
8 0 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9 0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0 © 1 9 9 9 I E E E

ince the early 1990s, the software industry has found it imperative to de-
velop complex and high-quality software in a highly productive and cost-
efficient way.1 The fundamental challenge entails coordinating and con-
trolling available resources to develop satisfactory software within time

constraints and at minimal cost.
If this process is undertaken manually, project managers rarely can hope to de-

velop optimal schedules within reasonable time frames. Yet with the growing costs
and tightening time requirements of software development, such an effort is nec-
essary: Developing a program with 100,000 lines of code can easily consume more
than a year and $5 million. Given such figures, anything that reduces the time and
cost by even 5 percent is worth doing.

There is growing concern in the software industry about the lack of an adequate
formal model for managing such development.1−3 According to Capers Jones, most
work in software engineering has focused on building computer-aided software
engineering tools to facilitate design, implementation, and testing, while “formal
methods and tools used by management as the basis for sizing, planning, estimat-
ing, and tracking major software projects are often close to nonexistent.”4

S

Researcher’s
CORNER

Technica l and manager ia l complex i t y increas ing ly
over whelm pro jec t managers. To re in in that complex i t y,
the authors prop ose PM-Net, a mo del that captures the
concur rent, i te rat ive, and evo lut ionar y nature o f so f t ware
deve lopment. I t adopts the bas ic concepts o f Pet r i
nets—graphica l mo dels o f in format ion f low—with
ex tens ions to represent b oth dec i s ions and ar t i fac ts.

Carl K. Chang, University of Illinois at Chicago

Mark Christensen

A Net Practice for
Software Project
Management

Thus, we propose a novel technique—Project
Management Net—to generate near-optimal re-
source allocation and schedules.5 PM-Net’s analysis
of project status and decision making are based on
genetic algorithms, which are used to emulate ge-
netic evolution mechanisms.

Software Project
Management

For the software project manager, the reliable
production of large software systems remains a
thicket of problems, including

♦ assembling, training, and motivating a large
workforce;

♦ developing or adopting engineering and
management processes;

♦ developing and maintaining requirements;
♦ planning, budgeting, and scheduling the

project;
♦ identifying and resolving resource conflicts;
♦ monitoring the entire project continuously,

applying corrective action as new conflicts arise.
In addition, software project management in-

volves the difficulties arising from products and un-
derlying tools of an evolutionary nature. These fac-
tors are especially pervasive in large projects.

Project management is a problem-solving activ-
ity that involves four steps:

1. Determining what tasks must be done.
2. Deciding how to do them, including in what

sequence and by whom.
3. Controlling how they are to be done.
4. Evaluating (or measuring) what was done.
Determining what must be done typically takes

the form of a plan, but popular planning strategies
fail to address one or more pivotal concerns in soft-
ware development. A work breakdown structure, or
WBS, provides a hierarchical view for the whole pro-
ject but does not identify the precedence of rela-
tionships among the work packages.6 Even the
classic, network-based planning models used
today—such as PERT (Program Evaluation and
Review Technique) and CPM (Critical-Path Method)—
are often inadequate for large projects; they are weak
in modeling and analysis of the concurrent, iterative,
and evolutionary characteristics of a software pro-
ject.2,7 The more recent DesignNet, proposed as a for-
mal method to describe the behavior of software de-
velopment, also falls short by failing to include
resource allocation and temporal characteristics.2

Deciding how to perform project tasks involves
allocating resources and generating schedules. These
activities have an intrinsic complexity that stems from
scaling problems associated with large software pro-
jects. As Murray Cantor explains, “You set a project
budget by assigning cost to each WBS item”and then
“you assign developers to the WBS tasks.”8

Parametric tools typically assist in estimating the
project budget and macroschedule, while managers
tap their experience with the software development
process and the personnel involved to assign the
staff to tasks. This level of individual experience with
developers is often not available for larger programs;
without it, assigning developers to tasks becomes
incredibly complex even if the data is available.

Decision-making processes become extremely
difficult for large software projects that involve hun-
dreds to thousands of tasks, many developers, and
a variety of hardware and software resources. When
the project size is small, we certainly can generate
feasible schedules—those that meet all project con-
ditions and constraints—with conventional project
planning tools. Yet even with small projects, what is
feasible often changes as the project evolves, and
what is feasible is often not the optimal assignment
of resources, even under static conditions.

Software Management
Tools and PM-Net

Over 120 project management tools are now com-
mercially available, offering different functionality and
using various platforms.9 In general, these tools in-
clude such functions as project scheduling, resource
management, project tracking, and project reporting.

Each tool fits somewhere in this general process:
1. Define the project’s WBS.
2. Analyze task precedence.
3. Assign starting date and duration for each

activity—schedule.
4. Identify and define resources.
5. Allocate resources manually.
6. Resolve resource conflicts.
7. Obtain approval of the project plan.
8. Establish project baselines.
9. Measure and record progress.

10. Make adjustments to the project plan.
11. Report project information.
Based on traditional project management tech-

niques such as Gantt charts, CPM, and PERT charts,
these tools offer excellent recording and reporting

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 8 1

Researcher’s
CORNER

capabilities—but they do not offer higher-order
functions. For example, the CPM method fails to
work if we impose various resource restrictions on
the project network. In addition, the representation
of artifacts such as documentation and code is im-
plicit in these schemes. That is, completion of a se-
ries of activities produces an artifact, but the artifact
is not explicitly represented.

