLEE

At the lower level, complex behaviors are implemented
by hierarchical finite state machines. Each behavior is
realized by one FSM which drives selection of the low-level
actions for the virtual human (like move to location, play
short animation sequence), manages connections with the
environment (like path queries, or event sending) and also
can call other FSMs to delegate subtasks such as path
following

6 Synthetic vision and memory

Let’s now consider the simulation of a referee during a
tennis match. He has to decide if the ball is out or in. One
solution is to calculate the intersection between the impact
point of the ball and the court lines. Such an analytical
calculation will lead to the decision that the ball is out for
0.01 millimeters. Ridiculous, nobody in reality could take
such an objective decision, this is not believable. The
decision should be based on the evaluation of the visual
aspect of the scene as perceived by the referee.

In a more general context, it is tempting to simulate
perception by directly retrieving the location of each
perceived object straight from the environment. This is of
course the fastest solution (and has been extensively used in
video-games until the mid-nineties) but no one can ever
pretend that it is realistic at all (although it can be useful, as
we will see later on). Consequently, various ways of
simulating visual perception have been proposed, depending
on whether geometric or semantic information (or both) are
considered. Renault et al. introduced first the concept of
synthetic vision [28] then extended by Noser et al..[29]. Tu
and Terzopoulos [30] implemented a realistic simulation of
artificial fishes. Other authors [31] [32] [33] also provided
synthetic vision approaches. In the next section, we are
going to compare now rendering-based vision, geometric
vision and database access.

6.1 Rendering-based vision

Rendering-based vision from Noser and Renault et al.
[29] is achieved by rendering of-screen the scene as viewed
by the agent. During the process, each individual object in
the scene is assigned a different colour, so that once the 2D
image has been computed, objects can still be identified: it is
then easy to know which object is in sight by maintaining a
table of correspondences between colours and objects’ IDs.
Furthermore, highly detailed depth information is retrieved
from the view z-buffer, giving a precise location for each
object. An other application of synthetic vision is real-time
collision avoidance for multiple agents: in this case, each
agent is perceiving the others, and dynamically creates local
goals so that it avoids others while trying to reach its
original global goal.

Rendering-based vision is the most elegant method,
because it is the more realistic simulation of vision and
addresses correctly vision issues such as occlusion for
instance. However, rendering the whole scene for each agent
is very costly and for real-time applications, one tend to
favour geometric vision.

One problem is how to decide that an object is in the
field of view of the Virtual Human and that he/she can
identify it. We can imagine for example that the Virtual
Human’s wife is in front of the VH but hidden by a
wardrobe and on the computed 2D image contains only one
pixel for the wife, can he recognize his wife based on such a
detail ?

6.2 Geometric vision

Bordeux [34] has proposed a perception pipeline
architecture (see Fig.13) into which filters can be combined
to extract the required information. The perception filter
represents the basic entity of the perception mechanism.
Such a filter receives a perceptible entity from the scene as

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

input, extracts specific information about it, and finally
decides to let it pass through or not.

Figure 13. Organization for Geometric vision

The criteria used in the decision process depends on the

perception requirements. For virtual objects, they usually
involve considerations about the distance and the relative
direction of the object, but can also be based on shape, size,
colour, or generic semantic aspects, and more generally on
whatever the agent might need to distinguish objects. Filters
are built with an object oriented approach: the very basic
filter for virtual objects only considers the distance to the
object, and its descendants refine further the selection.

Actually, the structure transmitted to a filter contains,
along with the object to perceive, a reference to the agent
itself and previously computed data about the object. The
filter can extend the structure with the results of its own
computation, for example the relative position and speed of
the object, a probable time to impact or the angular
extension of the object from the agent s point of view. Since
a perception filter does not store data concerning the objects
that passed through it, it is fully reentrant and can be used by
several agents at the same time. This allows the creation of a
common pool of filters at the application, each agent then
referencing the filters it needs, thus avoiding useless
duplication.

