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Abstract

In this paper, we present a four-step technique for simul-

taneously estimating a human's anthropometric measure-

ments (up to a scale parameter) and pose from a single im-

age. The user initially selects a set of image points that con-

stitute the projection of selected landmarks. Using this in-

formation, along with a priori statistical information about

the human body, a set of plausible segment length estimates

are generated. The third step produces a set of plausible

poses based on joint limit constraints using a geometric

method. In the fourth step, pose and anthropometric mea-

surements are obtained by minimizing an appropriate cost

functionsubject to the associated constraints. The novelty of

our approach is the use of anthropometric statistics to con-

strain the estimation process that allows the simultaneous

estimationof both anthropometry and pose. We demonstrate

the accuracy, advantages and limitations of our method for

various classes of both synthetic and real input data.

1. Introduction

Video-based three-dimensional human motion tracking

is an important and challenging research problem. Its im-

portance stems from numerous applications such as: 1) per-

formance measurement for human factors engineering, 2)

posture and gait analysis for training athletes and physically

challenged persons, 3) human body, hands and face ani-

mation, and 4) automatic annotation of human activities in

video databases. The challenges towards the general appli-

cability of a vision-based 3-D tracking system on real data

include the following:

� Data from one camera only: There are several appli-

cations for which the video recordings from only one

view are available (e.g., for analyzing the motion of

astronauts during extravehicular activities in previous

missions). In addition, the camera might be moving,

possibly zooming in and out.

� Model-Acquisition: There is no such thing such as ªav-

erageº human and thatmakes the selection of a geomet-

ric model for model-based tracking dif®cult.

� Modeling: The human models that are currently used

for motion estimation do not incorporate statistical an-

thropometric information.

Our long term goal is to develop a model-based system

for tracking humans from monocular images. In this paper,

we present a technique for simultaneous anthropometry and

pose estimation from the ®rst frame of an image sequence.

The input to the algorithm are the image coordinates of the

visible landmarks from the human subject (as selected by the

user) in the image under examination (Figure 6(a)). The out-

put is the subject's anthropometric measurements (up to a

scale parameter) and his/her pose in the speci®c image (Fig-

ure 6(c)). The novelty of our approach is the use of anthro-

pometric statistics to constrain the estimation process. The

impact of our method lies in the ability to semi-automate the

initialization phase for model-based human tracking meth-

ods from a single camera. As it will explained in later sec-

tions, our method can handle images like the one depicted

in Figure 1(a), but not images like the one depicted in Fig-

ure 1(b).

The remainder of this paper describes our technique in

more detail. In Section 2 we review previous work in the

area, and in Section 3 we formulate the problem. In Sec-

tion 4 we describe our method in detail, while in Section 5

we illustrate results from our system.

2. Previous W ork

Two of the challenges in model-based human tracking al-

gorithms are: 1) the acquisition of an accurate human body

model that will be employed as the model, and 2) the ini-

tialization of the model in the ®rst frame of the image se-
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(a) (b)

Figure 1. (a) Instance of an image that can

be handled by our algorithm, (b) Instance of

an image that cannot be handled by our algo-

rithm.

quence. Concerningmodel acquisition, existing approaches

use models of the human body whose parts are either ap-

proximated with simple shapes and their dimensions have

been manually measured [9, 18] or models whose shape

and/or dimensions have been determined based on camera

input data. In this second category, methods have been de-

veloped to obtain models of human body parts from multi-

ple cameras [10, 11, 14] or range data [7]. Concerning pos-

ture estimation, methods have been presented that use either

one [4, 5, 15, 19], ormultiple cameras [1, 6, 8, 12, 13]. How-

ever, in most of the existing tracking approaches the user

speci®es an approximate position and posture from the hu-

man model at the ®rst frame of the image sequence [5, 13,

17]. In contrast, Bregler and Malik [4] for the initialization

step of their human tracking method, they minimize a cost

function over position, angles and body dimensions. In par-

ticular, a user selects the 2D joint locations and then a 3D

pose is found by minimizing the sum of the squared differ-

ences between the projected model joint locations and the

corresponding model joint locations. The authors mention

that they had good results with a Quasi-Newton method and

a mixed quadratic and line search procedure. However, no

information is provided about the accuracy and repeatability

of their method, nor for what class of postures and human

body dimensions does the method work. The contribution

of our paper is a systematic study and a technique that takes

into consideration statistical anthropometric information to

constrain the estimation process.

