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Abstract 

A new view-based approach to the representation and 
recognition of action is presented. The basis of the repre- 
sentation is a temporal template - a static vector-image 
where the vector value at each point is a function of the 
motion properties at the corresponding spatial location in 
an image sequence. Using 18 aerobics exercises as a test 
domain, we explore the representational power of a sim- 
ple, two component version of the templates: the$rst value 
is a binary value indicating the presence of motion, and 
the second value is a function of the recency of motion in 
a sequence. We then develop a recognition method which 
matches these temporal templates against stored instances 
of views of known actions. The method automatically per- 
forms temporal segmentation, is invariant to linear changes 
in speed, and runs in real-time on a standard platform. We 
recently incorporated this technique into the KIDSROOM: an 
interactive, narrative play-space for children. 

Frame 5 

Figure 1. Selected frames from video of someone per- 
forming an action. Even with almost no structure present 
in each frame people can trivially recognize the action as 
someone sitting. 

1. Introduction 

The recent shift in computer vision from static images to 
video sequences has focused research on the understanding 
of action or behavior. In particular, the lure of wireless in- 
terfaces (e.g. [ 111) and interactive environments [9, 31 has 
heightened interest in understanding human actions. Re- 
cently a number of approaches have appeared attempting 
the full three-dimensional reconstruction of the human form 
from image sequences, with the presumption that such in- 
formation would be useful and perhaps even necessary to 
understand the action taking place (e.g. [16]). This paper 
presents an alternative to the three-dimensional reconstruc- 
tion proposal. We develop a view-based approach to the 
representation and recognition of action that is designed to 
support the direct recognition of the motion itself. 

quences such as shown in Figure 1 and http://[seq-11’. Such 
capabilities argue for recognizing action from the motion 
itself, as opposed to first reconstructing a 3-dimensional 
model of a person, and then recognizing the action of the 
model as advocated in [I, 6, 12, 16, 17, 8, 201. In [4] 
we proposed a representation and recognition theory that 
decomposed motion-based recognition into first describing 
where there is motion (the spatial pattern) and then describ- 
ing how the motion is moving. The approach is a natural 
extension of Black and Yacoob’s work on facial expression 
recognition [2]. 

In this work we continue to develop this approach. We 
review the construction of a binary motion-energy image 
(MEI) which represents where motion has occurred in an 
image sequence. We next generate a motion-history image 
(MHI) which is a scalar-valued image where intensity is a 
function of recency of motion. Taken together, the ME1 and 
MHI can be considered as a two component version of a 
temporal template, a vector-valued image where each com- 
ponent of each pixel is some function of the motion at that 
pixel location. These view-specific templates are matched 

In previous work [4, 51 we described how people can 
easily recognize action in even extremely blurred image se- 

‘The page containing the referenced sequences can be found through 
the index at http://vismod.www.media.mit.edu/archive/index.h~ml. 
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against the stored models of views of known actions. To 
evaluate the power of the representation we evaluate the dis- 
crimination power on a set of 18 aerobics exercises. Finally 
we present a recognition method which automatically per- 
forms temporal segmentation, is invariant to linear changes 
in speed, and runs in real-time on a standard platform. 

2. Prior work 

The number of papers on and approaches to recogniz- 
ing motion and action has recently grown at a tremendous 
rate. For an excellent review on the machine understand- 
ing of motion see [7]. We divide the relevant prior work 
into two areas: human action recognition and motion-based 
recognition. 

The first and most obvious body of relevant work in- 
cludes all the approaches to understanding action, and in 
particular human action. Some recent examples include 
[l, 6, 12, 16, 17, 8, 201. Some of these techniques assume 
that a three-dimensional reconstruction precedes the recog- 
nition of action, while others use only the two-dimensional 
appearance. However, underlying all of these techniques is 
the requirement that there be individual features or proper- 
ties that can be extracted from each frame of the image se- 
quence. These approaches accomplish motion understand- 
ing by recognizing a sequence of static configurations. 

Alternatively, there is the work on direct motion recog- 
nition [15, 18, 19, 2, 10, 14, 41. These approaches attempt 
to characterize the motion itself without any reference to 
the underlying static images or a sequence of poses. Of 
these techniques, the work of Polana and Nelson [ 1.51 is the 
most relevant to the results presented here. The goal of 
their research is to represent and recognize actions as dy- 
namic systems where it is the spatially distributed properties 
motion (in their case periodicity) that is matched. 

