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Abstract 

In this paper, we discuss an appearance matching 
technique for the interpretation of color scenes con- 
taining occluded objects. Dealing with occlusions is 
very difficult, and we have explored the use of an iter- 
ative, coarse-to-fine correlation-based method that uses 
hypothesized occlusion events to modify the scene-to- 
template similarity measure at run-time. Specifically, 
a binary mask is used to adaptively exclude regions of 
the template image from the correlation computation. 
At each iteration, these masks are adjusted based on 
higher resolution scene data and the occluding interac- 
tions between multiple object hypotheses. We present 
results which demonstrate the technique is reasonably 
robust over a large database of color test scenes con- 
taining objects at a variety of scales, and tolerates mi- 
nor object rotations and global illumination van’ations. 

1. Introduction 

This paper addreses the difficult problem of scene 
interpretation, (i.e., the identification and location of 
objects) in the presence of strong occlusions. In gen- 
eral, a geometric approach to this problem attempts to 
match a 3-D object model to a set of geometric features 
extracted from the scene. Since such matching relies 
on local features such as edges and corners, it tends 
to be tolerant of occlusions. Examples include [2], [9], 
and [ll]. Unfortunately, it seems that the applicability 
of the geometric approach is limited to very simplistic 
objects comprised of geometric features that are easy 
to both model and extract. 

In contrast, appearance-based approaches model ob- 
jects purely in terms of 2-D image features. Since the 
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scene-to-model matching process is performed directly 
in the image domain rather than in the domain of local 
geometric features, performance is not degraded by ge- 
ometric complexity. Demonstrations of robust appear- 
ance matching of complex objects include [13], [14], and 
[7]. The disadvantage of such approaches is that object 
appearance is a global feature and is therefore very sen- 
sitive to occlusions. Rather than extending a geometric 
method to deal with complexity, we have chosen to in- 
vestigate an extension of an apperance-based approach 
to deal with occlusions. 

This paper is organized as follows: Sec. 2 describes 
the problem of interpreting occluded scenes. Sec. 3 
outlines our approach and introduces it’s core concept: 
the adaptive mask. Sec. 4 illustrates the use of adaptive 
masks on two example scenes. Experimental results are 
presented in Sec. 5, followed by a discussion in Sec. 6. 

2. Problem Description 

Fig. la shows a typical scene of interest. The scene 
is assumed to contain M target objects against an arbi- 
trary background; the M objects may strongly occlude 
each other. Given such a scene, we seek to estimate the 
location, scale, and relative depth order of each target 
object. Fig. lb shows the template image (acquired 
off-line) associated with each target object. 

2.1. Appearance-Based Image Spotting 

It is the occluding interactions between objects that 
make interpretation of such scenes so difficult. Re- 
cent appearance matching techniques (e.g., [l] and [6]) 
have had great success with non-occluded objects. In 
the absence of occlusions, an arbitrarily complex ob- 
ject may be spotted by scanning the scene with a tem- 
plate and computing the scene-to-template correlation 



Figure 1. Typical scene and objects of interest. 
(a) Scene with occlusions and cluttered back- 
ground. (b) Object templates: stapler2, cat, 
staplerl, glue box, juice, and stapler3. 

Figure 2. Thirteen “guessed” cat masks. 

at each image location. A binary 2-D mask is applied 
to exclude all background pixels from the correlation. 
The mask is essentially a “silhouette” of the reference 
object in the template image. 

Since appearance varies with view direction, a set of 
L templates (one for each sampled view direction) is 
correlated with the scene. The parametric eigenspace 
method, introduced in [7], performs these L corre- 
lations very efficiently by using the Karhunen-Loeve 
transform to project the image onto a low-dimensional 
subspace. The “figure” (i.e. non-background) regions 
of each of the L masks (one mask per template image) 
are ANDed together to generate a composite mask. 
This composite mask is used to search for the target 
object, which may appear from any viewing direction 
in the space spanned by the L templates. 

Figure 3. Scene at i, 4, and f resolution. 

2.2. Dealing with Occlusion 

This approach works well at spotting complex non- 
occluded objects in cluttered scenes for multiple view 
directions, and tolerates mild occlusions (perhaps 10% 
of object area.) But as occlusion increases, correlation 
ceases to reliably indicate object presence because the 
scene pixels in the occluded regions are uncorrelated 
with the template pixels; in a sense, these occluded 
regions add noise to the correlation computations. 

