Simplifying Surfaces with Color and Texture using Quadric Error Metrics

Michael Garland*

Paul S. Heckbert'

Carnegie Mellon University

Abstract

There are a variety of application areas in which there is a need
for simplifying complex polygonal surface models. These models
often have material properties such as colors, textures, and surface
normals. Qur surface simplification algorithm, based on iterative
edge contraction and quadric error metrics, can rapidly produce
high quality approximations of such models. We present a natural
extension of our original error metric that can account for a wide
range of vertex attributes.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—-surface and object representations

Keywords: surface simplification, multiresolution modeling,
level of detail, quadric error metric, edge contraction, surface prop-
erties, discontinuity preservation

1 INTRODUCTION

Many applications in computer graphics and visualization can ben-
efit from automatic simplification of complex polygonal models.
Such models are usually not only geometrically complex, but they
may also have various surface properties such as colors, textures,
and surface normals. Scanning and acquisition methods often pro-
duce surface meshes that are much more dense than actually re-
quired for the intended application. Computer games and dis-
tributed virtual environments must often operate on systems where
rendering and transmission capacity is highly constrained and
therefore require strict control over the level of detail used in mod-
els. Realistic simulation systems typically have object databases
that far exceed the capacity of even the most powerful graphics
workstations.

In recent years, a variety of surface simplification algorithms
have been developed. Among these, our algorithm, based on itera-
tive edge contraction and quadric error metrics, provides a solution
which is a practical mixture of efficiency and quality. In this paper,
we present a generalization of the basic error metric developed in
our previous paper [6] that is capable of simplifying surfaces with
vertex properties such as color and texture.

2 BACKGROUND AND RELATED WORK

In this paper, we are primarily concemed with the problem of
polygonal surface simplification. Given an initial triangulated sur-
face, we want to generate a simplified model that, as much as pos-
sible, faithfully reproduces the features of the original.

An assortment of simplification algorithms have been proposed
in recent years. Most of those which are applicable to arbitrary 3D
surfaces can be broadly classified into 3 categories. Vertex clus-
tering methods [17] spatially partition vertices and unify vertices
within the same cluster. They are generally very fast and work on
arbitrary collections of triangles, but can often produce relatively

*garland@cs.cmu.edy; http://www.cs.cmu.edu/~garland/; Computer Sci-
ence Dept., Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213,
tph@cs.cmu.edu; http:/www.cs.cmu.edu/~ph/

0-8186-9176-x/98/$10.00 Copyright 1998 IEEE

263

Before

Figure 1: Contraction of the edge (v, v,) into a single point. The
shaded triangles become degenerate and are removed during the
contraction.

poor results. Vertex decimation algorithms [18] select unimpor-
tant vertices (based on local shape heuristics), remove them, and
retriangulate the resulting holes. These methods tend to produce
fair results and are reasonably efficient. [terative edge contraction
[6, 7, 8, 15, 16] has been widely used. Edges are ranked accord-
ing to their cost, which is typically the amount of error introduced
into the model as a result of contracting the edge. At each itera-
tion the lowest-cost edge is contracted and the costs of neighbor-
ing edges are updated. The primary difference between the vari-
ous contraction-based methods is the error metric used for ranking
edges. These algorithms generally produce good results, although
running time varies greatly between methods. Iterative edge con-
traction is also particularly attractive because it naturally leads to a
useful multiresolution model representation [8, 9, 19].

There has been comparatively less work done on simplifying
models with material properties. For restricted surface classes,
such as height fields [5], very simple methods can work quite well.
However, more general surfaces require more advanced techniques.
Hoppe [8] explicitly included attributes in his error metric. Certain
et al. [1] discussed adding surface color to a wavelet-based mul-
tiresolution framework, and Hughes et al. [10] investigated the sim-
plification of Gouraud-shaded meshes produced by radiosity simu-
lations. Cohen ez al. [2] developed an algorithm capable of repa-
rameterizing texture maps as a surface is simplified.

In this paper, we begin by restating our basic algorithm [6] and
next provide an expanded analysis of its behavior. We then present
the generalization of our quadric error metric to handle vertex at-
tributes, and finish with discussion, results, and summary of our
work.

3 FUNDAMENTAL ALGORITHM

Our algorithm, originally developed in [6], belongs to the class of
iterative edge contraction methods. Every edge is assigned a cost,
namely the error resulting from its contraction. To efficiently track
the lowest-cost edge, we maintain all edges in a heap keyed on cost.
At each iteration, we can extract the lowest-cost edge and contract
it. Our error metric offers a compromise between very fast low-
quality methods and very slow high-quality methods. Moreover, it
provides a useful characterization of the local shape and error of the
current approximation.