3. Temporal templates 

Our goal is to construct a view-specific representation of 
action, where action is defined as motion over time. For now 
we assume that either the background is static, or that the 
motion of the object can be separated from either camera- 
induced or distractormotion. At the conclusion of this paper 
we discuss methods for eliminating incidental motion from 
the processing. 

In this section we define a multi-component image repre- 
sentation of action based upon the observed motion. The ba- 
sic idea is to construct a vector-image which can be matched 
against stored representations of known actions; it is used 
as a temporal template. 

3.1. Motion-energy images 
Consider the example of someone sitting, as shown in 

Figure 2. The top row contains key frames in a sitting 

Frame 0 

Figure 2. Example of someone sitting. Top row contains 
key frames; bottom row is cumulative motion images 
starting from Frame 0. 

sequence. The bottom row displays cumulative binary mo- 
tion images - to be described momentarily - computed 
from the start frame to the corresponding frame above. As 
expected the sequence sweeps out a particular region of the 
image; our claim is that the shape of that region (where there 
is motion) can be used to suggest both the action occurring 
and the viewing condition (angle). 

We refer to these binary cumulative motion images as 
motion-energy images (MEI). Let I(z, y, t) be an image 
sequence, and let D(z, y, t) be a binary image sequence 
indicating regions of motion; for many applications image- 
differencing is adequate to generate D. Then the binary 
ME1 E, (x, y, t) is defined 

T-l 
E,(z, Y, t> = u D(z, Y, t - i) 

i=O 

We note that the duration ris critical in defining the temporal 
extent of an action. Fortunately, in the recognition section 
we derive a backward-looking (in time) algorithm which can 
dynamically search over a range of r. 

In Figure 3 we display the MEIs of viewing a sitting 
action across 90’. In [4] we exploited the smooth variation 
of motion over angle to compress the entire view circle into a 
low-order representation. Here we simply note that because 
of the slow variation across angle, we only need to sample 
the view sphere coarsely to recognize all directions. In the 
evaluation section of this paper we use samplings of every 
30’ to recognize a large variety of motions. 
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Figure 3. MEls of sitting action over 90” viewing angle. 
The smooth change implies only a coarse sampling of 
viewing direction is necessary to recognize the action 
from all angles. 

3.2. Motion-history images 

To represent how (as opposed to where) motion the image 
is moving we form a motion-history image (MHI). In an MHI 
H,, pixel intensity is a function of the temporal history of 
motion at that point. For the results presented here we use a 
simple replacement and decay operator: 

T if D(z,y,t) = 1 
H7(2, y,t> = ma (O,H,(z,y,t - 1) - 1) 

otherwise 

The result is a scalar-valued image where more recently 
moving pixels are brighter. Examples of MHIs are pre- 
sented in Figure 4, and the dynamic construction of an MHI 
is illustrated in http://[seq-21. Note that the ME1 can be 
generated by thresholding the MHI above zero. 

One possible objection to the approach described here is 
that there is no consideration of optic flow, the direction of 
image motion. In response, it is important to note the rela- 
tion between the construction of the MHI and direction of 
motion. Consider the waving example in Figure 4 where the 
arms fan upwards. Because the arms are isolated compo- 
nents - they do not occlude other moving components - 
the motion-history image implicitly represents the direction 
of movement: the motion in the arm down position is “older” 
than the motion when the arms are up. For these types of 
articulated objects, and for simple movements where there 
is not significant motion self-occlusion, the direction of mo- 
tion is well represented using the MHI. As motions become 

arms-wave 

crouch-down crouch-down MHI 

Figure 4. Action moves along with their MHls used in a 
real-time system. 

more complicated the optic flow is more difficult to discern, 
but is typically not lost completely. 

4. Action Discrimination 

4.1. Matching temporal templates 

To construct a recognition system, we need to define 
a matching algorithm for the temporal template. Because 
we are using an appearance-based approach, we must first 
define the desired invariants for the matching technique. As 
we are using a view sensitive approach, it is desirable to have 
a matching technique that is as invariant as possible to the 
imaging situation. Therefore we have selected a technique 
which is rotation (in the image plane), scale, and translation 
invariant. 

We first collect training examples of each action from a 
variety of viewing angles. Given a set of MEIs and MHIs 
for each view/action combination, we compute statistical 
descriptions of the these images psusing moment-based fea- 
tures. Our current choice are 7 Hu moments [ 131 which 
are known to yield reasonable shape discrimination in a 
translation- and scale-invariant manner. For each view of 
each action a statistical model of the moments (mean and 
covariance matrix) is generated for both the ME1 and MHI. 
To recognize an input action, a Mahalanobis distance is cal- 
culated between the moment description of the input and 
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each of the known actions. In this section we analyze this 
distance metric in terms of its separation of different actions. 