One recent proposal uses local appearance matching 
in which small scene windows are correlated with small 
template windows [S]. The response from each win- 
dow “votes” for a global scene interpretation. However, 
the robustness of previous appearance matching results 
stems largely from the use of global appearance rather 
than local windows. Another technique expands the 
scene using a set of basis functions that closely resem- 
ble the template image; the resulting matching process 
is more robust to occlusions compared with standard 
template matching [3]. 

In contrast, we have taken advantage of the global 
occluding interactions between scene objects to adap- 
tively improve the correlation metric. Given the hy- 
pothesized location of two objects in a particular oc- 
cluding configuration, one can adjust the correlation 
mask to take this information into account; i.e., one can 
attempt to “mask out” the (hypothesized) occluded re- 
gions in order to compute the scene-to-template corre- 
lation over only the non-occluded regions of the object. 
By ignoring the occluded pixels, it is hoped that this 
modified correlation metric will serve as a reliable in- 
dicator of object presence. 

Unfortunately, this “masking out” of occlusions in- 
troduces a dilemma. In order to search the scene for 
a target object, we need a reliable indicator of object 
presence (e.g., a correlation-based metric that ignores 
occluded regions.) Yet to properly mask out these oc- 
cluded regions, we must already know the objects’ loca- 
tions so that we can determine which regions are similar 
to the template (i.e, not occluded), and which regions 
are grossly different from the template (i.e., occluded.) 
Since we have no a priori knowledge of these occluded 
regions, we cannot design a fixed mask to exclude them, 
such as the composite mask in [6]. To escape this circu- 
lar dilemma, we use an adaptive mask that is adjusted 
at run-time based on scene data. 

To study such adaptive masks in isolation from other 
complicating issues, we have made two simplifying as- 
sumptions. First, we restrict the M objects to appear 
from a single canonical viewing direction. Second, we 
restrict a target object to be occluded only by one or 
more of the other M-l target objects, rather than by 
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Figure 4. The cat template and the first of the 
N = 13 cat masks at multiple resolution levels. 

some unknown background entity. 

3. The Adaptive Mask Concept 

One way to avoid the dilemma discussed in Sec. 2.2 
is to initially “guess” which regions of an object are 
occluded in the scene, and modify the mask accordingly 
so that these regions are excluded from the correlation 
computation. A search of the scene is then performed 
using N such masks, each of which corresponds to a 
different initial (“guessed”) occlusion hypothesis. 

Fig. 2 shows a set of N = 13 initial “guessed” oc- 
clusion masks for the cat object. The first mask cor- 
responds to a non-occluded cat. The remaining 12 
masks each hypothesize a rectangular occluding entity 
at a certain location with respect to the cat. 

Note that this set of masks is not expected to con- 
tain a “perfect match” with the actual occluded re- 
gion, nor must the set span the space of all possible 
occlusion configurations. It is only necessary that at 
least one member of this set of N masks be a reason- 
able approximation to the occluded regions of the cat’. 
Such a “correct” mask, when placed at the actual loca- 
tion of the object in the scene, should yield the highest 
correlation from among all N guessed masks, because 
it eliminates the most occluded, noise-inducing pixels 
from the correlation computation, while including the 
most non-occluded, information-bearing pixels. 

3.1. Coarse-to-fine Search 

The main problem with this approach is the compu- 
tational burden of MN searches (one search for each of 
M  objects, using each of N guessed masks.) Therefore, 
we perform the searches at a greatly reduced scene res- 
olution. As noted in [5], the cost of template search 
increases proportional to the fourth power of resolu- 
tion. This speed-up technique can be found in several 
previous works such as [lo], [12], and [l]. 

Although coarse resolution search is very fast, it pro- 
vides much less image information for drawing conclu- 
sions about object presence, location, scale, etc., and 
thus increases the possibility of mistakes. So we must 
verify the object hypotheses using the information-rich 
high-resolution image data. 

3.2. Hypothesize and Verify 

Fig. 3 shows the scene of Fig. la at three coarser res- 
olutions. Fig. 4 shows a cat template and mask at the 

The hypothesize and verify procedure begins with 
MN coarse resolution searches. The result is zero or 
more location hypotheses for each of M target objects2. 

These hypotheses are verified or rejected based on 
high resolution image data. Due to the coarseness of 
the search, the hypothesized locations contain a great 

1 By “reasonable”, we mean that the residual occluded scene ‘In our experiments, a hypothesis was generated at each im- 
regions not excluded by the mask are small enough that correla- age point where correlation was both a local maximum and above 
tion will yield a robust indicator of object presence. a threshold. 

