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Abstract 
Flexible models of object classes, based on linear 

combinations of prototypical images, are capable of 
matching novel images of the same class and have been 
shown to be a pou*erful tool to solve several fundamen- 
tal vision tasks such as recognition, synthesis and cor- 
respondence. The key problem in creating a specific 
flexible model is the comp&ation of pixelwise corre- 
spondence betlueen the prototypes! a task done until 
now in a semiautomatic way. In this paper we de- 
scribe an algorothm that automatically bootstraps the 
correspondence between the prototypes. The algorithm 
- which can be used for 20 images as well as for 30 
models - is shown to synthesize successfully a flexible 
model of frontal face images and a flexible model of 
handwritten digits. 

1 Introduction 
In recent papers we have introduced a new type of 

flexible model for images of objects of a certain class. 
The idea is to represent images of a certain type - for 
inst,ance images of frontal faces - as the linear combi- 
nation of prototype images and their affine deforma- 
tions. This flexible model can be used as a generative 
model to synthesize novel images of the same class. It 
can also be used to analyze novel images by estimating 
the model parameters via an optimization procedure. 
Once estimated the model can be used for indexing, 
for recognition, for image compression and for image 
correspondence. 

At the very heart of our flexible models is an image 
representation in terms of which a linear combination 
of images makes sense. For a set of images to behave 
as vectors, they must be in pixelwise correspondence 
(see [3]). Our model uses pixelwise correspondence 
bet,ween example images and should not be confused 
with techniques which use linear combinations of im- 
ages such as the so-called eigenfaces technique ([ 111). 
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In our approach, the correspondences between a refer- 
ence image and the other example images are obtained 
in a preprocessing phase. Once the correspondences 
are computed, an image is represented as a shape vec- 
tor and a texture vector. The shape vector specifies 
how the 2D shape of the example differs from a refer- 
ence image and corresponds to the Ilow field between 
the two images. Analogously, the texture vector spec- 
ifies how the texture differs from the reference texture. 
Here we are using the term “texture” to mean simply 
the pixel intensities (grey level or color values) of the 
image. Our flexible model for an object class is then a 
linear combination of the example shape and texture 
vectors. 

1.1 A key problem: creating the model 
from prototypes 

The distinguishing aspect of our linear flexible mod- 
els is that they are linear combinations of prototype 
shape and texture vectors and not of images [3]. The 
prototypical images must be vectorized first, t,hat is 
correspondence must be computed among them. 

This is a key step and in general a difficult one. 
It needs to be done only once at the stage of devel- 
oping the model. At run-time no further correspon- 
dence is needed - and in fact the model can be used to 
compute correspondence if necessary. In our past pa- 
pers we computed correspondence between the proto- 
types with automatic techniques such as optical flow. 
Sometimes, however, we were forced to use interactive 
techniques requiring the user to specify at least some 
of the correspondences (see [13]). In this paper we 
describe an automatic bootstrapping technique that 
seems capable of computing correspondence between 
prototypical images in cases in which standard optical 
flow algorithms fail. 

1.2 Past work 
The “linear class” idea of [14] and 161 to 

the image representation used by [2 f k 
ether with 

(see 31 for a re- 
view) is the main motivation behind the work of this 
and previous papers. Poggio and Vetter introduced 
the idea of linear combinations of views to define and 
model classes of objects, trying to extend the results 
of [15] who showed that linear combinations of three 
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views of a single object may be used to obtain any 
other views of the object. Poggio and Vetter defined a 
linear object class as a set of 2D views of different ob- 
jects. They used the model mainly for synthesis tasks. 
In particular, for linear object classes, affine transfor- 
mations can be learned exactly from a small set of ex- 
amples and used to generate new, virtual views. For 
instance, new views of a specific iface with a different 
pose or expression can be estimated and synthesized 
from a single view. In a very similar way, 3D structure 
can be estimated from a single image if the image and 
the structure of a sufficient number of prototypical ob- 
jects of the same class are available. 

The problem of using the flexible model to an~(- 
Zyze novel images was the main concern of Jones and 
Poggio ([9, lo]). They introduced a novel approach 
to match flexible linear models to novel images that 
can be used for several visual analysis tasks, includ- 
ing recognition, image correspondence and image com- 
pression. 

Recently we have become aware of several papers 
dealing with various forms of the idea of linear com- 
bination of prototypical images. Choi et. al. (1991) 
were perhaps the first to suggest a model which rep- 
resented face images with separate shape and texture 
components, using a 3D model tot provide correspon- 
dences between example face images. The work of 
Taylor and coworkers et. al. ([6, 7, 8, 121) on active 
shape models is probably the closest to ours. Many 
other flexible models have been proposed, such as the 
model of Blake and Issard [4]. 