3. Problem Statement

The human musculosketelal system is composed from a

series of jointed links, which can be approximated as rigid

bodies. Human motion estimation is aimed at quantita-

tively describing the spatial motion of body segments and

the movements of the joints connecting those segments. A

hallmark of the individualityof the people that we encounter

in our daily life is the variation of their anthropometricmea-

surements. If we assume that we have no anthropometric in-

formation for the subject that we are observing, the problem

of anthropometry and pose estimation from a single image

can be formulated as follows: Given a set of points in an

image that correspond to the projection of landmark points

of a human subject, estimate both the anthropometric mea-

surements (up to a scale) of the subject and his/her pose

that best match the observed image. By the term ªup to a

scaleº, we refer to the fact that from a single camera (un-

der perspective projection) we cannot infer absolute lengths

( like ªupper-leg-lengthº and ªshoulder-widthº) but ratios of

lengths. Therefore, in the followingwhen we refer to the es-

timation of the anthropometricmeasurements, we imply the

estimation of ratios of lengths like ªupper-leg-lengthº over

ªshoulder-widthº.

4. Methods

Our algorithm has the following steps:

Algorithm: Anthropometry and Pose Estimation

Step 1: Selection of projected landmarks.

Step 2: Choice of initial Stick Model.

Step 3: Initial estimates for pose.

Step 4: Iterative minimization over lengths and angles.

First, we present the Stick Human Body Model (SM) that

we have developed, and then we will elaborate in the above

steps in detail.

4.1. Stick Human Body Model

For the purposes of this research, we have developed a

generic Stick Human Body Model inspired by the human

body model employed at the Human Modeling and Simu-

lation Center at University of Pennsylvania [3]. The model

consists of a set of segments connected by joints. Specif-

ically, a Stick Model is a tree (w; V;A), where V is a set

of sites/landmarks andA is a collection of edges (segments)

with endpoints in V , and w 2 V is the root. In our case,

A=fHD,RY, LY,NK, UT, RC, LC, RUA, LUA, RLA, LLA,
RHD, LHD, LT, RHP, LHP, RUL, LUL, RLL, LLL, RF, LFg
as enumerated in Figure 2(b), and the set of landmarks con-

sists of a set of joints J=fat, sp, la, lc, le, lh, lk, ls, lw, ra,
rc, re, rh, rk, rs, rw, wtg (information about the SM's joints

is provided in Table 1), and other landmarks M=fry (right
eye), ly (left eye), rhd (base of the right middle ®nger), lhd

(base of the left middle ®nger), rf (tip of the right foot), lf

(tip of the left foot)g ( V = J [ L ).
A local coordinate system is attached to each body part.

The kinematics are represented by a transformation tree
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ID Segment

HD Head

RY Right Eye

LY Left Eye

NK Neck

UT Upper Torso

RC Right Clavicle

LC Left Clavicle

RUA Right Upper Arm

LUA Left Upper Arm

RLA Right Lower Arm

LLA Left Lower Arm

RHD Right Hand

LHD Left Hand

LT Lower Torso

RHP Right Hip

LHP Left Hip

RUL Right Upper Leg

LUL Left Upper Leg

RLL Right Lower Leg

LLL Left Lower Leg

RF Right Foot

LF Left Foot

(a) (b)

Figure 2. (a) Stick Human Body Model (SM)

and its associated coordinate systems, (b)

Names of the SM's segments.

whose root is the subject coordinate system and whose

leaves are the coordinate systems of head, hands, and feet.

The originof the subject coordinate system is the waist joint.