(4 (b) 

(cl (4 

Figure 5. Correlation maps from coarse resolu- 
tion version of Fig. la. (a) Using first cat mask 
of Fig. 2 (no occlusion.) (b) Using second cat 
mask (left half occluded.) (c) Using ninth cat 
mask (top half occluded.) (d) Using thirteenth 
juice mask (bottom right occluded.) 

four resolutions. Each resolution level is generated via 
Gaussian filtering followed by dyadic downsampling. 
Thus, the original 320 x 240 pixel images were searched 
at a reduced resolution of 40 x 30 pixels. 

535 



Figure 6. Coarse-to-fine hypothesis evolution. 

deal of spatial uncertainty: each pixel in a 40 x 30 
searched image maps to a 8x8= 64 pixel neighborhood 
in the original image. So if we were to jump imme- 
diately to the full resolution image in order to verify 
a hypothesis, it is likely that the coarse-level hypoth- 
esized object locations will be significantly perturbed 
from their true locations, and spatial mismatches of 
even a few pixels are known to substantially degrade 
the reliability of correlations (see, for example, [8].) 

So in effect, we must perform a fine-resolution search 
by spatially perturbing each coarse-level hypothesis 
within it’s range of uncertainty, and compute fine reso- 
lution correlations at each perturbed location. Such a 
search can be more efficiently performed by increasing 
resolution from coarse to line in stages. At each stage, 
a medium-resolution search is performed over a small 
region (say 2 x 2), rather than a high-resolution search 
over a large region (say, 8 x 8.) 

Note that we perform this coarse-to-fine search for 
both hypothesis verification and reduction of location 
uncertainty. We can achieve tolerance to scale varia- 
tions by perturbing hypothesized object scale at each 
stage as well. A similar method is described in [l]. 

3.3. Objective Function 

Rather than rely strictly on masked scene-to 
template correlation as the similarity metric used in 
the staged search, we modulate this metric by incorpo- 
rating it’s equivalent, the sum-squared (Lz) error, into 
an objective function Ch(i,j,Th,k). For the hth target 
object, Ch(i, j, Th,k) is evaluated at each scene location 
(i,j), andforeachguessed maskTj+, with Ic=l,. . . ,N 
and h=l,... , M. A low value of Ch(i, j,Th,k) corre- 
sponds to high similarity. 

The objective function consists of the masked, area- 
normalized, scene-to-template ~52 error E(i, j, Th,k) 
(computed over the three RGB channels) modified by 
a pair of soft top-down constraints represented by a 
masking tern P(Th,k) and a scaling term Q(Th,k): 

Figure 7. Final interpretation with hypothesized 
non-occluded regions in white, and occlusions 
in black. (a) Example I. (b) Example II. 

&&,j,Th,k)=E( i, j, Th,lc) + ap(Th,k) + PQ(Th,le) 
where CY,~ 2 0 are weighting coefficients. The term 
P(Th,k) increases the cost of an adaptive mask Th,k 
proportional to the fraction of “masked out” pixels. 
The idea is to penalize hypotheses in which the object 
is heavily occluded, so as to force such hypotheses to 
compensate for their smaller (less reliable) set of sup- 
porting pixels with a smaller error E(i, j, Th,k). 

The scaling term Q(Th,k) imposes a cost that varies 
inversely with the scale of the template mask Th,k (i.e., 
it favors larger-scaled over smaller-scaled templates.) 
The staged search has a tendency to converge to hy- 
potheses with scale slightly less than the correct scale 
in the scene. This is because appearance variations 
within an object are typically less drastic than the ap- 
pearance variations between object and background. 
Consequently, a scaled template that is slightly too 
large (and extends beyond the boundaries of the ob- 
ject into the background) will tend to have larger L2 
error than a template that is slightly too small but 
which fits within the boundaries of the scene object. 
The term Q(Th,k) counteracts this tendency. 

As the coarse-to-fine search progresses, the occlud- 
ing interactions between the M objects are taken into 
account at each stage, in order to improve the quality 
of the inital “guessed” masks, and thus improve the 
quality of the similarity metric. If the hypothesized lo- 
cations and scales of cat and juice are such that cat 
is occluding juice, then the initial juice mask can be 
replaced with a new mask based on the shape and hy- 
pothesized location and scale of cat (with respect to 
the hypothesized location and scale of juice.) 

As resolution increases and hypothesized locations 
and scales become more precise, the occluding interac- 
tions between objects will result in the masks becom- 
ing better approximations to the true occluded regions. 
These improved masks are then used to compute L2 
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Figure 8. Evolution of the cat mask. 

error at the next higher resolution level, and so on. 
The final goal is a globally consistent scene interpreta- 
tion, verified at the original resolution, in which each 
object’s mask has converged to a very good approxi- 
mation of that object’s actual occluded region. 