Note that we have no fundamental reason for select- 
ing this method of scale- and translation-invariant template 
matching. The approach outlined has the advantage of not 
being computationally taxing making real-time implemen- 
tation feasible; one disadvantage is that the Hu moments are 
difficult to reason about intuitively. Also, we note that the 
matching methods for the ME1 and MHI need not be the 
same; in fact, given the distinction we make between where 
there is motion from how the motion is moving one might 
expect different matching criteria. 

4.2. Testing on aerobics data: one camera 

To evaluate the power of the temporal template represen- 
tation, we recorded video sequences of 18 aerobics exercises 
performed several times by an experienced aerobics instruc- 
tor; the sequence http://[seq-31 provides an example. Seven 
views of the action - $90’ to -90’ in 30° increments 
in the horizontal plane - were recorded. Figure 5 shows 
the frontal view of one key frame for each of the moves 
along with the frontal MEI. We take the fact that the ME1 
makes clear to a human observer the nature of the motion 
as anecdotal evidence of the strength of this component of 
the representation. For this experiment the temporal seg- 
mentation and selection of the time window over which to 
integrate were performed manually. Later we will detail a 
self-segmenting, time-scaling recognition system. 

We constructed the temporal template for each view of 
each move, and then computed the Hu moments on each 
component. To do a useful Mahalanobis procedure would 
require watching several different people performing the 
same actions; this multi-subject approach is taken in the 
next section where we develop a recognition procedure. 

Instead, we change the experiment to be a measurement 
of confusion. A new test subject performed each move and 
the input data was recorded by two cameras viewing the 
action at approximately 30’ to left and 60” to the right of 
the subject. The temporal template for each of the two views 
of the test input actions was constructed, and the associated 
moments computed. 

Our first test uses only the left (30’) camera as input 
and matches against all 7 views of all 18 moves (126 total). 
We select as a metric a pooled independent Mahalanobis 
distance using a diagonal covariance matrix to accommodate 
variations in magnitude of the moments. Table 1 displays 
the results. Indicated are the distance to the move closest 
to the input (as well as its index), the distance to the correct 
matching move, the median distance (to give a sense of 
scale), and the ranking of the correct move in terms of least 
distance. 

The first result to note is that 12 of 18 moves are correctly 
identified using the single view. This performance is quite 

Closest Closest Correct Median Rank 
Dist Move Dist Dist 

Test 1 1.43 4 1.44 2.55 2 
2 3.14 2 3.14 12.00 1 
3 3.08 3 3.08 8.39 1 
4 0.47 4 0.47 2.11 1 
5 6.84 5 6.84 19.24 1 
6 0.32 10 0.61 0.64 7 

Test 7 0.97 7 0.97 2.03 1 
8 20.47 8 20.47 35.89 1 
9 1.05 8 1.77 2.37 4 
10 0.14 10 0.14 0.72 1 
11 0.24 11 0.24 1.01 1 
121 0.79 12 0.79 4.42 1 1 

Test 13 1 0.13 6 0.25 0.51 1 3 

Table 1. Test results using one camera at 30” off frontal. 
Each row corresponds to one test move and gives the 
distance to the nearest move (and its index), the distance 
to the correct matching move, the median distance, and 
the ranking of the correct move. 

Figure 6. An example of MHls with similar statistics. (a) 
Test input of move 13 at 30’. (b) Closest match which is 
move 6 at 0’. (c) Correct match. 

good considering the compactness of the representation (a 
total of 14 moments from two correlated motion images) 
and the large size of the target set. Second, the typical 
situation in which the best match is not the correct move, the 
difference in distances from the input to the closest move 
versus the correct move is small compared to the median 
distance. Examples of this include test moves 1, 9, 13, 16, 
18. In fact for moves 1, 16, 18 the difference is negligible. 

To analyze the confusion difficulties further consider the 
example shown in Figure 6. Displayed here, left to right, 
are the input MHI (move 13 at view angle 300), the closest 
match MHI (move 6 at view angle O”), and the “correct” 
matching MHI. The problem is that an alternative view of a 
different action projects into a temporal template with sim- 
ilar statistics. For example, consider sitting and crouching 
actions when viewed from the front. The observed mo- 

931 

Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR '97)
1063-6919/97 $10.00 © 1997 IEEE 



1 2 3 4 5 6 7 8 9 
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Figure 5. A single key frame and MEI from the frontal view of each of 18 aerobics exercises used to test the representation. 

tions are almost identical, and the coarse temporal template 
statistics do not distinguish them well. 

