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Abstract

We introduce the problem of view interpolation for
dynamic scenes. Our solution to this problem extends
the concept of view morphing [11] and retains the
practical advantages of that method. We are speci�-
cally concerned with interpolating between two refer-
ence views captured at di�erent times, so that there is
a missing interval of time between when the views were
taken. The synthetic interpolations produced by our al-
gorithm portray one possible physically-valid version
of what transpired in the scene during the missing
time. It is assumed that each object in the original
scene underwent a series of rigid translations. Dy-
namic view morphing can work with widely-spaced ref-
erence views, sparse point correspondences, and uncal-
ibrated cameras. When the camera-to-camera trans-
formation can be determined, the synthetic interpola-
tion will portray scene objects moving along straight-
line, constant-velocity trajectories in world space.

1 Introduction
View interpolation [4] involves creating a series of

virtual views of a scene that, taken together, represent
a continuous and physically-correct transition between
two reference views of the scene. Previous work on
view interpolation has been restricted to static scenes.
Dynamic scenes change over time and, consequently,
these changes will be evident in two reference views
that are captured at di�erent times. Therefore, view
interpolation for dynamic scenes must portray a con-
tinuous change in viewpoint and a continuous change
in the scene itself in order to transition smoothly be-
tween the reference views (Fig. 1).

Our approach to this problem is based upon an ear-
lier technique called view morphing [11], which pro-
vides a method for interpolating between two widely-
spaced views of a static scene. The technique has sev-
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eral strengths that make it suitable for practical appli-
cations. First, only two reference views are assumed.
Second, it does not require that camera calibration be
provided nor does it need to calculate the camera pa-
rameters. Third, the method works even when only
a sparse set of correspondences between the reference
views is known. If more information about the refer-
ence views is available, this information can be used
for added control over the output and for increased
realism.

In addition to view morphing, numerous existing
methods could be used to create view interpolations
for static scenes [6, 10, 1, 12, 14]. However, none
of these methods is directly applicable to dynamic
scenes. Avidan and Sashua [2] provide a method for
recovering the geometry of dynamic scenes in which
the objects move along straight-line trajectories. Once
the geometry is recovered, dynamic view interpola-
tions could be created using the standard graphics
pipeline. However, their algorithm does not apply to
the problem discussed in this paper because it assumes
that �ve or more views are available and that the cam-
era matrix for each view is known or can be recovered.
There are several mosaicing techniques for dynamic
scenes [8, 5], but mosaicing involves piecing together
several small-�eld views to create a single large-�eld
view, whereas view interpolation involves synthesizing
new views from vantage points not in the reference set.

Because the original view morphing algorithm as-
sumes a static scene, we refer to it as static view mor-
phing to distinguish it from the dynamic view morph-
ing technique presented in this paper.

We seek to perform view interpolation directly from
the reference views, without additional information
about the scene. Consequently, there will be a miss-
ing interval of time between when the reference views
were captured, and it will be impossible to know for
certain what occurred during the missing interval. It is
not our goal in this work to try and deduce the most
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Figure 1: A dynamic scene at three di�erent times. The goal of view interpolation for dynamic scenes is to
synthesize the view from the camera in the middle frame starting with only the two reference views from
the cameras in the left and right frames.

likely manner in which the scene changed. Instead,
we are interested in portraying some possible way in
which the scene could have changed, and we want the
portrayal to be physically correct and continuous.

Our method is for dynamic scenes that satisfy the
following assumption: For each object in the scene,
all of the changes that the object undergoes during
the missing time interval, when taken together, are
equivalent to a single, rigid translation.

The term object has a speci�c meaning in this pa-
per, de�ned by the condition given above: An object
is a group of particles in a scene for which there exists
a �xed vector u 2 <3 such that each particle's total
motion during the missing time interval is equal to u.

A method for dynamic view interpolation, even if
it is physically accurate, may be unsatisfactory if it
portrays objects moving along unreasonable trajec-
tories. For instance, when portraying a car driving
across a bridge, it is essential that the car stay on
the bridge during the entire sequence. To address this
problem, we have developed techniques for portraying
both straight-line motion (in a camera-based coordi-
nate frame) and straight-line, constant-velocity mo-
tion (in camera and world coordinate frames). For
brevity, we refer to the latter style of portrayal as lin-
ear motion. Fig. 1 depicts a linear motion view inter-
polation.

