
A Bootstrapping Algorithm for Learning Linear Models of Object
Classes

Thomas Vetter, Michael J. Jones* and Tomaso Poggio*

Max-Plack-Institut fiir biologische Kybernetik 72076 Tiibingen, Germany
*Center for Biological and Computational Learning

Massachusetts Institute of Technology, Cambridge, MA 02139
vetter@mpik-tueb.mpg.de mjones@ai.mit.edu tp@ai.mit.edu

Abstract
Flexible models of object classes, based on linear

combinations of prototypical images, are capable of
matching novel images of the same class and have been
shown to be a pou*erful tool to solve several fundamen-
tal vision tasks such as recognition, synthesis and cor-
respondence. The key problem in creating a specific
flexible model is the comp&ation of pixelwise corre-
spondence betlueen the prototypes! a task done until
now in a semiautomatic way. In this paper we de-
scribe an algorothm that automatically bootstraps the
correspondence between the prototypes. The algorithm
- which can be used for 20 images as well as for 30
models - is shown to synthesize successfully a flexible
model of frontal face images and a flexible model of
handwritten digits.

1 Introduction
In recent papers we have introduced a new type of

flexible model for images of objects of a certain class.
The idea is to represent images of a certain type - for
inst,ance images of frontal faces - as the linear combi-
nation of prototype images and their affine deforma-
tions. This flexible model can be used as a generative
model to synthesize novel images of the same class. It
can also be used to analyze novel images by estimating
the model parameters via an optimization procedure.
Once estimated the model can be used for indexing,
for recognition, for image compression and for image
correspondence.

At the very heart of our flexible models is an image
representation in terms of which a linear combination
of images makes sense. For a set of images to behave
as vectors, they must be in pixelwise correspondence
(see [3]). Our model uses pixelwise correspondence
bet,ween example images and should not be confused
with techniques which use linear combinations of im-
ages such as the so-called eigenfaces technique ([111).

‘This research is sponsored by grants from ARPA-ONR un-
der contract No001492-J-1879 and from ONR under contract
N00014-93-1-0385 and by a grant from the National Science
Foundation under contract ASC-9217041 (this award includes
funds from ARPA provided under the HPCC program) and by
a MURI grant N00014-95-1-0600.

In our approach, the correspondences between a refer-
ence image and the other example images are obtained
in a preprocessing phase. Once the correspondences
are computed, an image is represented as a shape vec-
tor and a texture vector. The shape vector specifies
how the 2D shape of the example differs from a refer-
ence image and corresponds to the Ilow field between
the two images. Analogously, the texture vector spec-
ifies how the texture differs from the reference texture.
Here we are using the term “texture” to mean simply
the pixel intensities (grey level or color values) of the
image. Our flexible model for an object class is then a
linear combination of the example shape and texture
vectors.

1.1 A key problem: creating the model
from prototypes

The distinguishing aspect of our linear flexible mod-
els is that they are linear combinations of prototype
shape and texture vectors and not of images [3]. The
prototypical images must be vectorized first, t,hat is
correspondence must be computed among them.

This is a key step and in general a difficult one.
It needs to be done only once at the stage of devel-
oping the model. At run-time no further correspon-
dence is needed - and in fact the model can be used to
compute correspondence if necessary. In our past pa-
pers we computed correspondence between the proto-
types with automatic techniques such as optical flow.
Sometimes, however, we were forced to use interactive
techniques requiring the user to specify at least some
of the correspondences (see [13]). In this paper we
describe an automatic bootstrapping technique that
seems capable of computing correspondence between
prototypical images in cases in which standard optical
flow algorithms fail.

1.2 Past work
The “linear class” idea of [14] and 161 to

the image representation used by [2 f k
ether with

(see 31 for a re-
view) is the main motivation behind the work of this
and previous papers. Poggio and Vetter introduced
the idea of linear combinations of views to define and
model classes of objects, trying to extend the results
of [15] who showed that linear combinations of three

1063.6919/97 $10.00 0 1997 IEEE 40

views of a single object may be used to obtain any
other views of the object. Poggio and Vetter defined a
linear object class as a set of 2D views of different ob-
jects. They used the model mainly for synthesis tasks.
In particular, for linear object classes, affine transfor-
mations can be learned exactly from a small set of ex-
amples and used to generate new, virtual views. For
instance, new views of a specific iface with a different
pose or expression can be estimated and synthesized
from a single view. In a very similar way, 3D structure
can be estimated from a single image if the image and
the structure of a sufficient number of prototypical ob-
jects of the same class are available.