The fundamental operation of our algorithm is edge contraction,
which we will write (v;,v,) — V. To perform this simple con-

traction, we need to perform the following three steps: (1) move
vertices v, and v, to the position v, (2) replace all occurrences of v,
with vy, and (3) delete v, and any degenerate faces. Figure 1 illus-
trates the effect of a single edge contraction. As has been recently
observed [6, 15], we can just as easily consider the contraction of
any arbitrary pair of vertices. However, we will not consider the
case of non-edge pairs in this paper. Our experience has shown
that, while greedy edge contraction produces consistently good re-
sults on many kinds of models, greedy contraction of arbitrary pairs
is not as robust and does not perform as consistently.

3.1

We characterize the geometric error of an approximation using the
metric described in our previous paper [6] which is based on the
metric of Ronfard and Rossignac [16]. Conceptually, we associate
a set of planes with every vertex of the model. The error at that
vertex is defined to be the sum of squared distances of the vertex to
all the planes in its set. Each set is initialized with the faces incident
to the corresponding vertex in the original model. When an edge is
contracted into a single vertex, the resulting set is the union of the
two sets associated with the endpoints.

However, these “sets” are purely conceptual; we do not represent
them explicitly. Each face in the original model defines a plane
which satisfies the equation! nTv+ d = 0, where n = [n,n, 1,]" is
a unit normal and 4 is a constant. The squared distance of a vertex
v=[xyz] tothis plane is given by

Basic Quadric Error Metric

DP=m'v+d)?=wn+d)m v+d) =v' (an')v+2dn"v+d>

This is a quadratic form, plus a linear term, plus a constant. We can
conveniently represent D? using the quadric Q:

Q= (A,b,¢) = (nn",dn,d*)
O(W) =V Av +2bTv +c.

This requires 10 coefficients to store the symmetric 3 x3 matrix A,
the 3-vector b, and the scalar c.

The addition of quadrics can be naturally defined component-
wise: Q1 (V) + Q2(v) = (Q1 + Q2)(v), where (@) + Q1) = (A +
Ay, by + by, ¢; +¢3). Thus, to compute the sum of squared dis-
tances to a set of planes, we only need one quadric which is the
sum of the quadrics defined by each of the individual planes. And
when contracting the edge (vy, v;), the resulting quadric is merely
the sum Q = Q; + Q,. Furthermore, we can define the cost of
a contraction (v{,v,) — V as the error at ¥ which is Q(V) =
Q1 (V) + (V).

This direct summing of quadrics can lead to the minor inaccuracy
of double and triple counting [6] of the associated planes. However,
we find the simple additive structure more appealing than the more
complicated inclusion-exclusion rule [12] required to correct the
problem. Also, to simplify the presentation we have assumed that
all planes are uniformly weighted. However, in applications where
surface triangles will be of significantly varying sizes, it is useful to
weight quadrics by the area of the contributing triangle.

In practice, it is also necessary to check each proposed contrac-
tion and verify that it does not cause the mesh to fold over on itself,
Previously, we suggested using a simple normal-flipping heuristic
[6). However, Edelsbrunner and Nekhayev [3] have developed a
more effective procedure, as well as a technique for preventing
topological changes to the mesh. A further check that the surface re-
mains a manifold may be required if our algorithm is implemented
using data structures that can only represent manifold surfaces.

1By convention, we will assume that all vectors are column vectors.
Thus, n'v = n-v is the inner product of two vectors. We will generally
use the transpose hotation for the elements of the quadric equation and the
dot notation elsewhere. The outer product nn' produces a 3 x 3 matrix.

264

Figure 2: Result of simplifying a bunny model. Only 1.4% of the
original faces remain. Centered around éach vertex is an isosurface
of the corresponding quadric.

3.2

The quadrics which we construct during simplification also possess
a useful geometric interpretation. For a particular quadric, consider
the level surface Q(v) = e. This is the set of all points whose error
with respect to Q is . The resulting isosurface is a (potentially de-~
generate) ellipsoid; the possible degenerate forms are cylinders and
parallel planes. Algebraically, A is a symmetric positive semidefi-
nite matrix whose eigenvalues and eigenvectors define the principal
axes of the ellipsoids. Also note that, in statistical terminology, A
is the sample covariance matrix of the face normals [11].