If the reference cameras share the same position
in world coordinates, then the virtual camera shares
that position as well and straight-line motion relative
to the virtual camera also implies straight-line motion
in world coordinates. However, this may not be the
case if the virtual camera moves during the view in-
terpolation, as Fig. 2 demonstrates. It is easy to show
that if all objects can be portrayed undergoing linear
motion in camera coordinates, then the virtual camera
can be considered undergoing linear motion in world

(i) (ii)

Figure 2: (i) A round object is �lmed moving along
a trajectory that is a straight line in the camera's
frame of reference. The object is shown at equal
time intervals and does not move at constant ve-
locity. (ii) If the camera was in motion during the
�lming, then the object did not follow a straight-line
trajectory in world coordinates.

coordinates, in which case all the objects will undergo
linear motion in world coordinates as well.

2 Static view morphing

Static view morphing works by �rst prewarping
the reference views to make their image planes par-
allel. After the prewarp, conjugate points in the two
views are linearly interpolated to produce a physically-
accurate new view of the scene. The new locations of
the conjugate points are used to guide a morphing
algorithm in �lling the remainder of the virtual view.
Only the interpolated conjugate points are guaranteed
to be viewed in the correct, physically-accurate loca-
tions. By increasing the density of conjugate points,
the virtual view can be made arbitrarily accurate. The
prewarp is performed from information available in the
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fundamental matrix, which is calculated directly from
the conjugate points. Complete details of the algo-
rithm can be found in [11].

3 Dynamic view morphing

3.1 Preliminary concepts

We assume the two reference views are captured at
time t = 0 and time t = 1 through pinhole cameras,
which are denoted camera A and camera B, respec-
tively.

We always use a �xed-camera formulation, mean-
ing we assume that the two reference cameras are at
the same location and that the world moves around
them; this is accomplished by subtracting the actual
displacement between the two cameras from the mo-
tion vectors of all objects in the scene. Under this
assumption, the camera matrices are just 3 � 3 and
each camera is equivalent to a basis for <3. Note that
no assumption is made about the cameras other than
that they share the same optical center; the camera
matrices can be completely di�erent.

We let U denote the \universal" or \world" coor-
dinate frame, and use the notation TUA to mean the
transformation between basis U and basis A. Hence
TUA is the camera matrix for A. Of particular inter-
est to our work is the matrix TAB . Note that capital
script letters will always represent 3 � 3 matrices; in
particular, I is the identity matrix.

A position or a direction in space exists indepen-
dently of what basis is used to measure it; we will use
a subscript letter when needed to denote a particular
basis. For instance, if e is the direction between two
cameras (that are not at the same location), then eA
is e measured in basis A. The quantity e is called the
epipole. The fundamental matrix F for two cameras A
and B that are at di�erent locations has the following
representation [7]:

F = [eB ]�TAB (1)

Here [�]� denotes the cross product matrix. When
the two cameras share the same optical center, the fun-
damental matrix is 0 and has no meaning. However,
for each moving object 
 in the scene, we can de�ne a
new kind of fundamental matrix. If, after making the
�xed-camera assumption, 
 is moving in direction u,
then the fundamental matrix for the object is:

F
 = [uB ]�TAB (2)

The epipoles of F
 are the vanishing points of 
 as
viewed from the two reference cameras, and the epipo-
lar lines trace out trajectories for points on 
.
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Figure 3: Cameras A and B share the same optical
center � and are viewing a point on an object that
translates by u. The image planes of the cameras
are parallel to each other and to u, and hence in-
terpolation will produce a physically-correct view of
the object. On each image plane a line parallel to
u is shown.

3.2 View interpolation for a single mov-
ing object

Assume the two reference cameras share the same
optical center and are viewing a point ! that is part
of an object 
 whose translation vector is u. Let q
and q+ u denote the position of ! at time t = 0 and
t = 1, respectively (Fig. 3).