The problem of using the flexible model to an~(-
Zyze novel images was the main concern of Jones and
Poggio ([9, lo]). They introduced a novel approach
to match flexible linear models to novel images that
can be used for several visual analysis tasks, includ-
ing recognition, image correspondence and image com-
pression.

Recently we have become aware of several papers
dealing with various forms of the idea of linear com-
bination of prototypical images. Choi et. al. (1991)
were perhaps the first to suggest a model which rep-
resented face images with separate shape and texture
components, using a 3D model tot provide correspon-
dences between example face images. The work of
Taylor and coworkers et. al. ([6, 7, 8, 121) on active
shape models is probably the closest to ours. Many
other flexible models have been proposed, such as the
model of Blake and Issard [4].

2 Linear lnodels
In this section we formally specify the linear object,

class model and describe the matching algorithm used
to analyze a novel image in terms of a flexible model.

2.1 Formal specification
To write the linear object class model mathemat-

ically, we must first introduce some notation, which
we summarize from [lo]. ,4n ima.ge I is viewed as a
mapping

I:R2+Z

such that T(z,y) is the intensity value of point (2, y)
in the image. Here we are only considering grey level
images. To define a model, a set of example images
called prototypes are given. We denote these proto-
types as Ie,Ii,..., Ibr. Let Is be the reference image.
The pixelwise correspondences between 1s and each
example image are denoted by a mapping

5-j :R” +x2

which maps the points of 10 onto Ij, i.e. Sj (2, y) =
(i, 6) where (?,G) is th e point in Ij which corresponds
to x, y) in IO. We refer to Sj as a correspondence
jiel 6 and interchangeably as the shupe vector for the
vectorized Ij. We define Ij o Sj(x,y) = Ij(Sj(x,y)).
We also define

Tj(x,y) = lj osj(kr,y). (1)

Tj is the warping of image Ij onto the reference image
lo. So, {Tj} is the set of shape-free prototype images,
that is the texture vectors. They are shape free in the
sense that their shape is the same as the shape of the
reference image.

Using this notation, we are now ready to specify the
model. We define the flexible model as the set of im-
ages Imode’,
[CO,Cl,~‘.,

parameterized by b = [be, bi, . . . , by], c =
CN] such that

N N

I mode1 0 (C CiSi) = C bjTj. (2)
i=o j=O

The summation CL, caSi constrains the shape of ev-
ery model image to be a linear combination of the pro-
totype shapes. Similarly, the summation CT=, bjTj
constrains the texture of every model image to be a
linear combination of the prototype textures. Note
that the coefficients for the shape and texture parts
of the model are independent. This adds greater ex-
pressiveness to the model as it allows the shape of
one prototype to be used along with the texture of
another, for example.

To increase the flexibility of the model to handle
translations! rotations, scaling and shearing, we add
an affine transformation. The equation for the model
images can now be written

N

Imode o (A o c ciSi) = -& bjTj (3)
i=o JZO

where A : 72” -+ R’ is an affine transforma-
tion parametrized by p. Furthermore, we constrain
Cy!, ci = 1 in order to avoid redundancy in the pa-
rameters since the affine parameters allow for changes
in scale. In the case of texture, t,he bj’s are not con-
strained to sum to 1.

Given values for c, b and p, the model image can
be rendered by computing (2, 6) = iz o C,“=, ciSi (x, y)
and g = Cy=, bjTj(x, y) for each (2, y) in the reference
image. Then the (2, $) pixel is rendered by assigning
Imode’ (&, 9) = g, that is by warping the texture into
the model shape.
2.2 Analysis by model matching

In the framework of this model, we can associate
to each image in a class a shape vector and a texture
vector. We refer to the process of analyzing an image
in terms of its shape and texture vector as vectoriting
an image.