We have also suggested that quadrics characterize the local shape
of the surface. This is apparent in Figure 2, which illustrates
the quadric isosurfaces produced by the simplification of a bunny
model. For vertices on creases, such as on the neck and ears, the el-
lipsoids are cigar shaped. They are elongated in the direction of the
crease. In contrast, where the surface is less curved, such as on the
forehead, the quadrics are thin and roughly circular, like pancakes.
Intuitively, we might conclude that the quadrics will be elongated
in directions of low curvature and thin in directions of high cur-
vature. We can provide mathematical support for this conclusion.
Let us suppose that our model is actually a differentiable manifold,
the limit of an infinitely fine tessellation. We have shown [4] that,
under suitable conditions, the two smallest eigenvalues of A are
proportional to the squares of the principal curvatures [14] and the
corresponding eigenvectors are the corresponding principal direc-
tions.

interpretation of Quadrics

3.3 Vertex Placement

When considering the contraction of an edge (v, v»), we need
some way of choosing the target position V. There are two pri-
mary policies to choose from, and the choice between them must be
made with the intended application in mind. We must trade space
efficiency against approximation quality.

Subset placement is the simplest strategy that we can adopt. We
simply select one of the endpoints as the target position. In other
words, we will contract one endpoint into the other. To choose
between endpoints, we merely need to find the smaller of Q(v;)
and Q(v,). Under this policy, any approximation which we produce
will use a subset of the original vertices in their original positions.

We can often produce better approximations using optimal
placement, which we have previously [6] recommended. For a
given quadric Q, we can try to find the point ¥ such that Q(¥) is
minimal. Since Q(¥) is quadratic, finding its minimum is a linear

problem; the minimum occurs where 3Q/0x = dQ/dy = 8Q/dz =
0. By solving this system of equations, we find that the optimal
position and its error are given by:
v=-A""b and Q@) =-b'A'b+c

Geometrically, the minimum v will lie at the center of the concen-
tric ellipsoidal isosurfaces of Q. Of course, the matrix A may not
be invertible. In other words, there may be infinitely many mini-
mal points. This is exactly the case where the level surfaces of Q
are degenerate ellipsoids. In such circumstances, we can use sub-
set placement as a fall-back strategy. Indeed, we can also consider
other intermediate policies such as selecting between the endpoints
and the midpoint, or we might choose to find the optimal position
along the edge.

The choice of optimal vs. subset placement depends on the in-
tended application. Optimal placement will tend to produce approx-
imations which fit the original more closely. The resulting meshes
also tend to be better shaped — triangles are more equilateral and
their areas are more uniform. This is the best choice for generat-
ing fixed approximations of an original. However, if the goal is to
produce some sort of adaptive representation [8, 9, 13, 19], subset
placement may be preferable. The overall fit of the models will
be inferior, but we can save significantly on storage. With opti-
mal placement, we must store delta records with each contraction
to encode the new vertex position. Using subset placement, we
can eliminate such overhead entirely. Since this overhead grows
linearly with the number of attributes, the space savings of subset
placement can become substantial.

3.4 Homogeneous Variant

The original description of the quadric error metric [6]} used an al-
ternate notation. We can treat the quadric Q as a homogeneous
matrix where

A

[][]

This gives us the homogeneous quadratic form Q(v) = h'Qh
where h is the homogeneous vector [v 11", We have found this
less convenient than the form presented earlier because it requires
us to move back and forth between regular and homogeneous coor-
dinates. It is also slightly less efficient because all our matrix opera-
tions must be on 4 x 4 rather than 3 x 3 matrices; this is a noticeable
difference, for example, when performing matrix inversions.

4 PRESERVING DISCONTINUITIES

Discontinuities of a model, such as creases, open boundaries, and
borders between differently colored regions, are often among its
most visually significant features. Therefore, their preservation is
critical for producing quality approximations. The fundamental al-
gorithm that we have just outlined can already handle shape dis-
continuities (e.g., creases), and we can easily extend it to handle
boundary curves as well.

Surface shape discontinuities (where there is only C° continuity)
are implicitly preserved by the error metric as described. For ex-
ample, consider the sharp edges of a cube. A point on the edge of a
cube will have contributing planes from both adjoining faces of the
cube, Since these planes are perpendicular, the cost of moving the
point along the edge is much lower than moving it away from the
edge. Consequently, the algorithm will be strongly biased against
altering the shape of these edges.

265

(a) Original cylinder

b) No constraints

S

(c) Boundary constraints

Figure 3: (a) Open-ended cylinder with 7,960 faces. (b) With un-
constrained boundaries, this 2,460 face approximation quickly de-
generates. (c) Using boundary constraints, the shape is preserved
(also 2,460 faces).