Figure 2(a) depicts the local coordinate systems of the stick

human model which correspond to the joints listed in Ta-

ble 1. Notice that every joint has both rotational degrees

of freedom and translational degrees of freedom to allow

for segment scaling. For each joint an upper limit and a

lower limit are required. The default data for the joints are

extracted from [16]. In addition, using the anthropometric

measurements in [16], we have build a database that con-

tains statistical information related to the segment lengths of

our simpli®ed model. Using this statistical information, we

have computed a cadre family, also known as the boundary

family, of simpli®edmodels [2]. The cadre family is a multi-

variate representation of the extremes of the population dis-

tribution. It has the ability to span themultivariate space in a

systematic fashion and to capture a signi®cant amount of the

variance in the space using a small number of sample human

models. The probability density function of the multivariate

normal distribution is de®ned by:

f(x) = ((2�)kj�j)�
1
2 exp(�

1
2 (x�m)

>
�
�1(x�m)); (1)

where k is the number of dimensions (in our case the vari-

ID Joint From To DOF PR

at atlanto occipital NK HD Tz*Rz*Ry*Rx 3

sp solar plexus UT NK Tz*Ry*Rz*x 2

la left ankle LLL LF Tx*Rz*Rx*Ry 4

lc left clavicle UT LC Tz*Rx*Ry 3

le left elbow LUA LLA Tz*Ry 5

lh left hip LT LUL Tz*Rz*Rx*Ry 2

lk left knee LUL LLL Tz*R-y 3

ls left shoulder LC LUA Tz*Rz*Rx*Ry 4

lw left wrist LLA LHD Tz*Ry*Rx*Rz 6

ra right ankle RLL RF Tx*R-z*R-x*Ry 4

rc right clavicle UT RC Tz*R-x*Ry 3

re right elbow RUA RLA Tz*Ry 5

rh right hip LT RUL Tz*R-z*R-x*Ry 2

rk right knee RUL RLL Tz*R-y 3

rs right shoulder RC RUA Tz*R-z*R-x*Ry 4

rw right wrist RLA RHD Tz*Ry*R-x*R-z 6

wt waist LT UT Tz*Ry*Rz*Rx 1

Table 1. Information related to the joints of the

Stick Model.

ables are the lengths of the 22 segments of our Stick Model

Figure 2(b)), x is a random vector, m and � are the mean

and the covariance matrix of the population. If we de®ne the

quadratic form Q(x) = x>�x, then Q(x) de®nes a conic
surface whose shape depends on the diagonal elements of

�, and since� is a variance-covariance matrix this surface

is a hyperellipsoid. As we know, the principal components

Pi(i = 1; ::: ; 7) are linear combinations of the original k
variables (the lengths) as follows: Pi = �i1l1 + �i2l2 +
::: + �iklk. Computation of the weight coef®cients �ip is

constrained by:

kX
p=1

�2ip = 1 (2)

We prioritize the principal components according to their as-

sociated captured variance and we keep seven components

to limit the sum of the associated variances to be equal to the

desired total captured variance. Next, the component scores

matrix is multiplied by a binary matrix formed by all com-

binations of �7. This yields standard score vectors. Using

these vectors, we can generate a family of stick models that

includes not only hyperellipsoid surface points but also the

axial points and the mean. The total number of SMs pro-

duced is 139 (in general 2s + 2s + 1, where s is the num-
ber of principal component vectors kept). A sample of these

SMs is depicted in Figure 3. For these 139models we main-

tain information concerning the segment lengths flqi gwhere
i = 1; ::: ; 22 (the segments' names are given in Figure 2(b))
and q = 1; ::: ; 139. Using this information we compute

means and the standard deviations.
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Figure 3. Samplemodels fr om the distribution

of SMs (7 out of 139).

4.2. Step 1: Input Data

Wehave developed a simple user interface that allows the

user to select the projection of visible landmarks of the sub-

ject's body (see Figure 6(a)). In addition, the user marks the

segments whose orientation is almost parallel to the image

plane. For example, in Figure 6(a) thewhite dots depict pro-

jection of landmarks associated with segments whose orien-

tation is almost parallel to the image plane, and the black

dots depict all other selected landmarks. Although, infor-

mation from both types of landmarks will be used for pose

estimation, initial length estimates will be based on the pro-

jected length of the segments whose orientation is almost

parallel to the image plane only.

4.3. Step 2: Initial Anthropometric Esti-
mates

Our basic assumption is that there is a number of seg-

ments whose orientation is almost parallel to the image

plane and therefore we can obtain good approximation ra-

tios for them. Thus, we cannot handle images like the one

depicted in Figure 1(b) since one cannot locate segments

that are almost parallel to image plane to obtain reliable ini-

tial anthropometric estimates. Let li and pi be the length

and the projected length of a segment i, respectively. Let

I � [1; 22] be the index set of the segments whose orienta-
tion is almost parallel to the image plane, and n = jIj � 22.
Using the measurements pk ( k 2 I), we compute all pos-

sible (
n(n�1)

2 ) ratios pij = pi
pj

where i < j, and i; j 2 I.