A novel image of an object in a particular class is
vectorized by matching a model of that class to the
novel image. Matching means finding the best coeffi-
cients of the model so that the rendered model image
most closely resembles the novel image. The general
strategy for matching is to define an error function
between the novel image and the current guess for the
closest model image. This error is then minimized
with respect to the model parameters (ci, bi, and pi)

41

by using a stochastic gradient descent algorithm. Fol-
lowing this strategy, we define the sum of squared dif-
ferences error

E(c,b,p) = ;c [T"oueL(~,y) - Imode'(~,# (4)
Z>Y

where the sum is over all pixels (2, y) in the images,
lnove’ is the novel grey level image being matched and
Imode’ is the current guess for the model grey level im-
age. From equation 3 we see that in order to compute
Imode’ we either have to invert the shape transforma-
tion (A o C ciSi) or work in the coordinate system of
the reference ima,ge. It is computationally more effi-
cient to work in the coordinate system of the reference
image. To do this we simply apply the shape trans-
formation (given some estimated values for c and p)
to both Inovel and Imode’. From equation 3, and with
the notation

S= (lO~CiS~). (5)
i=o

we obtain the following error function (if we chose the
L2 norm)

E(c,b,p) = ; ~[Powri os(c,i/)-~bjT~(~,y)12
Z,Y j=o

(6)
Minimizing the error yields the model image which

best fits the novel image with respect to the L? norm.
So far we have used the La norm for convenience but
other norms may be more appropriate (e.g. robust
statistics).

In order to minimize the error function any min-
imization algorithm could be used. We have chosen
to use the stochastic gradient descent algorithm [17]
because it is fast, and can escape from local minima.
2.3 Optical Flow

For some prototypes, the pixelwise correspondences
from the reference image to the prototype can be
found accurately by an optical flow algorithm. We
have mostly used the multiresolution, laplacian-based,
optical flow algorithm described in [I].

3 Bootstrapping the synthesis of a
flexible model

Suppose that we have a flexible model consisting
of N protoypes in correspondence. It is tempting to
try to use it to compute the correspondence to a novel
image of an object of the same class so that it can be
added to the set of prototypes. The obvious flaw in
this strategy is that if the flexible model can compute
good correspondence to the new image then there is
no need to add it to the flexible model since it will
not increase its expressive power. If it can’t, then
the new prototype cannot be incorporated as such. A
possible way out of this conundrum is to bootstrap
the flexible model by using it together with an optical
flow algorithm.

cl 3

.*
, ’ I 1

I
/ ’ ‘\

/ I \

cl 1-2 -- 1 q
Figure 1: Given the flexible model provided by the
combination of image 1 and image 2 (in correspon-
dence), the goal is to find the correspondence between
image 1 (or image 2) and the novel image 3. Our so-
lution is to first find the linear combination of image
1 and image 2 that is closest to image 3 (this is image
1’) and then find the correspondences from image 1’
to image 3 using optical flow. The two flow fields can
then be composed to yield the desired flow from image
1 to image 3.

3.1 The basic recursive step: improving
the flexible model with optical flow

Suppose that an existing flexible model is not pow-
erful enough to match a new image and thereby find
correspondence with it. The idea is first to find rough
correspondences to the novel image using the (inade-
quate) flexible model object class and then to improve
these correspondences by using an optical flow algo-
rithm. This idea is illustrated in figure 1. In the fig-
ure, a model consisting of (vectorized) image 1 and
image 2 (and the pixelwise correspondences bet,ween
them) is first fit to image 3. Call the best fitting linear
combination of images 1 and 2 image 1’. The corre-
spondences are then improved by running an optical
flow algorithm between the intermediate image 1’ and
image 3. Notice that this technique can be regarded
as a class specific regularization of optical flow, which
constrains appropriately the correspondence.

3.1.1 Example

An example of our basic step is shown in figure 2. In
this figure, an optical flow algorithm is used to find the
correspondences from image (a) to image (b) The re-
sulting correspondences are not very good as shown
by image (c) which is the backward warp of image
(b) according to the correspondences found by optical
flow. Image (c) should have the texture of image (b)
and the shape of image (a). A better way to find the
correspondences to image (b) is to first fit a model of
faces to image (b), by using as a model a 20 proto-
type face images (with known correspondences). The
model was matched to image (b) as described in sec-
tion 2.2. The resulting best match is shown as image
(d). Next, optical flow was run between image (d)
and image (b) to further improve the correspondences
found by the matching algorithm. The two correspon-