Figure 4: Sample boundary constraint plane. Every edge along the
boundary defines a single constraint plane.

In contrast, the basic algorithm ignores boundary curves. Fig-
ure 3a shows a cylinder model with open boundaries at each end.
Without any modification, the basic simplification algorithm will
produce approximations such as shown in Figure 3b. This is clearly
unacceptable.

Fortunately, we can easily incorporate boundary constraints into
the existing framework. During initialization, we flag all bound-
ary edges. For each face adjacent to a given boundary edge, we
compute a plane through the edge that is perpendicular to the face.
The perpendicular plane defines a boundary constraint plane (see
Figure 4). We can form a quadric for this plane, just as with a reg-
ular face plane. We weight the resulting quadric by a large penalty
factor, and add it into the initial quadric for each of the endpoints.
Figure 3c shows the resulting approximation when boundary con-
straints are enabled. It has the same number of faces as Figure 3b;
however, it is a far superior approximation because the boundaries
have been properly preserved.

Boundaries may also occur in discrete surface attributes. Con-
sider a surface similar to the one pictured in Figure 7 where each
face would be assigned a color from a small discrete palette. Or
perhaps we have a map 4-colored by country. Each edge dividing
two faces of different colors can be marked as a boundary. This
would cause our algorithm to try to faithfully preserve the borders
between separate regions.

Naturally, there are limits to this approach. If, for instance, every
face is assigned a slightly different color, or if we have a triangu-
lated regular grid where every other triangle is a hole, the results
will not be good. The implicit assumption is that boundaries are
reasonably sparse.

5 SURFACE PROPERTIES

Many models have surface properties beyond simple geometry. In
computer graphics, the most common are surface normals, colors,
and textures. To produce approximations which faithfully represent
the original, we must maintain these properties as well as the sur-
face geometry. Our basic error metric, based on our earlier work
[6] and restated earlier, only considers surface geometry when sim-
plifying the model. This is an obvious shortcoming. However, we
can formulate a natural extension of the basic metric which will
incorporate surface properties defined as vertex attributes.

We will assume that each vertex, in addition to its position in
space, has some associated values which describe other properties.
As with geometric position, these values will be linearly interpo-
lated over the faces of the model. Consequently, these properties
must be continuous; they cannot be restricted to a discrete set of
values. Furthermore, we will assume that distance between two
property values is measured with the usual Euclidean metric.

As an ongoing example, we will consider a Gouraud-shaded
model for which each vertex has an associated color value [r g b]T
where 0 <r, g,b <1 (see Figure 9).

We need some way to measure errors when surfaces have proper-
ties. One natural approach is to use a segregated error metric which
measures errors in each attribute separately. This bears some resem-
blance to Hoppe’s [8] energy function, which has separate terms for
spatial and scalar attributes. Using our quadric-based algorithm, we
could assign a separate quadric to each attribute. In this case, the
storage cost of the quadrics would grow linearly with the number of
attributes, For our colored surface example, we could measure error
as Q(Vpos) + R(vyg) using separate quadrics Q and R for position
(Vpos =[x y z]™) and color (Vg =1[rg b1y, respectively. This will
work acceptably with a subset placement policy, because the points
we are choosing from (i.e., the two endpoints) are both known to be
valid points on the surface. However, this approach will not work
well at all with optimal placement because this simple error for-
mula does not account for the cross correlation between position
and color.

When using optimal placement, we allow vertex positions to
move freely so as to achieve better surface approximations. The
simplest scheme for maintaining attribute values would be to sim-
ply copy the attributes of v, to v, but this fails quite noticeably (see
Figure 10b). On the other hand, if the optimal position was con-
strained to lie along the edge, we could simply interpolate attributes
along the edge. However, the optimal positions will, in general, lie
near the original surface, but not on it. Consequently, we cannot
simply interpolate the property values of the endpoints; we need
some way to synthesize entirely new values based on the new po-
sition. To do this, we use higher dimensional quadrics whose extra
coefficients will implicitly encode the cross correlation between the
various properties.

We will treat each vertex as a vector v € R*. The first 3
components of v will be spatial coordinates, and the remaining
components will be property values. In the case of our colored
model, n = 6, and we would use 6-dimensional vectors of the form
[*xycrsg b]T. For consistent results, the model can be scaled so
that it lies within the unit cube in R". This ensures that the various
properties (including position) have the same scale.