2 Linear lnodels 
In this section we formally specify the linear object, 

class model and describe the matching algorithm used 
to analyze a novel image in terms of a flexible model. 

2.1 Formal specification 
To write the linear object class model mathemat- 

ically, we must first introduce some notation, which 
we summarize from [lo]. ,4n ima.ge I is viewed as a 
mapping 

I:R2+Z 

such that T(z,y) is the intensity value of point (2, y) 
in the image. Here we are only considering grey level 
images. To define a model, a set of example images 
called prototypes are given. We denote these proto- 
types as Ie,Ii,..., Ibr. Let Is be the reference image. 
The pixelwise correspondences between 1s and each 
example image are denoted by a mapping 

5-j :R” +x2 

which maps the points of 10 onto Ij, i.e. Sj (2, y) = 
(i, 6) where (?,G) is th e point in Ij which corresponds 
to x, y) in IO. We refer to Sj as a correspondence 
jiel 6 and interchangeably as the shupe vector for the 
vectorized Ij. We define Ij o Sj(x,y) = Ij(Sj(x,y)). 
We also define 

Tj(x,y) = lj osj(kr,y). (1) 

Tj is the warping of image Ij onto the reference image 
lo. So, {Tj} is the set of shape-free prototype images, 
that is the texture vectors. They are shape free in the 
sense that their shape is the same as the shape of the 
reference image. 

Using this notation, we are now ready to specify the 
model. We define the flexible model as the set of im- 
ages Imode’, 
[CO,Cl,~‘., 

parameterized by b = [be, bi, . . . , by], c = 
CN] such that 

N N 

I mode1 0 (C CiSi) = C bjTj. (2) 
i=o j=O 

The summation CL, caSi constrains the shape of ev- 
ery model image to be a linear combination of the pro- 
totype shapes. Similarly, the summation CT=, bjTj 
constrains the texture of every model image to be a 
linear combination of the prototype textures. Note 
that the coefficients for the shape and texture parts 
of the model are independent. This adds greater ex- 
pressiveness to the model as it allows the shape of 
one prototype to be used along with the texture of 
another, for example. 

To increase the flexibility of the model to handle 
translations! rotations, scaling and shearing, we add 
an affine transformation. The equation for the model 
images can now be written 

N 

Imode o (A o c ciSi) = -& bjTj (3) 
i=o JZO 

where A : 72” -+ R’ is an affine transforma- 
tion parametrized by p. Furthermore, we constrain 
Cy!, ci = 1 in order to avoid redundancy in the pa- 
rameters since the affine parameters allow for changes 
in scale. In the case of texture, t,he bj’s are not con- 
strained to sum to 1. 

Given values for c, b and p, the model image can 
be rendered by computing (2, 6) = iz o C,“=, ciSi (x, y) 
and g = Cy=, bjTj(x, y) for each (2, y) in the reference 
image. Then the (2, $) pixel is rendered by assigning 
Imode’ (&, 9) = g, that is by warping the texture into 
the model shape. 
2.2 Analysis by model matching 

In the framework of this model, we can associate 
to each image in a class a shape vector and a texture 
vector. We refer to the process of analyzing an image 
in terms of its shape and texture vector as vectoriting 
an image. 

A novel image of an object in a particular class is 
vectorized by matching a model of that class to the 
novel image. Matching means finding the best coeffi- 
cients of the model so that the rendered model image 
most closely resembles the novel image. The general 
strategy for matching is to define an error function 
between the novel image and the current guess for the 
closest model image. This error is then minimized 
with respect to the model parameters (ci, bi, and pi) 
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by using a stochastic gradient descent algorithm. Fol- 
lowing this strategy, we define the sum of squared dif- 
ferences error 

E(c,b,p) = ;c [T"oueL(~,y) - Imode'(~,# (4) 
Z>Y 

where the sum is over all pixels (2, y) in the images, 
lnove’ is the novel grey level image being matched and 
Imode’ is the current guess for the model grey level im- 
age. From equation 3 we see that in order to compute 
Imode’ we either have to invert the shape transforma- 
tion (A o C ciSi) or work in the coordinate system of 
the reference ima,ge. It is computationally more effi- 
cient to work in the coordinate system of the reference 
image. To do this we simply apply the shape trans- 
formation (given some estimated values for c and p) 
to both Inovel and Imode’. From equation 3, and with 
the notation 

S= (lO~CiS~). (5) 
i=o 

we obtain the following error function (if we chose the 
L2 norm) 

E(c,b,p) = ; ~[Powri os(c,i/)-~bjT~(~,y)12 
Z,Y j=o 

(6) 
Minimizing the error yields the model image which 

best fits the novel image with respect to the L? norm. 
So far we have used the La norm for convenience but 
other norms may be more appropriate (e.g. robust 
statistics). 