42

a b

d e

Figure 2: This figure shows the basic idea behind boot-
strapping. Image (a) is the reference face. Image (b)
is a prototype. Image (c) is the image resulting from
backward warping the prototype onto the reference
face using the correspondences found by an optical
flow algorithm. Image (d) is the model image which
best matches the prototype using a model consisting
of 20 prototypical faces (which did1 not include image
(b)). Image (e) is th e image resulting from backward
warping the prototype onto the reference face using
the flow field which was composed from matching the
face model and then running an optical flow algorithm
between image (d) and image (b) to further improve
the correspondences.

dence fields were combined to get the correspondences
from image (a) to ima e (b). Ima,ge (e) is the back-
ward warp of image (b according to the final cdrre- 7
spondence. A comparison of image (c) with image (e)
shows that better correspondences; are found by our
basic recursive step relative to just using optical flow.

3.2 A bootstrapping algorithm for creat-
ing a flexible model

The idea of bootstrapping is to start from a small
flexible model consisting of just 2 prototypical images
and to increase its size (and representation power) by
iterating the recursive step described above, progres-
sively adding new images by setting them in corre-
spondence with the model.

There are two main problems with building a linear
flexible model. The first one is to clhoose the reference
image, relative to which shape and texture vectors are
represented. The second is to automatically compute
the correspondences even in cases in which optical flow
fails.

In principle, any example image could be used as
the reference image. However, the average image of
the whole data set, for which the average distance to
the whole data set is by definition at minimum, is the
optimal reference image. Since thie correspondences
between the images cannot be computed correctly in

one step, the average has to be computed in an it-
erative procedure. Starting from an arbitrary image
as the preliminary reference, a (noisy) correspondence
between all other images and this reference is first
computed using an optical flow algorithm. On the
basis of these correspondences an average image can
be computed, which now serves as a new reference im-
age. This procedure of computing the correspondences
and calculating a new average image is repeated until
a stable average (vectorized) image is obtained.

The correspondence fields obtained through the op-
tical flow algorithm from this final average image to
all the examples are usually far from perfect. The
bootstrapping idea is to improve the correspondences
by applying iteratively the basic step described above
while also increasing the expressive power of the flex-
ible model. We could incorporate into the flexible
model one new image at each timestep. Instead, we
have implemented an equivalent algorithm in which
the first step is to form a linear object model from the
correspondences obtained from all images with opti-
cal flow. Since some of these correspondence fields are
not correct and all are noisy, this algorithm uses only
the most significant fields as provided by a standard
PCA decomposition of the shape and the texture vec-
tors. Instead of adding new images, the algorithm in-
creases with successive iterations the number of prin-
cipal components, ordered according to the associated
eigenvalues (the allowed range of parameters of the se-
lected principal components can also be increased with
a similar effect). .4t each iteration a flexible model is
selected and used to match each image. The optical
flow algorithm estimates correspondence between the
image and the approximation provided by the flexible
model. This field is then added to the correspondence
field implied by the matched model, giving a new cor-
respondence field between the reference image and the
example. The correspondence fields, obtained by this
procedure, will finally lead to a new average image
and also to new principal components which can be
incorporated in an improved flexible model. Iterating
this procedure with increasing expressive power of the
model (by increasing the number of principal compo-
nents) leads to stable correspondence fields between
the reference image and the examples. The number of
iterations as well as the increasing complexity of the
model can be regarded as regularization parameters of
this bootstrapping process.

3.2.1 Pseudo code of an efficient algorithm

IA: Selecting a reference image.

Select an arbitrary image li as reference image I,,,.
Until convergence do {

For all 1i {
Compute correspondence field Si between
I Tef and Ii using optical flow.
Backwards warp 1i onto I,.,, using 5’;
to get the texture map Ti.

end For}
Compute average over all Si and Ti
Forward warp Taverage using Saverage

43

INPUT r IMAGES
REFERENCE

FACE
OPTICAL 1st

FLOW ITERATION

Figure 3: Two of the most difficult faces in our data set. The correspondence between face images (left column) and
a reference face can be visualized by backward warping of the face images onto the reference image (three columns
on the right). The correspondence obtained through the optical flow algorithm does not allow a correct mapping
(center column). The first iteration with a linear flexible model consisting of two principal components already
yields a significant, improvement (top row). After four iterations with 10, 30 and 80 components, respectively, all
correspondences were correct (right column)

to create IaveraSe
Convergence test: 1s Iaaverage - Iyef < limit ?
COPY Lm-age to Iref;

end Until }

1 B : Computing the correspondence.

Until number n of principal components used in the
linear model is maximal {

Perform a principal component analysis on S;
and separately on Ti:.

