
2 8 I E E E S o f t w a r e J a n u a r y / F e b r u a r y 1 9 9 9 0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0 © 1 9 9 9

Q u a l i t y T i m e

Jeffrey Voas

Many have long regarded software assessment as
a way to determine the correctness of software. Formal
methods attempt to build in correct behavior.
Techniques such as formal verification and testing at-
tempt to demonstrate, either formally or empirically,
that the software computes the specified function—
whether or not the specified function is correct.

Note several subtleties here. First, to employ these
techniques, we need a definition of correct behav-
ior. Without an accurate definition of what we want,
we cannot confidently label an information system
as defective. Second, the predominant goal of soft-
ware assurance has been to demonstrate correct be-
havior. But as we all know, correct software can still
kill you. Correct and safe behaviors can conflict since
safety is a system property while correctness is a soft-
ware property. We must merge these two properties
if we ever hope to realize information assurance.

Information assurance is similar to software assur-
ance but covers a broader set of information integrity
issues, such as information security, privacy, and con-
fidentiality. For example, if a system can thwart at-
tacks, whether malicious or simply unfortunate, and
still provide accurate information on demand, then
it provides some degree of information assurance.
Information assurance also includes the traditional
software “ilities”(as they are called), such as software
safety, software security, reliability, fault tolerance,
correctness, and so on. Put simply, information as-
surance is accurate enough information that is avail-
able on demand for a given application or situation.

CULTURE DETERMINES BEHAVIOR

The software “ilities” offer an interesting mix of
complementary and conflicting behaviors. It is
nearly impossible to build a complex software pro-
gram that has a high degree of one “ility,” let alone
several of them. From a software perspective, the
key to attaining software assurance is to

1. determine the important “ilities” before sys-
tem design,

2. define precisely those software behaviors that
would violate each “ility,”

3. design and implement the software to not ex-
hibit behaviors defined in step 2, and

4. test the system to determine the effectiveness
of step 3.

When the “ilities” are mutually exclusive (for ex-
ample, security requirements thwart performance
requirements), we must perform trade-off analysis
to prioritize them. While this might seem more in-
tuitive than revolutionary, clearly a key reason why
the software industry is rumored to be 65-percent
inefficient is that practitioners do not adhere to
these basic steps—in particular, step 2.

The reason for this seems to be cultural—it is eas-
ier to define what we want a system to do than to
define what we don’t want it to do. When the infor-
mation system controls processes or information of
national security importance or that affects human
life, then clearly we cannot allow certain events to
occur. The developers must be told this.

I recently discussed with a system integrator for
a large safety-critical system how he could be con-
fident that the COTS software components he plans
to use are of high enough quality to not cause the
system to experience unsafe behavior. The system is
a huge air-traffic control project that will impact mil-
lions of lives during its decades of operation. The in-
tegrator asked how I would go about qualifying the
COTS software and suppliers.

I answered that I would start by defining what
the complete system was “not supposed to do.”That
is, I’d start with the results of a hazard analysis for
the complete system and then work my way down
to the individual components. With this information
in hand, I would combine static and dynamic impact
analyses to see whether the COTS software is likely
to violate those behaviors (defined in step 2). COTS
software could very well output states that place theE

D
IT

O
R

:
Je

ff
re

y
Vo

as
 •

Re
lia

b
le

 S
o

ft
w

ar
e

Te
ch

n
o

lo
g

ie
s

•
jm

vo
as

@
rs

tc
o

rp
.c

o
m

Protecting against What?
The Achilles Heel of Information Assurance

.

J a n u a r y / F e b r u a r y 1 9 9 9 I E E E S o f t w a r e 2 9

system into those hazardous modes.
After further discussions with the integrator, I

also discovered that not all components in question
were customized for safety-critical applications—
many were shrink-wrap data processing offerings.
This begged a system-level analysis that would first
define what the system was not supposed to do,
then decompose that further into what the COTS
software components could not be allowed to do.