Assume for this subsection that the image planes of
the cameras are parallel to each other and to u. The
�rst half of this condition means that the third row
of TUA equals the third row of TUB scaled by some
constant �. The second half means that (TUAuU )z =
(TUBuU )z = 0, where (�)z denotes the z-coordinate of
a vector. Note that the condition can be met retroac-
tively by using standard recti�cation methods [11, 9];
this is part of \prewarping" the reference views as
mentioned in Section 2.

Setting � = (TUAqU )z = �(TUB(q + u)U )z, the
linear interpolation of the projection of ! into both
cameras is

(1� s)
1

�
TUAqU + s

�

�
TUB(q+ u)U (3)

Now de�ne a virtual camera V by the matrix

TUV = (1� s)TUA + s�TUB (4)

Then the linear interpolation (3) is equal to the pro-
jection of scene point q(s) onto the image plane of
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image planes parallel

...and conjugate directions
          equal up to a scalar

...and the scalar is  λ

physically correct

...and depicts straight−line
          motion

...and the motion is
          constant−velocity

if prewarps make... then interpolation is...

Figure 4: How the interpolation sequence is related
to di�erent preconditions on the reference views.
Stricter preconditions lead to increased control over
the output.

camera V , where

q(s) = q+ u(s) (5)

u(s)V = s�uB (6)

Notice that u(s) depends only on u and the camera
matrices and not on the starting location q. Thus
linear interpolation of conjugate object points by a
factor s creates a physically-valid view of the object.
The object is seen as it would appear through camera
V if it had been translated by u(s) from its starting
position.

Note that in Eq. 6, u(s) is represented in basis V .
Since V changes with s it is di�cult in general to
characterize the trajectory in world coordinates. To
have greater control over the interpolation process, we
now prove that straight-line motion is achieved when
uA = uB up to an arbitrary scalar, and constant-
velocity straight-line motion (i.e., linear motion) is
achieved when uA = �uB (Fig. 4):
Assume uA = kuB for some scalar k. Multiplying
both sides of Eq. 4 on the right by TBU yields

TBV = (1� s)TBA + s�I (7)

By multiplying both sides of Eq. 7 on the right by uB
and on the left by TV B the following can be derived:

TV BuB =
1

(1� s)k + s�
uB (8)

Multiplying both sides of Eq. 6 by TV B now yields:

u(s)B =
s�

(1� s)k + s�
uB (9)

The basis V no longer plays a role and the virtual tra-
jectory, given by u(s)B , is a straight-line in basis B. If
k = � then u(s)B = suB and the virtual object moves
at constant velocity. The results are in basis B, but
multiplying by TBU or TBA indicates that the results

original view

layer 0 (background) layer 1 layer 2

transparent

Figure 5: A view divided into layers. Each layer
corresponds to a moving object. The single \back-
ground" object contains many di�erent objects that
all translate by the same amount.

also hold in world coordinates and camera A's coordi-
nates, thus completing the proof. Keep in mind that
the world coordinate system used in this context has
its origin at the shared optical center of the reference
cameras.

If TBA is known then the camera matrix for B can
be transformed into the camera matrix for A. This
allows the view from camera B at time t = 1 to be
transformed into the view from camera A at time
t = 1, thus producing two views of the scene from
camera A at di�erent times. For this reason, we call
TBA the camera-to-camera transformation. By apply-
ing the earlier results to this special case, we derive
the following corollary which forms the basis of the
algorithm in Section 3.3:

If both camera matrices are equal and if (TUAu)z = 0,
then the camera matrix for the virtual camera V is
just TUA and, because � = 1 and uA = uB , the virtual
object moves at constant velocity along a straight-line
path.

3.3 Linear motion dynamic view morph-
ing algorithm

We now present a dynamic view interpolation algo-
rithm that will portray linear motion. The algorithm
requires knowledge of TAB .

(Step 1) Segment both views into layers, with each
layer representing a di�erent moving object. Order
the layers from nearest object to farthest object (Fig.
5).
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(Step 2) Transform each layer of view B by TBA, thus
creating a view from camera A.

(Step 3) Apply static view morphing to each layer sep-
arately.