Based on these ratios, we select one SM from our family of

139 SMs whose length ratios closely match the ratios com-

puted from the image. To accomplish this goal, we deter-

mine q? = argmin
q

P
i;j2I

(rqij �pij)
2;where r

q
ij =

l
q

i

l
q

j

, i < j,

and q = 1; ::: ; 139. The length measurements of the se-

lected SM are the initial segment length estimates for our

algorithm.

To facilitate the overall understanding of our algorithm,

we ®rst present the fourth step in the next section and then

the third step in Section 4.5.

4.4. Step 4: Minimization of the cost func-
tion

The variables that we want to estimate their values are

the lengths of the body segments and their pose. Therefore,

we will solve a system of equations were prior information

about the human body (e.g., relations between lengths of

segments) will provide constraints to an optimization that

minimizes the discrepancy between the synthesized appear-

ance of the SM (for that pose) and the image data of the sub-

ject in the given image.

As mentioned earlier, the user selects a set of points on

the image that correspond to the projection of the sites of

the Stick Model. For each of these points, we setup a point-

to-line constraint, since the site will lie on a line that goes

through the center of the camera and the projection of a

landmark. Let o 2 R3 be the camera's center of projec-

tion, mi 2 R3 be the position of a SM's site, andm
p
i 2

R3 be the corresponding projection point selected by the

user. Then, the constraint line is given by: ci = o + �di,

where di =
(mp

i
�o)

kmp

i
�ok

. Our objective function is O =P
i distance(mi; ci). We seek to minimize the value of

this function using a BFGS nonlinear solver [20]. Due to

the large number of degrees of freedom, in order not to be

trapped in local minima and to obtain an anthropometrically

plausible correct answer, we apply the solver in a hierarchi-

cal manner and we employ a number of constraints. Statis-

tical information about the proportions of the human body

and the range of motion of each joint are integrated into the

hierarchical optimization method as a set of constraints.

Hierarchical Solver: First, to facilitate and expedite the

minimization process, we assign a priority to each joint and

end effector, and we schedule our optimization to proceed in

a hierarchical manner starting with joints closer to the waist

moving outwards. The priorities for each joint are detailed

in the column named PR in Table 1.

Constraints: Three classes of constraints are applied:

1) constraints derived from the joint limit information as-

sociated with the range of motion of a joint, 2) con-

straints that enforce the symmetry between the left and

right sides of the subject (e.g., the length of the left up-

per arm is equal to the length of the right upper arm),

and 3) constraints that enforce proportions. For the sym-

metry constraints in particular, we require that the ra-

tios f LY
RY

; LC
RC

; LUA
RUA

; LLA
RLA

; LHD
RHD

; LHP
RHP

; LUL
RUL

; LLL
RLL

; LF
RF
g are

within � distance from the value one. Thus, the variables

whose values will be estimated are the lengths of the follow-

ing 12 segments: HD, NK, LC, LUA, LLA, LHD, UT, LT,

LHP, LUL, LLL, and LF.
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Proportions: Our goal is to guide the minimization

solver to a solution for the pose that is feasible (hence the

use of joint limit constraints) and anthropometrically plau-

sible. Hence, we seek to ®nd ratios of measurements that

need to be maintained during the minimization process. In

the following,we describe our algorithm todetermine which

ratios will be used to constrain the estimation process. The

objective of this algorithm is to ®nd a minimum set of ratios

that constrain all segment lengths. We formulate the prob-

lem as a set covering problem. If R is the set of all pos-

sible ratios, we want to ®nd a set B � R to cover the set

L of the segment lengths. Let cij be the absolute value of

the correlation between ratios ri 2 R and rj 2 R, and let

lk 2 L be the length of segment k. For each ratio ri =
l1i
l2
i

(l1i ; l
2
i 2 L), we de®ne the quantities of weight, degree,

cover and goodness. Let wi = weight(ri) = �(ri)
�(ri)

. The

variance �2(ri) is an indication of the precision of the sta-

tistical information concerning the ratio ri. Therefore, the

smaller the quantity
�(ri)
�(ri)

, the more constrained the ratio.