My comments puzzled the integrator. I quickly
learned that he had never thought of writing down
the unsafe system behaviors. Yet he magically ex-
pected to be able to partition competing COTS
products into two groups:

1. those that would cause an unsafe system
problem, and

2. those that would not.
Unfortunately, this scenario plays out far too fre-

quently in practice. Fortunately, if developers do
perform step 2 as best they can, three techniques
can then help them assess the level of information
assurance provided. These assessment techniques
can also be used to increase assurance.

1. First, system-level testing (using the opera-
tional profile (J.D. Musa, Software Reliability
Engineering, Wiley, New York, 1998) as well as off-
nominal profiles (J. Voas and K. Miller, “Predicting
Software’s Minimum-Time-to-Hazard and Mean-
Time-to-Hazard for Rare Input Events,”Proc. Int’l Symp.
Software Reliability Eng., IEEE Computer Soc. Press,
Los Alamitos, Calif., 1995) can determine whether the
software exhibits behaviors defined in step 2.

2. Second, fault injection can be used to assess
how well the software thwarts malicious and non-
malicious anomalous behaviors. By thwart, I mean
the software does not exhibit those behaviors de-
fined in step 2.

3. Third, developers can use fault injection as a
sort of “hazard mining” to potentially augment
those behaviors defined in step 2 (J. Voas, “Hazard
Mining,” 2nd IEEE Workshop on Application-Specific
Software Eng. and Technology, Mar. 1999). Clearly, any
initial and even subsequent hazard analysis will
likely be incomplete. Hazard mining is a late-life-
cycle technique that allows system designers to gain
assurance that the list of undesirable system be-
haviors they have protected against is complete
enough to offer adequate information assurance.

After several hours of discussions with the in-
tegrator (and personally knowing nothing about
air-traffic control systems), we had enumerated
several key events that are fully unacceptable and
may enable a controller to make a wrong decision,
among them

♦ radar screens going blank,
♦ radar screens losing planes, and
♦ radar screens showing incorrect heading

information (for example, showing the plane going
in the wrong direction).

As we discussed the possibilities, we realized that
there was not an enormous set of undesirable be-
haviors for the new ATC system but rather a core set
of totally unacceptable fundamental failure modes.
Other failure modes could be deemed acceptable
since human judgment and intuition (as well as other
backup systems) could overcome such failures.

SPELLING OUT QUALITY

I titled this column “Protecting against What?”
because far too often practitioners set unattainable,
“tongue-in-cheek” quality goals that do not spell
out those events that must not occur. If practition-
ers do spell out such events, they can justifiably
argue that minimal information assurance has been
achieved once it can be demonstrated that the sys-
tem cannot exhibit the behaviors defined in step 2.
I say minimal because it is still possible that the in-
formation system can behave in unsafe ways that
we failed to define (and therefore protect against). If
practitioners opt not to address step 2, certificates
boasting assurance cannot be justified. ❖

Jeffrey M. Voas is cofounder and chief scientist of Reliable
Software Technologies. He holds a PhD in computer science
from the College of William and Mary. Contact Voas at
jmvoas@rstcorp.com.

Welcome to the first Quality Time column of 1999. Steve McConnell

has allowed me to pick up the reins from Shari Lawrence Pfleeger. I

would like to congratulate Shari for the excellent columns she provided

to IEEE Software’s readers. And I wish to thank Steve for giving me the

opportunity to continue this forum.

As the new Quality Time editor, I seek to challenge practitioners to

strive for higher levels of quality in their software, and to challenge re-

searchers to ponder and solve “real”quality problems. With the age of

“information assurance”upon us, quality must be our highest priority.

Since achieving higher levels of quality carries greater costs, we will at-

tempt to provide proof-positive for why and when to seek higher lev-

els of quality, and how to take those arguments to management.

This column will also serve to inform the software community about

new laws and pending legislation that directly affects software qual-

ity. I will work with Larry Graham, new editor of the SoftLaw column, to

ensure that such pieces appear in the proper column should similari-

ties arise. As you know, the software and IT landscape is rapidly chang-

ing, so look for updates on laws that may alter what you consider as

“good enough” software.

Finally, I depend on your feedback. Please tell me your opinions and

what topics you'd like to see addressed. I'd like for Quality Time to be

one of the first things you look for when a new issue arrives. And that

won't happen without lots of two-way communication.

—Jeffrey Voas, Quality Time editor

.