5.1

Having placed our vertices in n-dimensional space, we can formu-
late an extended version of our quadric error metric. Consider the
triangle T = (p,q,r). For our example of a colored surface, we
would have p = [px py p; Pr Pg P»]" and so forth. Since we have
assumed that all properties are linearly interpolated over triangles,
these three n-dimensional points determine a 2-dimensional plane

Generalized Error Metric

266

Figure 5: Orthonormal vectors e; and e, define a local frame, with
origin p, for the 2-plane defined by the triangle (p, q, r).

in R”. Given this, we can construct a quadric that will measure the
squared distance of any point in R” to this plane.

To derive the n-dimensional quadric for the 2-plane containing
T, we begin by computing two orthonormal unit vectors e; and e,
which lie in the plane. Figure S shows a pictorial representation of
these vectors. They are defined by the equations:

_4a-p
= Ta—pl

o _ TP (er-C—p)e
P r—p—(e-r—p)ell’

This gives us two unit-length vectors which form two axes of a
local frame with p as the origin. In principle, we could compute an
entire local frame with axes ey, ..., e,. However, in order to com-
pute distances to the 2-plane of T, we will only need to explicitly
represent the axes in the plane; for the rest, it is enough to know
that they exist and that they are all perpendicular to the plane in
question.

Now, consider an arbitrary point v € R". We are interested in the
squared distance D? of v from the plane of T. Letu =p — v; the
squared length of u can be decomposed as

fulf? = (u-e,)% +- - + (u-e,)?,
which we can rewrite as
(ees)’ + -+ (u-e,)’ = [[u]® — (-e)’ — (u-e)”.

Note that the left hand side is the squared length of u along all com-
ponents perpendicular to the plane of 7', in other words, the squared
perpendicular distance of v to the plane of T. This is precisely the
distance we are interested in:

D? lul® — (u"ep)” — (u'e,)?

uu— (u'e;) (e, ") — (u'er)(e;Tu).

By expanding and collecting terms, we arrive at the following for-
mula:

D =

vViv—2p'v+pp
T T T 2
—V (e;e;)v+2(p-e)e; v—(p-er)
—vT (€26,)V + 2(p-e2)e; v — (p-€2)’,
which has the structure of our quadric metric. We can rewrite it as
D? = vTAv +2bTv + ¢ where:

A = I- elelT - ezezT
b = (p-e)e + (pee—p
¢ = pp—(pe)—(pe)

(120 .3.4.3] [220.3.5.3]
[010.5.3.31 [110.54.3]
210.5.5.3]
[000.7.3.3] [100.7.4.3]
0.06 0 0 0 -059 O
0 023 0 115 0 0
A= 0 0 600 O 0 0
- 0 1.15 0 5.77 0 0
-059 0 0 0 5.94 0
0 0 0 0 0 6.00

Figure 6: At top is a simple mesh, of 6 triangles, with xyzrgh values
at each vertex (rgdb values in italic type). Summing quadrics for
each face yields the matrix A shown.

In this generalized quadric, A is an nx n matrix, and b is an n-
vector.

In Figure 6, we can see a simple example of how xyzrgh quadrics
work. On top is the 6 triangle neighborhood of the central vertex.
Each vertex is labeled with its xyzrgb coordinates. Note that r co-
ordinate is highly correlated with y and that g is highly correlated
with x. Below the mesh, we see the matrix A for the initial quadric
associated with the central vertex. It is computed by summing the
quadrics for the 6 surrounding faces. By examining the non-zero
off-diagonal elements, wecan see how the quadric records the high
correlation between r & y and between g & x.

Because our generalized quadric error metric has exactly the
same structure as before, we can substitute it into our fundamen-
tal algorithm very easily. We have changed the way quadrics are
constructed from initial triangles, but we use them in an identical
manner. In particular, we can use the same simple formulas for
finding the optimal target of a contraction,

6 DISCUSSION

This generalized metric allows us to continue to use our optimal
placement policy. It provides a means to synthesize new property
values at vertex positions which do not lie anywhere on the origi-
nal surface. Since, in most cases, our algorithm produces the best
quality approximations using optimal placement, this is a signifi-
cant advantage.