In order to minimize the error function any min- 
imization algorithm could be used. We have chosen 
to use the stochastic gradient descent algorithm [17] 
because it is fast, and can escape from local minima. 
2.3 Optical Flow 

For some prototypes, the pixelwise correspondences 
from the reference image to the prototype can be 
found accurately by an optical flow algorithm. We 
have mostly used the multiresolution, laplacian-based, 
optical flow algorithm described in [I]. 

3 Bootstrapping the synthesis of a 
flexible model 

Suppose that we have a flexible model consisting 
of N protoypes in correspondence. It is tempting to 
try to use it to compute the correspondence to a novel 
image of an object of the same class so that it can be 
added to the set of prototypes. The obvious flaw in 
this strategy is that if the flexible model can compute 
good correspondence to the new image then there is 
no need to add it to the flexible model since it will 
not increase its expressive power. If it can’t, then 
the new prototype cannot be incorporated as such. A 
possible way out of this conundrum is to bootstrap 
the flexible model by using it together with an optical 
flow algorithm. 
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Figure 1: Given the flexible model provided by the 
combination of image 1 and image 2 (in correspon- 
dence), the goal is to find the correspondence between 
image 1 (or image 2) and the novel image 3. Our so- 
lution is to first find the linear combination of image 
1 and image 2 that is closest to image 3 (this is image 
1’) and then find the correspondences from image 1’ 
to image 3 using optical flow. The two flow fields can 
then be composed to yield the desired flow from image 
1 to image 3. 

3.1 The basic recursive step: improving 
the flexible model with optical flow 

Suppose that an existing flexible model is not pow- 
erful enough to match a new image and thereby find 
correspondence with it. The idea is first to find rough 
correspondences to the novel image using the (inade- 
quate) flexible model object class and then to improve 
these correspondences by using an optical flow algo- 
rithm. This idea is illustrated in figure 1. In the fig- 
ure, a model consisting of (vectorized) image 1 and 
image 2 (and the pixelwise correspondences bet,ween 
them) is first fit to image 3. Call the best fitting linear 
combination of images 1 and 2 image 1’. The corre- 
spondences are then improved by running an optical 
flow algorithm between the intermediate image 1’ and 
image 3. Notice that this technique can be regarded 
as a class specific regularization of optical flow, which 
constrains appropriately the correspondence. 

3.1.1 Example 

An example of our basic step is shown in figure 2. In 
this figure, an optical flow algorithm is used to find the 
correspondences from image (a) to image (b) The re- 
sulting correspondences are not very good as shown 
by image (c) which is the backward warp of image 
(b) according to the correspondences found by optical 
flow. Image (c) should have the texture of image (b) 
and the shape of image (a). A better way to find the 
correspondences to image (b) is to first fit a model of 
faces to image (b), by using as a model a 20 proto- 
type face images (with known correspondences). The 
model was matched to image (b) as described in sec- 
tion 2.2. The resulting best match is shown as image 
(d). Next, optical flow was run between image (d) 
and image (b) to further improve the correspondences 
found by the matching algorithm. The two correspon- 
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Figure 2: This figure shows the basic idea behind boot- 
strapping. Image (a) is the reference face. Image (b) 
is a prototype. Image (c) is the image resulting from 
backward warping the prototype onto the reference 
face using the correspondences found by an optical 
flow algorithm. Image (d) is the model image which 
best matches the prototype using a model consisting 
of 20 prototypical faces (which did1 not include image 
(b)). Image (e) is th e image resulting from backward 
warping the prototype onto the reference face using 
the flow field which was composed from matching the 
face model and then running an optical flow algorithm 
between image (d) and image (b) to further improve 
the correspondences. 

dence fields were combined to get the correspondences 
from image (a) to ima e (b). Ima,ge (e) is the back- 
ward warp of image (b according to the final cdrre- 7 
spondence. A comparison of image (c) with image (e) 
shows that better correspondences; are found by our 
basic recursive step relative to just using optical flow. 

3.2 A bootstrapping algorithm for creat- 
ing a flexible model 

The idea of bootstrapping is to start from a small 
flexible model consisting of just 2 prototypical images 
and to increase its size (and representation power) by 
iterating the recursive step described above, progres- 
sively adding new images by setting them in corre- 
spondence with the model. 