Let cover(ri; lk) be the quantity that measures to which ex-
tend the ratio ri constrains the length lk. Then, if we de®ne

di = degree(ri) =
P

lk
cover(ri; lk), the goodness gi of a

ratio is given by: gi = goodness(ri) =
di
wi
. In the follow-

ing, we outline the steps of the algorithm.

Algorithm: Ratio Selection

Step 1: Set B = ;.
Step 2: 8 (ri; lk) 2 (R� L) set:

cover(ri; lk)=

(
1 if (ri =

l1i
l2
i

^ (lk = l1i _ lk = l2i ))

cib otherwise.

where cib = maxjfcijg; and

(rj =
l1j
l2
j

^ (lk = l1j _ lk = l2j )).

Step 3: 8 lk 2 L set care(lk) = 0 .

Step 4: 8j; rj 2 Rn B, compute dj and gj .
Step 5: Select rm such that gm = max(gj) 8j; rj 2RnB .

Step 6: B = B[frm =
l1m
l2m
g, care(l1m) += cover

�
rm; l

1
m

�
,

and care(l2m) += cover
�
rm; l

2
m

�
.

Step 7: If care(lk) � 1 8k; lk 2 L then done. (That

means that we have found a set of ratios B that con-

strain all the lengths). Otherwise, 8j; rj 2RnB (j 6=m)

cover(rj ; lk) = maxf0; cover (rj; lk) � care(lk)g and

goto step 4.

The set B contains the following ratios:
UT
LF ;

UT
LLL ;

UT
LLA ;

UT
LUA ;

LUL
LLL ; and LUA

LLA . Based on this

information, the constraint for a ratio rj =
l
1
j

l2
j

(8rj 2 B )

takes the form:

lj � �j � lj � lj + �j ;

where lj is selected from
�
l1j ; l

2
j

	
and corresponds to the

segment with the minimum value of
�j
�j
.

Figure 4. Initial pose estimates.

4.5. Step 3: Initial estimates for the pose

In order for the nonlinear solver not to get trapped to lo-

cal minima, we use a geometric method for providing an ini-

tial guess for the pose of some segments. This procedure

is applied only to segments for which both endpoints were

selected by the user. Let m
p
i 2 R3 be the projection of a

site mi in the image, li > 0 be the length of the segment

of which this landmark is the end-effector, and j 2 R3 be

the position of the parent joint of that landmark on the Stick

Model. By construction, the following equation applies:

ko+ �di � jk = li

where di is the unit direction between the camera andm
p
i ,

as de®ned earlier. This quadratic equation has two solutions

(see Figure 4):

�1 = di � (j� o) +
q
[di � (o� j)]

2 � jjo� jjj2 + l2i

�2 = di � (j� o)�
q
[di � (o� j)]

2 � jjo� jjj2 + l2i

that correspond to the intersection of the line o+�kdi with

the sphere of radius li centered at j. The two possible initial

guesses for the position of sitemi aremi1 = o+ �1di and

mi2 = o + �2di: Then, joint limit information is used to

prune the solutions that are not feasible. If both positions are

feasible, then both are used as initial values for the nonlinear

solver.

5. Results and Discussion

We have performed a number of experiments on syn-

thetic and real data to assess the accuracy, limitations and

advantages of our approach. In all the example input im-

ages, the white dots depict projection of landmarks associ-

ated with segments whose orientation is almost parallel to

the image plane, and the black dots depict all other selected

landmarks (see for example the input image depicted in Fig-

ure 6(a)). In the ®rst experiment, we applied our technique

to an image created using the virtual human modeling tool

EAI Jack R
. Figure 5 (a) depicts the selected points in the
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input image, while Figure 5(b) depicts the reconstructed 3D

model. Figures 5(c,d) depict the reconstructed 3D model in

novel views. Tables 2 and 3 contain statistical information

related to the accuracy of the estimation process.

(a) (b)

(c) (d)

Figure 5. (a) Input image and selected points,

(b) reconstructed 3D model, (c) novel view of

the SMmodel along with (d) the virtual human

model.

UT+LT
LF

UT+LT
LLL

UT+LT
LLA

UT+LT
LUA

UL
LLL

LLL
LLA

Actual 2.32 1.47 2.04 2.00 0.99 1.38

Estimated 2.30 1.49 2.10 1.99 0.97 1.41

PE % 0.86 1.36 2.94 0.50 2.02 2.17

Table 2. Accuracy of the length estimates for

the synthetic experiment.