Select the first n principal components for the
linear model.

Approximate each Ii by the linear model
with IFode

Compute’correspondence field Si between
Imode and Ii using optical flow

Combine Si and S~~odel to Srew
Ba$yr~;~a;~xk;~~gi .using SY”

Copy all Sreu’ to Si.
Increase number n of principal components used

in the linear model.
end Until }

4 Results
The method described in the previous sections was

tested on two different classes of images. One class
was frontal views of human faces and the second was
handwritten digits.

4.1 Face images
4.1.1 Data set

I30 frontal images of Caucasian faces were used in our
experiments. The images were originally rendered for
psychophysical experiments under ambient illumina-
tion conditions from a data base of three-dimensional
human head models recorded with a laser scanner
(Cyb erulareTM). All faces were without makeup, ac-
cessories, and facial hair. Additionally; the head hair
was removed digitally (but with manual editing), via
a vertical cut behind the ears. The resolution of the
grey-level images was -256-by-256pixels and 8 bit.

Preprocessing: First the faces were segmented from
the background and aligned roughly by automatically
adjusting them to their two-dimensional centroid.

4.1.2 Evaluation

The method described in the previous sections was
successfully applied to all face images available.

The step involving synthesis of the reference (av-
erage) image was tested for each image as a starting
image in the algorithm. As a convergence criteria we
used a theshold on the minimum average change of the
pixel gray value (0.3, whereas the range was 256). The
threshold was reached in every case within 5 iterations
and mostly after 3. The final reference images could
not be distinguished under visual inspection. One of
these reference images is shown in the second column
of figure 3; the same reference image was used for the
final correspondence finding procedure.

44

Figure 4: For each of the 10 digits the figure shows the
first five shape eigenvectors (left to right) of the model
(obtained from 250 prototypical digits). Each column
display how each shape eigenvector changes relative
to the average digit (in dashed box). The range of
the coefficient ranges from $5 (top) to -5 standard
deviations (bottom) of each eigenvector.

Optical flow yields the correct correspondence be-
tween the reference image and each example image
only in 80% of all cases. In the remaining cases the cor-
respondence is partly incorrect, as shown in figure 3.
The center column shows the images which result from
backward warping the face images (left column) onto
the reference image using the correspondence fields
obtained through the optical flow algorithm. In the
first iteration of the correspondence finding procedure
the first 2 principal components of the shape vectors
(that is of the correspondence fields) and of the tex-
tures vectors are used in the flexible model. Then the
correspondence field provided by matching with the
flexible model is combined with the correspondence
field obtained by the optical flow algorithm between
the face image and its flexible model approximation.
The backward warps using this correspondence fields
are shown in the fourth column. The correspondence
fields were iterated by slowly increasing the number of
principal components used in the flexible model. After
four iterations with 2, 10, 30 and 80 principal compo-
nents, the correspondence fields between the reference
face and all example images did not reveal any obvious
errors (right column).

4.2 Digits
4.2.1 Data set and Preprocessing

The images used in these experiments were from the
US postal service database (262 per each of the 10 dig-
its). The original resolution of 16-by-16 pixels was in-
creased to 32-by-32 pixels and the images were blurred
with a Gaussian 5-by-5 kernel.

4.2.2 Evaluation

The bootstrapping algorithm was used for all 10 digits
without modification. For each digit we obtained a lin-
ear model from the first 250 digits in the dataset. The
reference image (average shape) is shown in the dashed
boxes in figure 4. After computing the reference im-
age and the initial correspondence fields with optical
flow new correspondence fields were obtained using 4
iterations of the bootstrapping algorithm. During the
4 iterations the number of principal components used
in the algorithm was increased from 2 to 10, 30 and
80, respectively. Figure 4 shows the first 5 principal
shape components of the final linear model.