4.3. Combining multiple views 

A simple mechanism to increase the power of the method 
is to use more than one camera. Several approaches are 
possible. For this experiment, we use two cameras and find 
the minimum sum of Mahalanobis distances between the 
two input templates and two stored views of an action that 
have the correct angular difference between them, in this 
case 90’. The assumption embodied in this approach is that 
we know the approximate angular relationship between the 
cameras. 

Table 2 provides the same statistics as the first table, 
but now using two cameras. Notice that the classification 
now contains only 3 errors. The improvement of the result 
reflects the fact that for most pairs of this suite of actions, 
there is some view in which they look distinct. Because 
we have 90” between the two input views the system can 
usually correctly identify most actions. 

We mention that if the approximate calibration between 
cameras is not known (and is not to be estimated) one can still 
logically combine the information by requiring consistency 
in labeling. That is, we remove the inter-angle constraint, 
but do require that both views select the same action. The 

Closest Closest Correct Median Rank 
Dist Move Dist Dist 

Test 1 2.13 1 2.13 6.51 1 
2 12.92 2 12.92 19.58 1 
3 7.17 3 7.17 18.92 1 
4 1.07 4 1.07 7.91 1 
5 16.42 5 16.42 32.73 1 
6 0.88 6 0.88 3.25 1 

Test 7 3.02 7 3.02 7.81 1 
8 36.76 8 36.76 49.89 1 
9 5.10 8 6.74 8.93 3 
10 0.68 10 0.68 3.19 1 
11 1.20 11 1.20 3.68 1 
12 2.77 12 2.77 15.12 1 

Test 13 1 0.57 13 0.57 2.17 1 1 

Table 2. Results using two cameras where the angular 
interval is known and any matching views must have the 
same angular distance. 

algorithm would be to select the move whose Mahalanobis 
sum is least, regardless the angle between the target views. 
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Figure 7. Example of error where failure is cause by both 
the inadequacy of using image differencing to estimate 
image motion and the lack of the variance data in the 
recognition procedure. 

If available, angular order information - e.g. camera 1 
is to the left of camera 2 - can be included. When this 
approach is applied to the aerobics data shown here we still 
get similar discrimination. This is not surprising because 
the input views are so distinct. 

To analyze the remaining errors, consider Figure 7 which 
shows the input for move 16. Left to right are the 30“ MHIs 
for the input, the best match (move 15), and the correct 
match. The test subject performed the move much less 
precisely than the original aerobics instructor. Because we 
were not using a Mahalanobis variance across subjects, the 
current experiment could not accommodate such variation. 
In addition, the test subject moved her body slowly while 
wearing low frequency clothing resulting in an MHI that has 
large gaps in the body region. We attribute this type of failure 
to our simple (i.e. naive) motion analysis; a more robust 
motion detection mechanism would reduce the number of 
such situations. 

5. Segmentation and recognition 

The final element of performing recognition is the tempo- 
ral segmentation and matching. During the training phase 
we measure the minimum and maximum duration that an 
action may take, r,i, and r,,,. If the test actions are 
performed at varying speeds, we need to choose the right r 
for the computation of the ME1 and the MHI. Our current 
system uses a backward looking variable time window. Be- 
cause of the simple nature of the replacement operator we 
can construct a highly efficient algorithm for approximating 
a search over a wide range of r. 

The algorithmis as follows: At each time step a new MHI 
H,(z, y, t) is computed setting r = Taco, where 7;nas is 
the longest time window we want the system to consider. 
We choose AT to be (rmaz - rmin)/(n - 1) where 72 is the 
number of temporal integration windows to be considered.* 
A simple thresholding of MHI values less than (r - Ar) 
followed by a scaling operation generates H(,-A,) from 

21deally n = ~~~~ - T,,% + 1 resulting in a complete search of the 
time window between 7maz and 7min. Only computational limitations 
argue for a smaller n. 

H,. Iterating we compute all 7~ MHIs at each time step. 
Binarization of the MHIs yields the corresponding MEIs. 