There are two main problems with building a linear 
flexible model. The first one is to clhoose the reference 
image, relative to which shape and texture vectors are 
represented. The second is to automatically compute 
the correspondences even in cases in which optical flow 
fails. 

In principle, any example image could be used as 
the reference image. However, the average image of 
the whole data set, for which the average distance to 
the whole data set is by definition at minimum, is the 
optimal reference image. Since thie correspondences 
between the images cannot be computed correctly in 

one step, the average has to be computed in an it- 
erative procedure. Starting from an arbitrary image 
as the preliminary reference, a (noisy) correspondence 
between all other images and this reference is first 
computed using an optical flow algorithm. On the 
basis of these correspondences an average image can 
be computed, which now serves as a new reference im- 
age. This procedure of computing the correspondences 
and calculating a new average image is repeated until 
a stable average (vectorized) image is obtained. 

The correspondence fields obtained through the op- 
tical flow algorithm from this final average image to 
all the examples are usually far from perfect. The 
bootstrapping idea is to improve the correspondences 
by applying iteratively the basic step described above 
while also increasing the expressive power of the flex- 
ible model. We could incorporate into the flexible 
model one new image at each timestep. Instead, we 
have implemented an equivalent algorithm in which 
the first step is to form a linear object model from the 
correspondences obtained from all images with opti- 
cal flow. Since some of these correspondence fields are 
not correct and all are noisy, this algorithm uses only 
the most significant fields as provided by a standard 
PCA decomposition of the shape and the texture vec- 
tors. Instead of adding new images, the algorithm in- 
creases with successive iterations the number of prin- 
cipal components, ordered according to the associated 
eigenvalues (the allowed range of parameters of the se- 
lected principal components can also be increased with 
a similar effect). .4t each iteration a flexible model is 
selected and used to match each image. The optical 
flow algorithm estimates correspondence between the 
image and the approximation provided by the flexible 
model. This field is then added to the correspondence 
field implied by the matched model, giving a new cor- 
respondence field between the reference image and the 
example. The correspondence fields, obtained by this 
procedure, will finally lead to a new average image 
and also to new principal components which can be 
incorporated in an improved flexible model. Iterating 
this procedure with increasing expressive power of the 
model (by increasing the number of principal compo- 
nents) leads to stable correspondence fields between 
the reference image and the examples. The number of 
iterations as well as the increasing complexity of the 
model can be regarded as regularization parameters of 
this bootstrapping process. 

3.2.1 Pseudo code of an efficient algorithm 

IA: Selecting a reference image. 

Select an arbitrary image li as reference image I,,,. 
Until convergence do { 

For all 1i { 
Compute correspondence field Si between 
I Tef and Ii using optical flow. 
Backwards warp 1i onto I,.,, using 5’; 
to get the texture map Ti. 

end For} 
Compute average over all Si and Ti 
Forward warp Taverage using Saverage 
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Figure 3: Two of the most difficult faces in our data set. The correspondence between face images (left column) and 
a reference face can be visualized by backward warping of the face images onto the reference image (three columns 
on the right). The correspondence obtained through the optical flow algorithm does not allow a correct mapping 
(center column). The first iteration with a linear flexible model consisting of two principal components already 
yields a significant, improvement (top row). After four iterations with 10, 30 and 80 components, respectively, all 
correspondences were correct (right column) 

to create IaveraSe 
Convergence test: 1s Iaaverage - Iyef < limit ? 
COPY Lm-age to Iref; 

end Until } 

1 B : Computing the correspondence. 

Until number n of principal components used in the 
linear model is maximal { 

Perform a principal component analysis on S; 
and separately on Ti:. 

Select the first n principal components for the 
linear model. 

Approximate each Ii by the linear model 
with IFode 

Compute’correspondence field Si between 
Imode and Ii using optical flow 

Combine Si and S~~odel to Srew 
Ba$yr~;~a;~xk;~~gi .using SY” 

Copy all Sreu’ to Si. 
Increase number n of principal components used 

in the linear model. 
end Until } 

4 Results 
The method described in the previous sections was 

tested on two different classes of images. One class 
was frontal views of human faces and the second was 
handwritten digits. 

4.1 Face images 
4.1.1 Data set 

I30 frontal images of Caucasian faces were used in our 
experiments. The images were originally rendered for 
psychophysical experiments under ambient illumina- 
tion conditions from a data base of three-dimensional 
human head models recorded with a laser scanner 
(Cyb erulareTM). All faces were without makeup, ac- 
cessories, and facial hair. Additionally; the head hair 
was removed digitally (but with manual editing), via 
a vertical cut behind the ears. The resolution of the 
grey-level images was -256-by-256pixels and 8 bit. 