In the second experiment, we applied our technique to a

real image from the subject Vanessa whose anthropometric

dimensions were manually measured. Figure 6(a) depicts

the selected points, Figure 6(b) depicts the reconstructed

model overlayed to the image and Figures 6(c,d) depict the

model from novel views. Table 4 captures the percentage

errors (PE) of the estimation process. We observe that the

estimation of anthropometric information is within 3.3% of

Joint Actual Values Estimated PE%

at (0:00o; 0:00o;0:00o) (0:00o; 0:00o; 0:00o) 0.00

sp (�0:50o;�2:00o; 0:00o) (�0:48o;�1:98o;0:00o) 1.37

la (12:97o;�15:37o;�63:40o) (13:60o;�16:50o;�65:00o) 3.09

lc (12:24o; 0:99o) (12:01o;0:99o) 1.87

le (41:84o) (42:31o) 1.12

lh (�16:80o; 2:14o;�2:73o) (�16:53o; 2:12o;�2:69o) 1.60

lk (0:00o) (0:0o) 0.00

ls (2:50o; 36:47o;3:41o) (2:50o;36:87o; 3:37o) 1.09

lw (42:67o;�39:12o; 1:85o) (43:02o;�40:12o; 1:65o) 1.86

ra (32:28o; 33:54o;�50:13o) (31:98o;33:32o;�49:81o) 0.72

rc (11:70o; 11:41o) (11:61o; 11:51o) 0.82

re (62:74o) (63:05o) 0.49

rh (�8:63o;�13:40o; 63:87o) (�8:62o;�13:40o;63:77o) 0.15

rk (129:13o) (131:02o) 1.46

rs (26:20o; 31:11o;42:44o) (26:20o;31:07o; 43:01o) 0.97

rw (�5:35o;�6:55o;�54:53o) (�5:15o;�7:05o;�54:50o) 0.98

wt (0:00o; 0:00o;0:00o) (0:00o; 0:00o; 0:00o) 0.00

Table 3. Accuracy of the pose estimates for

the synthetic experiment.

the anthropometric dimensions of the subject. In general,

we have performed numerous other experiments with a vari-

ety of subjects whose anthropometric dimensions are known

with similar very encouraging results.

UT+LT
LF

UT+LT
LLL

UT+LT
LLA

UT+LT
LUA

UL
LLL

LLL
LLA

Actual 2.43 1.16 2.59 2.23 0.87 2.23

Estimated 2.35 1.15 2.55 2.17 0.87 2.22

PE % 3.29 0.86 1.54 2.69 0.00 0.45

Table 4. Accuracy of the length estimates for

the subject Vanessa.

In the third experiment, we applied our algorithm to a

variety of images from a variety of application domains,

where anthropometric information about the subjects was

not available, Figures 7(a), 8(a,f), 9(a), depict the input

images along with the selected points, while Figures 7(b-

c), 8(b-f), 9(b-d), depict the reconstructed model from vari-

ous viewpoints.

6. Conclusion

In this paper, we have presented a four step technique for

generating anthropometric and posture information for a hu-

man subject from a single image. The user initially selects a

set of image points that constitute the projection of selected

landmarks. Based on the image coordinates of the selected

points and anthropometric statistics, pose and anthropomet-

ric measurements are obtained by minimizing an appropri-

ate cost function subject to the associated constraints. The

novelty of our approach is the use of anthropometric statis-

tics to constrain the estimation process that allows the si-

multaneous estimation of both anthropometry and pose. We

have demonstrated the accuracy, advantages and limitations

of our method for various classes of both synthetic and real

input data.
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(a) (b) (c) (d)

Figure 6. (a) Selected points, (b) reconstructed model overlayed to the image, and (c,d) the model

from novel views.

(a) (b) (c)

Figure 7. (a) Input landmarks, and (b,c) two views of the reconstructed model.

(a) (b) (c)

(d) (e) (f)

Figure 8. (a) Input landmarks, (b-e) various views of the reconstructed model, an (f) an example from

golf.
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(a) (b) (c) (d)

Figure 9. (a) Input landmarks, and (b-d) various views of the reconstructed model.
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