Unfortunately, for every property, we must add extra dimensions
to the vertices and quadrics. Consequently, as we add more and
more properties to a surface, the size of the quadric matrix grows
quadratically in the size of the attributes, and the running time will
also increase. We can summarize the space requirements for a few

267

common cases as follows:

model type vertex A toel;ilci:?:r?ts
geometry only xyzl" 3x3 (})=10
tiiig;eetry +2D [xyzsd" | 5x5 (;) =21
(gg(:f;u; color [xyzrghl" | 6x6 (g) =28
ﬁz(r)gaeltsry * [xyzabe]' | 6x6 (§)=28

However, this overhead is not extreme. For instance, we have run
tests on models with both color and surface normals at every vertex;
this requires 9-dimensional quadrics. A 30,000 face model can still
be simplified in under 30 seconds on a PentiumPro 200 system.

We must also be able to deal with constraints on the range of
property values. RGB colors, for instance, must be kept within
the color cube. While our algorithm will not generate colors far
outside the cube, since they would very poorly fit the data, it may
generate colors that are slightly below 0 or above 1. In such cases,
we merely clamp the offending colors to the nearest point on the
color cube. Since only small distances are involved, this should
not introduce any appreciable artifacts. The same caution must be
applied to texture coordinates. For surface normals, we need to
rescale the resulting vectors to have unit length.

In our presentation of the generalized error metric, we have
weighted all vertex attributes equally. However, for optimal results
one might wish to selectively weight certain attributes more than
others. It seems doubtful that there is a single optimal weighting
for a given set of attributes, but it can easily be offered as a user-
selectable preference.

A prime application of our algorithm is the simplification of
Gouraud-shaded meshes produced by radiosity simulations. Even
the simplest geometries are often carved up into very small poly-
gons to achieve high-quality shading. The resulting surfaces are
ripe for simplification; typically, the surface geometry is heavily
over-sampled and the colors vary smoothly over large areas.

6.1 Attribute Continuity

We have assumed that property values vary continuously over the
surface, but in practice, this is not always the case. For example,
consider simply wrapping a texture around a cylinder. There will
be a seam where s wraps from O to 1. Consequently, every vertex
along this seam must have two separate texture coordinates, and
this will introduce a discontinuity at every one of these vertices.

To represent and simplify this textured cylinder with our current
algorithm, we would need to replicate each vertex along the seam;
each copy would have separate texture coordinates but identical po-
sitions. In other words, we must force the surface to be a topological
plane rather than a cylinder. Using boundary constraints to maintain
the seam, this might produce acceptable results.

However, this will not work for all cases. A model might con-
ceivably have a distinct piece of texture for each face, and this
would create a discontinuity at every edge. As mentioned in Section
4, the algorithm does not work well when constraints proliferate to
this extent. A more complete solution would require that we allow
multiple values for each property at each vertex. To apply our sim-
plification algorithm, we would need to create multiple correspond-
ing quadrics for each vertex. While we have not yet implemented
this approach, we believe it would work well.

6.2 Euclidean Attributes

We have also assumed that the metric for measuring the difference
in attributes is Euclidean. More specifically, we have assumed that
attribute values at the vertices will be linearly interpolated over the
faces of the model.

Perceptual color spaces are not Euclidean in RGB. However, we
expect that the approximations produced by our algorithm will be
displayed as Gouraud-shaded surfaces. Consequently, for display,
colors will be linearly interpolated over faces. Thus, regardless of
the non-Euclidean nature of RGB color space, our assumptions co-
incide with the way the results will be displayed.

Surface normals are another attribute type which might not seem
to conform with our Euclidean assumptions. However, we con-
tend that our algorithm will typically treat normals appropriately.
Consider the Gauss mapping of the surface, where every vertex is
mapped to the point on the unit sphere corresponding to the unit
surface normal at that vertex. Simplifying surface normals as part
of our generalized quadric metric is essentially equivalent to sim-
plifying this spherical surface with the basic algorithm. So, as long
as normals don’t change too rapidly, our extended algorithm will
produce good surface normals.

7 RESULTS

Figures 8a—c illustrate the performance of the fundamental algo-
rithm on a very complex surface which is purely geometric. The
original model contains 1,085,634 faces; the approximations shown
contain 20,000 and 1,000 faces. Producing these approximations
might require hours with some algorithms. However, on a Pen-
tiumPro 200 system, the running time of our algorithm was 46
seconds for initialization (constructing initial quadrics and order-
ing edges in a heap)? and 130 seconds for the actual simplification.
During execution, the total memory used was roughly 200MB, of
which 40MB were required to store the quadrics at each vertex (us-
ing 10 doubles each). The initial surface mesh is really very
dense; the approximation shown in Figure 8b uses only about 2% of
the original number of triangles yet preserves almost all of the sur-
face features. In Figure 8d we see a very simple 1,000 face (0.01%)
approximation. Most of the detail of the surface, such as the neck-
lace and facial features, have been removed. However, the basic
shape of the object is still faithfully preserved and, at very low res-
olutions, would be a suitable replacement.