(Step 4) Recombine the new, virtual layers in the cor-
rect depth order.

(Step 5) (Optional) Postwarp the new view.

In step (3), the virtual camera will be the same for
each layer by the corollary of the previous section.
Furthermore, each layer will portray its corresponding
object undergoing linear motion. Consequently, step
(4) produces the desired linear portrayal of the entire
scene.

3.4 Special case: parallel motion

In this and the following section we examine some
special-case scenarios for which dynamic view interpo-
lations can be produced without knowledge of TAB .

Assume a �xed-camera formulation and let ui de-
note the displacement between the position of object
i at time t = 0 and its position at time t = 1. We will
say the scene consists of parallel motion if all the ui
are parallel in space.

Dynamic view morphing algorithm for parallel

motion case: Segment each view into layers corre-
sponding to objects. Apply static view morphing to
each layer and recomposite the results.

The algorithm works because the fundamental matrix
with respect to each object is the same, so the same
prewarp works for each layer. The prewarp will make
the direction of motion for each object be parallel to
the x-axis in both views; consequently, the virtual ob-
jects will follow straight-line trajectories as measured
in the camera frame. If we assume that the back-
ground object has no motion in world coordinates,
then the virtual camera moves parallel to the motion
of all the objects and hence the virtual object motion
is straight-line in world coordinates.

3.5 Special case: planar parallel motion

We now consider the case in which all the ui are
parallel to some �xed plane in space. Note that this
does not mean all the objects are translating in the
same plane. Also note that this case applies whenever
there are two moving objects.

Recall that in Section 3.2 the only requirement for
the virtual view to be a physically-accurate portrayal
of an object that translates by u is that the image
planes of both reference views be parallel to u and to
each other. In the planar parallel motion case, it is
possible to prewarp the reference views so that their
image planes are parallel to each other and to the dis-
placements of all the objects simultaneously.

Dynamic view morphing algorithm for planar

parallel motion case: Segment each view into lay-
ers corresponding to objects. For each reference view,
�nd a single prewarp that sends the z coordinate of
the vanishing point of each object to 0. Using this pre-
warp, apply static view morphing to each layer and
recomposite the results.

The algorithm given above only guarantees physi-
cal correctness, not straight-line or linear motion. The
appearance of straight-line motion can be created by
�rst making the conjugate motion vectors parallel dur-
ing the prewarp step [9].

3.6 Dynamic scene hierarchy

This section interrelates the algorithms of the pre-
vious three sections. As always, we assume a �xed-
camera formulation, meaning we choose to interpret
the two reference views as having been captured by
cameras that shared the same optical center.

Consider classifying each object in the scene based
on the direction of its translation vector, with two ob-
jects being placed in the same class if their transla-
tion vectors are parallel. A natural hierarchy emerges
based on the number of distinct parallel motion classes
the scene contains.

First consider scenes that have only one motion
class. If the class corresponds to the null direction
vector, then the scene is static and view interpola-
tion reduces to mosaicing. If the direction vector is
non-null, view interpolations can be produced via the
parallel motion algorithm (Section 3.4).

When the scene has two motion classes, the planar-
parallel motion algorithm applies (Section 3.5). With
four or more motion classes, TAB can be determined
as described in Section 4 from the four directions as-
sociated with the classes, and the linear motion algo-
rithm applies (Section 3.3). For scenes with exactly
three motion classes, either the planar-parallel algo-
rithm applies or else TAB can be approximated after
making reasonable assumptions about the reference
cameras [9].

3.7 A�ne cameras

The mathematical development for a�ne cameras,
which includes orthographic cameras, is similar to that
for pinhole cameras. However, except in special cases,
no camera-to-camera transformation exists between
the reference cameras. Hence it is typically impossible
to guarantee linear motion for the virtual objects. On
the other hand, interpolation of conjugate points al-
ways produces a physically-valid virtual view, without
needing to make the image planes parallel. Prewarps
can be applied to align conjugate directions and thus
achieve straight-line motion. However, in general it is
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only possible to align at most three conjugate direc-
tions. For a complete discussion, see [9].