It should be noted that the coarse resolution hy- 
potheses will sometimes be incorrect due to sparse 
scene data. The computed L2 error of such a hypoth- 
esis will become very large as resolution increases (i.e., 
as more information becomes available), and can be 
rejected at this time. The coarse-to-fine verification is 
then repeated using the next-most promising coarse- 
level hypothesis (from the initial scene search) as a re- 
placement. In other words, baclctracking must be in- 
corporated into the coarse-to-fine search. 

4. Behavior of the Approach 

In this section, we follow two scenes through the 
interpretation process to illustrate the algorithm. The 
set of M =6 target objects are shown in Fig. lb. 

4.1. Example I 

In this example, Fig. la is recursively downsam- 
pled three times as shown in Fig. 33. A coarse reso- 
lution search of the scene is then performed for each of 
M = 6 objects and N = 13 guessed masks (see Fig. 2). 
Fig. 5 shows scene-to-template correlation maps gener- 
ated from different initial masks. 

Figs. 5a shows a correlation map using the first mask 
of Fig. 2 (containing no occlusion.) The minimum cor- 
relation occurs at the correct location of cat in the 
lower right corner of the image (see Fig. la.) In Fig. 5b, 
the second mask of Fig. 2 (containing a left-half occlu- 
sion) was used to compute the correlations, and again 
the cat is correctly located, except that the peak is 

3Note that the coarse-resolution versions of the A4 templates 
and their N guessed masks (e.g., Fig. 4), are generated off-line. 

Figure 9. History of cat backtracking. 

sharper and higher than in Fig. 5a. This is to be ex- 
pected since the left portion of cat is occluded in the 
scene, so the second mask should yield a better cat de- 
tector than the first mask. Fig. 5c shows that the ninth 
mask of Fig. 2 (which incorrectly guesses the top half 
of cat to be occluded) results in an incorrect point of 
maximum correlation. Finally, Fig. 5d shows the sharp 
peak that results from the thirteenth guessed mask (not 
shown) associated with juice. This guess corresponds 
to an occluded bottom-right corner of juice, which 
happens to be true for this scene, so juice is correctly 
located in the center of the scene. These plots show 
that when the guessed masks are “correct” (i.e., simi- 
lar to the occlusion situation in the scene), the resulting 
correlations become reliable indicators of object loca- 
tion. Note that incorrect local maxima may still exist 
and be incorrectly interpreted as likely object locations, 
hence the need for verification and backtracking. 

After the MN coarse searches, verification is per- 
formed. For each object, a location hypothesis is se- 
lected that minimizes Ch(i, j, Th,k) over all scene lo- 
cations (i, j), and all guessed masks Th,k. These M 
hypotheses provide the starting point for the coarse- 
to-fine search discussed in Sec. 3.1. Fig. 6 shows the 
adaptive masks associated with these hypotheses as the 
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search progresses to full resolution. 
Five of the six initial coarse-level object hypotheses 

were approximately correct; however, the location of 
stapler3 (displayed as white in Fig. 6) was grossly in 
error. Consequently, at the first stage of verification, 
Ch(i, j, Th, Ic) for h = stapler3 exceeded a threshold. 
The search backtracked, and the incorrect hypothesis 
was replaced with the second-best (and correct) can- 
didate. As verification proceeds through finer resolu- 
tions, residual ambiguities in object location and scale 
are resolved via the perturbation procedure, and the al- 
gorithm converges to the correct scene interpretation. 
Fig. 7a shows the adaptive masks at termination. Fig. 8 
shows the evolving configuration of the cat mask. 

4.2. Example II 

Fig. 7b shows the final result superimposed over the 
original scene. In this case, verification backtracked 
several times before converging to a correct interpre- 
tation. Fig. 9 shows the cat mask at each iteration 
to illustrate the backtracking sequence; a total of 10 
iterations were required prior to convergence. 

Following coarse search, the initial hypothesized lo- 
cations of stapler2, glue box, and juice are correct 
(within the spatial ambiguities inherent to coarse res- 
olution search.) However, both the first- and second- 
best cat hypotheses are incorrect: the cat is initially 
hypothesized in the upper right corner of the scene. 
This incorrect hypothesis survives until the finest res- 
olution level prior to rejection by the error threshold 
criterion. The search backtracks to the coarsest level, 
and the next (again incorrect) cat hypothesis survives 
to the second-finest resolution. Finally, the third (cor- 
rect) cat hypothesis results in a correct convergence. 
This example shows that the absence of medium and 
high spatial frequencies at the coarsest level can lead 
to mistakes, and hence the need for verification. 