As an example of filters, Bordeux has implemented a
basic range filter which selects objects in a given range
around the agent. The field of view filter simulates an agent
field of view with a given angular aperture. The collision
filter detects potential impacts with other objects in the
agent neighborhood and estimates, if needed, the time to
impact, the objects relative speed and a local area to escape
from. This has been used again in a safe-navigation
behaviour which dynamically computes a collision-free path
through the world. It is even possible to specify how long an

object shall stay in the list after it was perceived, in order to
simulate short-term memory.

However, the major problem with Geometric vision is to
find the proper formulas when intersecting volumes (for
instance, intersecting the view frustum of the agent with a
volume in the scene). One can use bounding boxes to reduce
the computation time, but it will always be less accurate
than Synthetic vision. Nevertheless, it can be sufficient for
many applications and, as opposed to rendering-based
vision, the computation time can be adjusted precisely by
refining the bounding volumes of objects.

6.3 Database access

Data access makes maximum use of the scene data
available in the application, which can be distributed in
several modules. For instance, the objects position,
dimensions and shape are maintained by the rendering
engine whereas semantic data about objects can be
maintained by a completely separate part of the application.
Due to scalability constraints as well as plausibility
considerations, the agents generally restrain their perception
to a local area around them instead of the whole scene. This
method is generally chosen when the number of agents is
high, especially with crowds, like in Reynolds’s [16] flocks
of birds and schools of fishes. In Musse’s [20] crowd
simulation, human agents directly know the position of their
neighbours and compute coherent collision avoidance
trajectory. As said before, the main problem with the
method is the lack of realism, which can only be alleviated
by using one of the other methods.

These various approaches to visual perception have their
advantages and disadvantages dependent essentially of the
complexity and the context of the scenes. But, finally no
approach can solve common problematics as the following
one: What makes a little girl to be lost in a crowd ? The
child will be lost if she just does not know where is her
family. Now imagine a virtual crowd where each individual
is indexed. It will be extremely easy fo find where is the girl
(index 345) and the parents (index 748). At this stage, we
could just activate a function making the girl walking
towards his parents. This is completely unrealistic from a
behavioural point of view.

6.4 Memory

Noser et al. [29] made a few years ago a character trying
to find the exit from a maze. To simulate the memory
process, they used an octree structure to store the
information see by the character. The results were that the
second time, it was straightforward for the character to find
the exit. Again, this is not so convincing as never somebody
could remember all the paths inside a maze. This kind of
memory can then easily be linked to the synthetic vision: the
2D rendering and the corresponding z-buffer data are

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

combined in order to determine whether the corresponding
voxel of the scene is occupied by an object or not. By
navigating through the environment, the agent will
progressively construct a voxel-based representation of it.
Of course, a rough implementation of this method would
suffer from dramatic memory cost, because of the high
volume required to store all voxels. Noser proposed to use
octrees instead which successfully reduces the amount of
data. Once enough information has been gathered through
exploration, the agent is then able to locate things and find
its way.

Peters and O’Sullivan [33] propose a system of memory
based on what is referred to a “stage theory” by Atkinson
and Shiffrin [35]. They propose a model where information
is processed and stored in 3 stages: sensory memory, short-
term memory, and long-term memory.

Although these approaches are quite interesting, they do
not solve the following simple problematics. Imagine now a
Virtual Human inside a room containing 100 different
objects. Which objects can we consider as memorized by
the Virtual Human ? Can we decide that when an object is
seen by the actor, it should be stored in his memory. To
answer this question, we have just to consider the popular
family game consisting in showing 20 objects during 2
minutes to people and asking them to list the objects.
Generally nobody is able to list the 20 objects. Now, how to
model this inability to remember all objects ?

7 Conclusion

In order to develop truly interactive multimedia systems
with Virtual Humans, games, and interactive movies, we
need a flexible way of animating these Virtual Humans.
Altering motion obtained from a motion capture system is
not the best solution. Only computational models can offer
this flexibility unless powerful motion retargeting methods
are developed, but in this case they will look similar to
computational models.

8 Acknowledgments

The authors would like to thank all people who have
contributed to these projects especially Luc Emering, Soraia
Musse, Ik Soo Lim, Branislav Ulicny, and Mireille Clavien.
Research has been partly funded by the Swiss National
Foundation for Research and the Federal Office for
Education and Science.