7.1 Color

Figure 7 is a simple demonstration of our algorithm using 6-D
xyzrgb quadrics. The original surface on the left is a piece of a
sphere Gouraud-shaded with a swirl pattern; it also has an open
boundary. The approximation is about 5% the size of the origi-
nal. Notice that the structure of the mesh conforms closely to the
color pattern. The mesh is fairly sparse in areas of constant color.
Near the borders of the color pattern, not only is the triangle den-
sity higher, but the edges are properly aligned with the curve of the
swirl pattern.

A more challenging Gouraud-shaded example is shown in Fig-
ure 9. The surface itself is a sphere built from points on a latitude-
longitude grid. Each vertex is assigned a color based on the eleva-
tion of the Earth’s surface at that point. Since it is so simple, the
surface shape is preserved very accurately. More importantly, the
coloring of the surface is also preserved well. Note that larger tri-
angles appear in areas of constant or linear color variation, such as
oceans, while smaller triangles occur along the coastlines.

2We have excluded the time required to read and write files to disk since
these vary significantly based on the format used.

268

Figure 7: At left: a curved surface (18,050 faces) with colors at
each vertex. Atright: 1,000 face approximation. Notice that mesh
edges follow the color contours.

7.2 Texture

Our extended algorithm can just as easily be used to simplify sur-
faces with texture maps. In Figure 10a, we are looking down at a
square height field of the eastern half of North America. The sur-
face is textured with a satellite photograph with height given by
altitude and bathymetric data.

Figure 10b shows the result of simplifying this surface using op-
timal placement without regard for the texture coordinates. For
each contraction, we simply propagate the texture coordinates of
vi. As we would expect, this produces very poor results. Moving
vertices without synthesizing correct texture coordinates causes the
texture to warp like a rubber sheet. For example, note the substan-
tial distortion around Florida and New England.

In contrast, the approximation shown in Figure 10c, with the
same number of faces, was produced using an xyzst extended
quadric. The algorithm produces nearly the same geometric surface
as before. However, by using the extended metric, we have allowed
the algorithm to synthesize appropriate texture coordinates for the
new vertices. Unlike colored surfaces (such as Figure 7), the edges
of the mesh do not align with features in the texture. The simplifi-
cation algorithm never accesses the pixels of the texture; it merely
tries to update texture coordinates so that the texture is mapped onto
the surface in the same way as it was originally.

In the example of Figure 10, there is a direct correspondence
between (x, y) and (s,#). This would provide an alternate way to
synthesize new texture coordinates: for any vertex position, we can
use x and y to compute appropriate s and ¢ values. However, our
extended algorithm provides a much more general solution.

8 SUMMARY AND FUTURE WORK

Our algorithm can quickly produce good quality approximations
of polygonal surface models. It is one of the fastest algorithms
available for producing quality approximations. The fundamental
algorithm works well for purely geometric surfaces [6]. In this pa-
per, we have explored our original algorithm further. We have pro-
vided more detailed analysis of the nature of quadrics, and we have
demonstrated that it is capable of simplifying models of reasonably
high complexity. Our original algorithm was limited to surfaces
without surface properties such as color and texture. In this paper,
we have presented a new generalized error metric, which substan-
tially expands the set of models which can be simplified using our
algorithm. As we have shown, it is capable of rapidly producing
quality approximations that preserve both surface shape and asso-
ciated surface properties.

There are certainly further improvements that could be made to

the algorithm we have outlined here. A more complete system
would also include support for multiple attribute values per vertex.
This would, for instance, help solve the problems posed by texture
seams and by surface normal discontinuities. We also believe that
the memory usage of our implementation could be reduced.
Related information and a prototype implementation of our basic
algorithm can be found at http://www.cs.cmu.edu/~garland/quadrics/.

9 ACKNOWLEDGEMENTS

We would like to thank Konrad Polthier for the interesting discus-
sion of relating the quadric error metric and differential geometry.
Thanks also to the Stanford Graphics Lab for making the models
of the Buddha statue and the bunny available’. The model of the
Earth is based on an image of the ETOPOS Earth elevation dataset
provided by the USGS®. This research was supported under NSF
grants CCR-9357763 & CCR-9619853 and by the Schlumberger
Foundation.

References

[1] Andrew Certain, Jovan Popovi¢, Tony DeRose, Tom
Duchamp, David Salesin, and Werner Stuetzle. Interactive
multiresolution surface viewing. In SIGGRAPH 96 Confer-
ence Proceedings, pages 91-98, August 1996.