Preprocessing: First the faces were segmented from 
the background and aligned roughly by automatically 
adjusting them to their two-dimensional centroid. 

4.1.2 Evaluation 

The method described in the previous sections was 
successfully applied to all face images available. 

The step involving synthesis of the reference (av- 
erage) image was tested for each image as a starting 
image in the algorithm. As a convergence criteria we 
used a theshold on the minimum average change of the 
pixel gray value (0.3, whereas the range was 256). The 
threshold was reached in every case within 5 iterations 
and mostly after 3. The final reference images could 
not be distinguished under visual inspection. One of 
these reference images is shown in the second column 
of figure 3; the same reference image was used for the 
final correspondence finding procedure. 
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Figure 4: For each of the 10 digits the figure shows the 
first five shape eigenvectors (left to right) of the model 
(obtained from 250 prototypical digits). Each column 
display how each shape eigenvector changes relative 
to the average digit (in dashed box). The range of 
the coefficient ranges from $5 (top) to -5 standard 
deviations (bottom) of each eigenvector. 

Optical flow yields the correct correspondence be- 
tween the reference image and each example image 
only in 80% of all cases. In the remaining cases the cor- 
respondence is partly incorrect, as shown in figure 3. 
The center column shows the images which result from 
backward warping the face images (left column) onto 
the reference image using the correspondence fields 
obtained through the optical flow algorithm. In the 
first iteration of the correspondence finding procedure 
the first 2 principal components of the shape vectors 
(that is of the correspondence fields) and of the tex- 
tures vectors are used in the flexible model. Then the 
correspondence field provided by matching with the 
flexible model is combined with the correspondence 
field obtained by the optical flow algorithm between 
the face image and its flexible model approximation. 
The backward warps using this correspondence fields 
are shown in the fourth column. The correspondence 
fields were iterated by slowly increasing the number of 
principal components used in the flexible model. After 
four iterations with 2, 10, 30 and 80 principal compo- 
nents, the correspondence fields between the reference 
face and all example images did not reveal any obvious 
errors (right column). 

4.2 Digits 
4.2.1 Data set and Preprocessing 

The images used in these experiments were from the 
US postal service database (262 per each of the 10 dig- 
its). The original resolution of 16-by-16 pixels was in- 
creased to 32-by-32 pixels and the images were blurred 
with a Gaussian 5-by-5 kernel. 

4.2.2 Evaluation 

The bootstrapping algorithm was used for all 10 digits 
without modification. For each digit we obtained a lin- 
ear model from the first 250 digits in the dataset. The 
reference image (average shape) is shown in the dashed 
boxes in figure 4. After computing the reference im- 
age and the initial correspondence fields with optical 
flow new correspondence fields were obtained using 4 
iterations of the bootstrapping algorithm. During the 
4 iterations the number of principal components used 
in the algorithm was increased from 2 to 10, 30 and 
80, respectively. Figure 4 shows the first 5 principal 
shape components of the final linear model. 

The models obtained by the bootstrapping algo- 
rithm were used to match new digits which where not 
part of the training set. In figure 5 ten new images of 
the digit 3 are approximated with three different mod- 
els of digits. Clearly the “3” model approximates well 
each of the new “3”, whereas the “5” and the “2” mod- 
els provide very poor approximations. These results 
suggest that the digit models obtained with bootstrap- 
ping could be used successfully for recognition as well 
as for image compression. 

5 Conclusions 
The bootstrapping algorithm we described is not a 

full answer to the problem of computing correspon- 
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Figure 5: 10 examples of the digit 3 are approximated 
by 3 different, linear models: in A a model for “3”, 
in B for “2’s” and in C for ‘L5’s”. In ea.ch case the 
top row shows the target “3’s”, the center row shows 
the optimal a.pproximation by the model and the third 
row shows the difference between the top and center 
row. Each model, obtained automatically by the boot- 
strapping procedure from 250 prototypes, consisted of 
the first 20 shape principal components and the first 
texture component. 

dence between prototypes. It provides however an ini- 
tial and promising solution to the very difficult prob- 
lem of automatic svnthesis of the flexible models from 
a set of prototypical examples. Notice that we have 
used multiresolution optical flow as one part of our 
boot,strapping algorithm. In principle other match- 
ing techniques could be used within our bootstrapping 
scheme. 
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