5. Experimental Results 

To evaluate the robustness of the adaptive masks, 
two experiments were performed, both using the ob- 
jects displayed in Fig. lb Both the templates and test 
scenes were color images (displayed here in greyscale.) 

5.1. Experiment I 

The first experiment evaluated the robustness of 
the algorithm over a database of 50 occluded scenes. 
The scenes were generated by arranging the target ob- 
jects in random occluded configurations against ran- 

Table 1. Robustness results for 50 scenes. 

Figure 10. Test scenes. (a) and (b) Extremes 
of scale. (c) and (d) Extremes of 3-D rotation. 
(e) and (f) Extremes of illumination (for which 
successful scene interpretation was obtained.) 

dom cluttered backgrounds. The average number of 
target objects present per scene was 3.2. 

We ran the scene interpretation algorithm on each 
test scene. The results are summarized in Table 1. A 
total of 159 objects appeared in the 50 scenes; the al- 
gorithm correctly identified and located 142 of them, 
or 89%. In 6 cases (4%), the algorithm converged to an 
incorrect object hypothesis; in an additional 11 cases 
(7%), the algorithm rejected all object hypotheses al- 
though the object was actually in the scene. 

5.2. Experiment II 

In the second experiment, we explicitly investigated 
the robustness of the algorithm to variations in scale, 
3-D object rotation, and global scene illumination. 

In the first part of the experiment, a simple occluded 
scene was generated and tested 21 times. In each test, 
the scene was moved further from the camera to in- 
vestigate performance subject to scale changes only. 
Figs. 10a and lob show the two extremes of scale. In 
each of the 21 tests, the algorithm correctly determined 
the presence, location, and scale of cat and glue box. 

Recall the simplifying restriction imposed in Sec. 2, 
in which we limit object appearance to a single view 
direction. In the second portion of the experiment, we 
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investigated the robustness of the adaptive masks to 
deviations from this restriction. The same simple con- 
figuration was used to generate 10 scenes in which the 
rotation of cat varied from -25” to +20° (with respect 
to cat’s template image.) Figs. 1Oc and 10d show the 
two extremes of rotation. The algorithm succeeded 7 
times, and failed 3 times, with the failures occuring at 
angles of -25”, -15”, and +20”. 

In the third portion of the experiment, tolerance 
to illumination variation was investigated. Fifteen 
scenes were generated in which illumination was varied 
by adjusting the position and intensity of spotlights. 
Figs. 10e and 10f show two such scenes. 

In five of the scenes, both cat and glue box failed 
to be identified. In the remaining ten scenes, including 
the two scenes in Fig. 10e and Fig. lOf, recognition was 
successful. It is difficult to show quantitative results for 
illumination tolerance; all that can be reported is that 
the algorithm succeeded in the presence of moderate 
illumination variations, such as those in Fig. 10, but 
failed when these variations became more pronounced. 

6. Discussion 

The main contribution of this work is the introduc- 
tion and investigation of coarse-to-fine adaptive masks 
to address the degradation of appearance matching in 
the presence of occlusions. Hypothesized occlusions be- 
tween multiple objects are used to perform run-time 
modification of the masks and their associated scene- 
to-template similarity metrics. The greatest strength, 
shared by all appearance matching approaches, is that 
performance is independent of object complexity. 

The appearance matching core of the approach also 
yields a good degree of robustness to image noise and 
to reasonable amounts of variation in illumination, ro- 
tation, and scale; e.g., corruption of a few scene pix- 
els will have only a minor effect on performance, un- 
like most geometric methods. The use of 2-D ap- 
pearance templates as an object representation also 
allows model databases to be acquired via a “teach- 
by-showing” methodology. 

Recall that in this work, the image spotting problem 
was restricted to a single view direction for each target 
object in order to study the occlusion issue in isolation. 
The next step will be to apply adaptive masks to the 
previous image spotting work of [6], in which objects 
may be viewed from a range of directions. 

Another area of future research will be the develop- 
ment of a more sophisticated method of initial mask se- 
lection. Ideally, one would generate a stochastic occlu- 
sion model (using many thousands of simulated scene 
configurations) for a particular collection of objects. 

Given such a model, an optimal (in some sense) set of 
initial masks could be generated. 

We are also interested in improving upon L2 cor- 
relation, which is by no means the optimal measure 
of similarity between two images. Recently proposed 
alternatives to L2 correlation appear to improve per- 
formance for some classes of image [4]. 
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