Jonathan Cohen, Dinesh Manocha, and Marc Olano. Sim-
plifying polygonal models using successive mappings. In
Proceedings IEEE Visualization *97, pages 395-402, October
1997.

(2]

[3] Herbert Edelsbrunner and Dmitry V. Nekhayev. Topology and
curvature preserving surface decimation. Technical report,
Raindrop Geomagic, Inc., Champaign, IL, 1997. rgi-tech-97-

010.

—

Michael Garland. PhD thesis, Carnegie Mellon University,
CS Department, 1998. To appear.

[4]

[5] Michael Garland and Paul S. Heckbert. Fast polygonal ap-
proximation of terrains and height fields. Technical report,
CS Dept., Carnegie Mellon U., Sept. 1995. CMU-CS-95-181,

hitp://www.cs.cmu.edu/garland/scape.

[6] Michael Garland and Paul S. Heckbert. Surface simplification
using quadric error metrics. In SIGGRAPH 97 Proc., pages

209-216, August 1997. hitp://www.cs.cmu.edu/ garland/quadrics/.

—

André Guéziec. Surface simplification inside a toler-
ance volume. Technical report, Yorktown Heights, NY
10598, Mar. 1996. IBM Research Report RC 20440,

http://www.watson.ibm.com:8080/search_paper.shtml.

(7}

[8] Hugues Hoppe. Progressive meshes. In SIGGRAPH ’96
Proc., pages 99-108, Aug. 1996. nhitp://research.microsoft.com/”

hoppe/.
9]

Hugues Hoppe. View-dependent refinement of progressive
meshes. In SIGGRAPH 97 Proc., pages 189-198, August

1997. http://research.microsoft.com/hoppe/.

[10] Merlin Hughes, Anselmo A. Lastra, and Edward Saxe. Sim-
plification of global-illumination meshes. Computer Graphics

Forum, 15(3):339-345, August 1996. Proc. Eurographics *96.

3http://www-gr:—xphics.stanford.eciu/data/SDscanrep/
“http://geochange.er.usgs.gov/pub/seaJevel/Contents/OSmi_pres.html

269

[11] I T.Jolliffe. Principal Component Analysis. Springer-Verlag,
New York, 1986.

[12] Donald E. Knuth. The Art of Computer Programming, vol-
ume 1. Addison Wesley, Reading, MA, Third edition, 1997.

[13] David Luebke and Carl Erikson. View-dependent simplifica-
tion of arbitrary polygonal environments. In SIGGRAPH 97
Proc., pages 199-208, August 1997.

[14] Barrett O’Neill. Elementary Differential Geometry. Aca-
demic Press, Boston, 1966.

[15] Jovan Popovié¢ and Hugues Hoppe. Progressive simplicial
complexes. In SIGGRAPH 97 Proc., pages 217-224, 1997.
http://research.microsoft.com/hoppe/.

[16] RémiRonfard and Jarek Rossignac. Full-range approximation
of triangulated polyhedra. Computer Graphics Forum, 15(3),

Aug. 1996. Proc. Eurcgraphics 96.

[17] Jarek Rossignac and Paul Borrel. Multi-resolution 3D approx-
imations for rendering complex scenes. In B. Falcidieno and
T. Kunii, editors, Modeling in Computer Graphics: Methods

and Applications, pages 455-465, 1993.

[18] William J. Schroeder, Jonathan A. Zarge, and William E.
Lorensen. Decimation of triangle meshes. Computer Graph-
ics (SIGGRAPH 92 Proc.), 26(2):65-70, July 1992.

[19] Julie C. Xia and Amitabh Varshney. Dynamic view-dependent
simplification for polygonal models. In Proceedings of Visu-

alization *96, pages 327-334, October 1996.

(@) (b) © (d) (e)

Figure 8: Simplifying geometry only: A very complex model of 1,085,634 faces (a) is simplified to 20,000 faces (b—c) and 1,000 faces (d-€).

(@) ®) © (d

Figure 9: Simplifying geometry & color: A Gouraud-shaded surface of 73,728 faces (a) is reduced to 20,000 faces (b) and 3,000 faces (c-d).

(@) (®) (©

Figure 10: Geometry & texture: A 3,872 face model (a) reduced to 53 faces without (b) and with (c) updating texture coordinates.

Simplifying Surfaces with Color and Texture using Quadric Error Metrics
Michael Garland, Paul S, Heckbert

542