The models obtained by the bootstrapping algo-
rithm were used to match new digits which where not
part of the training set. In figure 5 ten new images of
the digit 3 are approximated with three different mod-
els of digits. Clearly the “3” model approximates well
each of the new “3”, whereas the “5” and the “2” mod-
els provide very poor approximations. These results
suggest that the digit models obtained with bootstrap-
ping could be used successfully for recognition as well
as for image compression.

5 Conclusions
The bootstrapping algorithm we described is not a

full answer to the problem of computing correspon-

45

Figure 5: 10 examples of the digit 3 are approximated
by 3 different, linear models: in A a model for “3”,
in B for “2’s” and in C for ‘L5’s”. In ea.ch case the
top row shows the target “3’s”, the center row shows
the optimal a.pproximation by the model and the third
row shows the difference between the top and center
row. Each model, obtained automatically by the boot-
strapping procedure from 250 prototypes, consisted of
the first 20 shape principal components and the first
texture component.

dence between prototypes. It provides however an ini-
tial and promising solution to the very difficult prob-
lem of automatic svnthesis of the flexible models from
a set of prototypical examples. Notice that we have
used multiresolution optical flow as one part of our
boot,strapping algorithm. In principle other match-
ing techniques could be used within our bootstrapping
scheme.

References
[l] J.R. Bergen and R. Hingorani. Hierarchical

motion-based frame rate conversion. Technical re-
port, David Sarnoff Research Center, April 1990.

[a] D. Beymer, A. Shashua, and T. Poggio. Example
based image analysis and synthesis. AI. Memo
1431, MIT, 1993.

[3] David Beymer and Tomaso Poggio. Image repre-
sentations for visual learning. Science, 272:1905-
1909, June 1996.

[4] Andrew Blake and Michael Isard. 3d position,
attitude and shape input using video tracking of
hands and lips. Computer Graphics Proceedings,
pages 185-192, 1994.

[5] Chang Seok Choi, Toru Okazaki, Hiroshi Ha-
rashima, and Tsuyoshi Takebe. A system of an-

alyzing and synthesizing facial ima.ges. IEEE,
1991.

[6] T.F. Cootes and C.J. Taylor. Active shape models
- ‘smart snakes’. British Machine Vision Confer-
ence, pages 266-275, 1992.

[7] T.F. Cootes, C.J. Taylor, and A. Lanitis. Multi-
resolution search with active shape models. In-
ternational Conference on Pattern Recognitfon.
pages 610-612, 1994.

[a] A. Hill, T.F. Cootes, and C.J. Taylor. A generic
system for image int,erpretation using flexible
templates. Brit,ish Machine Vision Conference,
pages 2766285, 1992.

[9] Michael Jones and Tomaso Poggio. Model-based
matching of line drawings by linear combinations
of prototypes. In Proceedings of the Fifth Inter-
national Conference on Computer Vision, pages
531-536, 1995.

[lo] Michael Jones and Tomaso Poggio. Model-based
matching by linear combinations af prototypes.
A.I. Memo 1583, MIT, 1996.

[ll] M. Kirby and L. Sirovich. The application of the
karhunen-loeve procedure for the characterization
of human faces. IEEE Transactzons of Pattern
Analysis and Machine Lntelligence, 12(1):103-
108, January 1990.

[la] A. Lanitis, C.J. Taylor, and T.F. Cootes. A uni-
fied approach to coding and interpreting face im-
ages. In ICCV, pages 368-373, Cambridge, MA,
June 1995.

[13] Steve Lines. The photorealistic synthesis of novel
views from example images. Master’s thesis.
MIT, 1996.

[14] Tomaso Poggio Andy Thomas Vetter. Recognition
and structure from one 2d model view: Observa-
tions on prototypes, object classes and symme-
tries. A.I. Memo 1347, MIT, 1992.

[15] S. Ullman and R. Basri. Recognition by lin-
ear combinations of models. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
13:992-1006, 1991.

[16] T. Vetter and T. Poggio. Image synthesis from a
single example image. In B. Buxton and R. Cip-
pola, editors, Computer Vision - ECCV’96,
Cambridge UK, 1996. Springer, Lecture Notes in
Computer Science 1065.

[17] Paul Viola. Alignment by maximization of mu-
tual information. MIT A.I. Technical Report
1548, MIT, 1995.

46