After computing the various MEIs and MHIs, we com- 
pute the Hu moments for each image. We then check the 
Mahalanobis distance of the ME1 parameters against the 
known view/action pairs; the mean and the covariance ma- 
trix for each view/action pair is derived from multiple sub- 
jects perfotming the same move. Any action found to be 
within a threshold distance of the input is tested for agree- 
ment of the MHI. If more than one action is matched, we 
select the action with the smallest distance. 

Our first experimental system recognizes 180” views of 
the actions sitting, am waving, and crouching (See Fig- 
ure 4). The training required four people and sampling the 
view circle every 4.5O. The system performs well, rarely 
misclassifying the actions. The errors which do arise are 
mainly caused by problems with image differencing and 
also due to our approximation of the temporal search win- 
dow 72 < (r,az - r,i, + 1). 

The system runs at approximately 9 Hz using 2 CCD 
cameras connected to a Silicon Graphics 200MHz Indy; the 
images are digitized at a size of 160x120. For these three 
moves r,naz=is (approximately 2 seconds), r,in = 11 (ap- 
proximately 1 second), and we chose n = 6. The compari- 
son operation is virtually no cost in terms of computational 
load, so adding more actions does not affect the speed of the 
algorithm, only the accuracy of the recognition. 

6. Extensions, problems, and applications 

We have presented a novel representation and recognition 
technique for identifying actions. The approach is based 
upon temporal templates and their dynamic matching in 
time. Initialexperiments in bothmeasuring the sensitivity of 
the representation and in constructing real-time recognition 
systems have shown the effectiveness of the method. 

There are, of course, some difficulties in the current ap- 
proach. Several of these are easily rectified. As mentioned, 
a more sophisticated motion detection algorithm would in- 
crease robustness. Also, as developed, the method assumes 
all motion present in the image should be incorporated into 
the temporal templates. Clearly, this approach would fail 
when two people are in the field of view. To implement 
our real-time system we use a tracking bounding box which 
attempts to isolate the relevant motions. 

A worse condition is when one person partially occludes 
another, making separation difficult, if not impossible. Here 
multiple cameras is an obvious solution. Since occlusion is 
view angle specific, multiple cameras reduce the chance the 
occlusion is present in all views. For monitoring situations, 
we have experimented with the use of an overhead camera 
to select which ground based cameras have a clear view of a 
subject and where the subject would appear in each image. 
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6.1. Incidental motion 

A more serious difficulty arises when the motion of part 
of the body is not specified during an action. Consider, for 
example, throwing a ball. Whether the legs move is not 
determined by the action itself, inducing huge variability 
in the statistical description of the temporal templates. To 
extend this paradigm to such actions requires some mech- 
anism to automatically mask away regions of this type of 
motion. Our current thinking is to process only the motion 
signal associated with the dominant motions. 

Two other examples of motion that must be removed are 
camera motion and locomotion (if we assume the person 
is performing some action while locomoting and what we 
want to see is the underlying action). In both instances the 
problem can be overcome by using a body centered motion 
field. The basic idea would be to subtract out any image mo- 
tion induced by camera movement or locomotion. Of these 
two phenomena, camera motion elimination is significantly 
easier because of the over constrained nature of estimating 
egomotion. Our only insight at this point is that because the 
temporal template technique does not require accurate flow 
fields it may be necessary only to approximately compen- 
sate for these effects and then to threshold the image motion 
more severely than we have done to date. 

6.2. The KIDSROOM: an application 

We conclude by mentioning a recent application we de- 
veloped in which we employed a version of the temporal 
template technique described. On October 30th, 1996 we 
debuted The KidsRoom3, an interactive play-space for chil- 
dren [3]. The basic idea is that the room is aware of the 
children and takes them through a story where the responses 
of the room are affected by what the children do. The current 
scenario is an adventurous trip to Monsterland. 

In the last scene the monsters appear and teach the chil- 
dren to dance -basically to perform certain actions. Using 
a modified version of the MEIs the room can compliment 
the children on well performed moves (e.g. spinning) and 
then turn control of the situation over to them: the monsters 
follow the children if the children perform the moves they 
were taught. The interactive narration coerces the children 
to room locations where occlusion is not a problem. Of all 
the vision processes required, the modified temporal tem- 
plate is one of the more robust. We take the ease of use of 
the method to be an indication of its potential. 

3See http://vismod.www.media.mit.edu/vismod/demos~idsroom. 
4The MEIs were computed from background subtracted images instead 

of binary motion images. This change was necessary because of the high 
variability of incidental body motion. By using the background subtracted 
images the body was always included. 
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