9 References

1 A.Witkin, Z.Popovic. Motion warping. Proceedings of

SIGGRAPH 95, pages 105–108, August 1995. ISBN 0-201-
84776-0. Held in Los Angeles, California.

2 Z.Popovic, A.Witkin. Physically based motion
transformation. Proceedings of SIGGRAPH 99, pages 11–20,

August 1999. ISBN 0-20148-560-5. Held in Los Angeles,
California.

3 A.Bruderlin, L.Williams. Motion sig-nal processing. In
Robert Cook, editor, SIGGRAPH 95 Conference
Proceedings, Annual Conference Se-ries, pages 97–104.
ACM SIGGRAPH, Addison Wes-ley, August 1995. held in
Los Angeles, California, 06- 11 August 1995.

4 M.Gleicher. Retargeting motion to new characters. In
Michael Cohen, editor, SIGGRAPH 98 Con-ference
Proceedings, Annual Conference Series, pages 33–42. ACM
SIGGRAPH, Addison Wesley, July 1998. ISBN 0-89791-
999-8.

5 R.Bindiganavale, N. I. Badler. Motion abstraction and
mapping with spatial constraints. In N. Magnenat-Thalmann
and D. Thalmann, editors, Modeling and Motion Capture
Techniques for Virtual Environments, Lecture Notes in
Artificial Intelligence, pages 70–82. Springer, November
1998. held in Geneva, Switzerland, November 1998.

6 L.Jehee, S.Y.Shin. A hierarchical approach Proceedings of
SIGGRAPH 99, pages 39–48, Au-gust 1999. ISBN 0-20148-
560-5. Held in Los Angeles, California.

7 I.S.Lim, D.Thalmann, Solve Customers' Problems:
Interactive Evolution for Tinkering with Computer
Animation, Proc. 2000 ACM Symposium on Applied
Computing (SAC2000), pp. 404-407.

8 J.-S. Monzani, P. Baerlocher, R. Boulic, D. Thalmann, Using
an Intermediate Skeleton and Inverse Kinematics for Motion
Retargeting, Proc. Eurographics 2000, pp.11-19

9 R.Boulic, N.Magnenat-Thalmann, D.Thalmann, A Global
Human Walking Model with Real-time Kinematics
Personification ,The Visual Computer, Vol.6, No6,
December 1990, pp.344-358.

10 Ken Perlin and Athomas Goldberg. Improv: A system for
scripting interactive actors in virtual worlds. Proceedings of
SIGGRAPH 96, pages 205–216

11 R.Boulic, T.Capin, Z.Huang, L.Moccozet, T.Molet, P.Kalra,
B.Lintermann, N.Magnenat-Thalmann, I.Pandzic, K.Saar,
A.Schmitt, J.Shen, D.Thalmann, The HUMANOID
Environment for Interactive Animation of Multiple
Deformable Human Characters, Proc. Eurographics `95,
Maastricht, August 1995, pp.337-348.

12 Z.Huang, R.Boulic, N.Magnenat-Thalmann, D.Thalmann, A
Multi-sensor Approach for Grasping and 3D Interaction,
Proc. Computer Graphics International `95, Leeds, Academic
Press, pp.235-254.

13 R.Mas, D.Thalmann, A Hand Control and Automatic
Grasping System for Synthetic Actors, Proc. Eurographics
'94, Oslo

14 S.R. Musse, D.Thalmann, A Behavioral Model for Real-
Time Simulation of Virtual Human Crowds, IEEE
Transactions on Visualization and Computer Graphics,
Vol.7, No2, 2001, pp.152-164.

15 L.Emering, R.Boulic, T.Molet, D.Thalmann, Versatile
Tuning ofHumanoid Agent Activity, Computer Graphics
Forum

16 Reynolds, C. W., “Flocks, Herds, and Schools: A Distributed
Behavioral Model”, Computer Graphics, 21(4) (SIGGRAPH
'87 Conference Proceedings) pp. 25-34, 1987.