4 Finding TAB
The problem of determining TAB is central to the

linear motion algorithm of Section 3.3. TAB can be
determined from four conjugate directions by a well-
known result used in mosaicing [13] (because conju-
gate directions become conjugate points if we treat
the reference cameras as being co-centered).

If the fundamental matrix can be determined for
two objects in the scene and if the objects are not
moving parallel to each other, then TAB can be deter-
mined directly from these two fundamental matrices.
The previous fact is proven in [9], which also gives
a method for approximating TAB from two conjugate
directions by making a reasonable assumption about
the internal parameters of typical cameras.

5 Applications
Dynamic view morphing has many potential appli-

cations; we list a few here: �lling a missing gap in a
movie, creating a \hand-o�" sequence to switch from
one camera view to another, creating virtual views
of a scene, removing obstructions or moving objects
from a sequence, adding synthetic moving objects to
real scenes, projecting motion into the future or past,
stabilizing and compressing movie sequences, and cre-
ating movies from still images.

6 Experimental results
We have tested the concepts of this paper on a va-

riety of scenarios. Fig. 6 shows the results of three
tests, each as a series of still frames from a view in-
terpolation sequence. The left-most and right-most
frames of each strip are the original reference views,
while the center two frames are virtual views created
by the algorithm.

To create each sequence, two preprocessing steps
were performed manually. First, the two reference
views were divided into layers corresponding to the
moving objects. Second, for each corresponding layer
a set of conjugate points between the two views was
determined. Since our implementation uses the Beier-
Neely algorithm [3] for the morphing step, we actually
determined a series of line-segment correspondences
instead of point correspondences. For each sequence,
between 30 and 50 line-segment correspondences were
used (counting every layer).

For all the sequences, the camera calibration was
completely unknown, the focal lengths were di�erent,
and the cameras were at di�erent locations.

The �rst sequence is from a test involving three
moving objects (counting the background object).

Since TAB could only be approximated, the appear-
ance of straight-line motion was achieved by aligning
the conjugate directions of motion for each object dur-
ing the prewarp step [9]. An object's direction of mo-
tion is given by the epipoles of the object's fundamen-
tal matrix. Instead of calculating the objects' funda-
mental matrices, we determined the epipoles directly
from the vanishing points of the tape \roads."

The second sequence involves two moving objects
(counting the background object) and a dramatic
change in focal length. The third sequence demon-
strates the parallel motion algorithm (Section 3.4).
The scene is actually static, but the pillar in the fore-
ground and the remaining background elements are
treated as two separate objects that are moving par-
allel to each other.

7 Conclusion
We have presented a method for interpolating be-

tween two views of a dynamic scene. The method
requires that, for each object in the scene, the move-
ment that occurs between the �rst and second views
must be equivalent to a rigid translation. The algo-
rithm produces virtual views that portray one version
of what might have occurred in the scene. It is only
necessary that the image planes of the reference cam-
eras be parallel to each other and to the motion of an
object for the interpolated view of the object to be
physically correct. With more conditions on the ref-
erence cameras, the object can be portrayed moving
along a straight-line path and even moving at con-
stant velocity along a straight-line path. Interpolated
views of a complete dynamic scene can be created by
separately creating interpolated views of the scene's
component objects and then combining the results.

By choosing to interpret the views as coming from
the same position in space, a single theory has been
created which applies to many di�erent possible situ-
ations. In particular, the same theory applies whether
or not the original reference cameras were actually co-
centered. Since it is impossible to know from the refer-
ence views themselves how the original reference cam-
eras were positioned relative to each other, the �xed-
camera formulation is a natural default assumption.
The virtual camera can be chosen to move along any
trajectory; the choice simply alters the interpretation
of the virtual views. The �xed-camera formulation
also allows for a simple and intuitive development of
the underlying mathematics of the theory.

Finally, it has been shown that each object in a
dynamic scene has a corresponding fundamental ma-
trix as long as the assumption of translational motion
holds. From two such (distinct) fundamental matri-
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Figure 6: Experimental results.

ces, the camera-to-camera transformation can be de-
termined.

The topics of this paper, as well as many additional
topics and observations, are discussed in much greater
detail in [9].
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