17 Bouvier, E., Guilloteau, P., “Crowd Simulation in Immersive
Space Management”, Proc. Eurographics Workshop on

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

Virtual Environments and Scientific Visualization ’96, pp.
104-110, Springer-Verlag, 1996.

18 Bouvier, E., Cohen, E., Najman, L., “From crowd simulation
to airbag deployment: particle systems, a new paradigm of
simulation”, Journal of Electrical Imaging, 6(1), pp.94-107,
January, 1997.

19 Hodgins, J., Brogan, D., “Robot Herds: Group Behaviors for
Systems with Significant Dynamics”, Proc. Artificial Life
IV, pp.319-324, 1994.

20 Musse, S.R., Babski, C., Capin, T. and Thalmann, D. Crowd,
Modelling in Collaborative Virtual Environments. ACM
VRST ‘98, Taiwan

21 Farenc, N., Musse, S.R, Schweiss, E., Kallmann, M., Aune,
O., Boulic, R and Thalmann, D. “A Paradigm for Controlling
Virtual Humans in Urban Environment Simulations”. Special
Issue on Intelligent Virtual Environments, 1999.

22 Schweiss, E., Musse, S.R.; Garat, F. "An Architecture to
Guide Crowds based on rule-based systems". Autonomous
Agents '99, Seattle, Washington, USA, 1999.

23 Ulicny, B., Thalmann, D., “Crowd simulation for interactive
virtual environments and VR training systems”, Proc.
Eurographics Workshop on Animation and Simulation’01,
Springer-Verlag, 2001.

24 Rosenbloom, P.S., Laird, J.E., Newell, A., “The Soar papers:
Research on Artificial Intelligence”, MIT Press, 1993.

25 Cremer, J., Kearney, J., and Papelis, Y., “HCSM: Framework
for Behavior and Scenario Control in Virtual Environments”,
ACM Transactions on Modeling and Computer Simulation,
5(3):242-267, 1995.

26 Motivate product information, Motion Factory,
http://www.motion-factory.com

27 Boulic, R., Becheiraz, P., Emering, L., and Thalmann, D.,
“Integration of Motion Control Techniques for Virtual
Human and Avatar Real-Time Animation”, Proc. VRST '97,
pp. 111-118, ACM Press, 1997.

28 Renault O.Renault, N. Magnenat-Thalmann, D. Thalmann, A
Vision-based Approach to Behavioural Animation, Journal of
Visualization and Computer Animation, Vol.1, No1, 1990,
pp.18-21.

29 Noser H. Noser, O. Renault, D. Thalmann, N. Magnenat
Thalmann, Navigation for Digital Actors based on Synthetic
Vision, Memory and Learning, Computers and Graphics,
Pergamon Press, Vol.19, No1, 1995, pp.7-19.

30 X.Tu, D.Terzopoulos, Artificial Fishes, Physics,
Locomotion, Perception, Behaviour, Proc. SIGGRAPH ’94,
pp.43-50.

31 J.Kuffner, J.C.Latombe, Fast Synthetic Vision, Memory, and
Learning Models for Virtual Humans, Proc. Computer
Animation 1999, IEEE CS Press, pp.118-127.

32 B.M.Blumberg, T.A,Galyean, Multi-Level Direction of
Autonomous Creatures for Real-Time Virtual Environments,
Proc. SIGGRAPH 95, 1995, pp.47-54.

33 C.Peters, C.O’Sullivan, A Memory Model for Autonomous
Virtual Humans, Proc. Third Irish Eurographics Workshop
on Computer Graphics, Dublin, pp. 21-26.

34 C.Bordeux, R. Boulic, D.Thalmann, An Efficient and
Flexible Perception Pipeline for Autonomous Agents, Proc.
Eurographics '99, Milano, Italy, pp.23-30.

35 R.Atkinson, R Shiffrin, Human Memory : a Proposed System
and its Control Processes, in: K.Spence and J.Spence, the

Psychology of Learning and Motivation: Advances in
Research and Theory, Vol.2, NY, Academic Press, 1968.

Proceedings of the Computer Animation 2002 (CA 2002)
1087-4844/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