The current tools also treat project scheduling
and resource allocation as two separate problems,
although they are highly interdependent. This re-
sults in an iterative process of resource assignment,
schedule evaluation, and reassignment. This task is
done manually, making it tedious and error prone.

PM-Net addresses these problems. To capture the
concurrent and evolutionary nature of software de-
velopment, PM-Net adopts the basic concepts of
Petri nets—graphical models of information flow—
with extensions to represent both decisions and ar-
tifacts.10 PM-Net’s design accommodates transla-
tion of schedules into task precedence graphs, an
internal model commonly used for project man-
agement tools. Thus, PM-Net can be connected to
existing tools through translation and programming
on the tools’application program interface.

Our model’s expressive capabilities make it a richer,

more natural method of communication between
software managers and developers. Developers often
dismiss schedules built using program scheduling
models on the grounds that they are simplistic and
rigid. PM-Net allows the representation of branching
and iteration precisely for this reason, as well as
to allow alternative views of a project’s evolution.
Another advantage of PM-Net lies in the foundation
it gives software developers for building tools that will
support and enhance the software process.

PM-Net delivers the project management fea-
tures commonly offered by existing tools. However,
with PM-Net, users can also use a set of advanced
software management features, such as automation
of resource allocation and scheduling based on ge-
netic algorithms, generation of a structured activ-
ity network, and prediction, within some range, of
the project’s future status in terms of cost and sched-
ule for project completion.

Despite industry doubt that a single model can

capture all facets of software development,1,11 it is
clear that such a model should do the following:

♦ Support a variety of management functional-
ity, such as project planning, project scheduling, re-
source allocation, project tracking, project report-
ing, and project predicting.

♦ Reflect that software development is a design-
intensive activity. The design process itself is evolu-
tionary in nature in that task definitions and task as-
signments periodically get revised.

♦ Describe the parallel and concurrent nature
inherent in software development.

♦ Support abstraction by hiding unnecessary
details, thus providing a clear, high-level view.

♦ Describe a variety of activities and artifacts
arising at various phases of software development.

♦ Be executable.
PM-Net is meant to meet these needs.

PM-Net Structure

To capture the concurrency of the software de-
velopment process, PM-Net borrows some concepts
from Petri nets.10 However, in PM-Net both the in-
formation carried by the tokens as they pass along

the network to the nodes and the
rules followed for triggering the ex-
ecution of the nodes as the tokens
arrive are different from those of
Petri nets.

PM-Net consists of sets of
places, constraints, transitions, and arcs.

Places
There are four different place types: abstract ac-

tivity, atomic activity, product, and decision. An ab-
stract activity can consist of a collection of subordi-
nate atomic or other abstract activities. An atomic
activity cannot be further decomposed.

By grouping related, lower-level atomic or ab-
stract activities together, an abstract activity pro-
vides software managers with a modular view, hid-
ing underlying details in large projects. We often use
the generic term activity without differentiating be-
tween abstract and atomic levels.

The third type of place, the product place, repre-
sents the artifacts created during the software de-
velopment process. Finally, the decision place repre-
sents a success or fail decision after finishing an
activity and is used to reflect the iterative nature of
software development.

8 2 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

Researcher’s
CORNER

PM-Net calculates an activity’s execution time
and costs according to its complexity constraints.

Constraints
Associated with each activity is a set of con-

straints that specify the requirements for complet-
ing the activity. An abstract activity accumulates
constraints from its lower-level activities. The con-
straints can be further classified as

♦ resource constraints, which specify what kinds
of resources are required, and

♦ complexity constraints, which describe how
much effort is needed for the activity.

Other types of constraints, such as temporal and
precedence constraints, are already embedded in
the task precedence graph.

The manager or scheduler must enter the con-
straints for each activity. Once resources have
been assigned in a manner consistent with the re-
source constraints, PM-Net can calculate the ac-
tivity’s execution time and costs according to the
complexity constraints on that activity. Given an
optimization goal, usually taken to be some mix
of cost and schedule, we use genetic algorithms
to find an optimal or nearly optimal project plan.
Finally, using PM-Net, the software managers can
pre-execute the plan to visualize project progres-
sion in advance.

Transitions
The dependency among activities is linked by

transitions, product places, and decision places.
There are three types of transitions:

♦ TI, representing the input transition of an
activity.

♦ TO, representing the output transition of an
activity.

♦ TDo, representing the output transition of a de-
cision place.
Each transition type has a different meaning and dif-
ferent firing rules.

Arcs
Similarly, arcs for connecting places and transi-

tions can be classified into seven different types.5

According to Petri net syntax, arcs can only connect
a place to a transition or a transition to a place; they
cannot connect two places or two transitions.

Graphical Symbols

Figure 1 shows the graphical symbols used in
PM-Net as they relate to a hypothetical GUI-based
accounting system called Acute. Figure 1a shows the
activity of reviewing the design specification—an
atomic activity (represented by a large oval) and
therefore not comprising subordinate activities.
Figure 1b shows the abstract activity (represented
by two concentric ovals) of conducting the scenario
analysis. We can decompose this abstract activity
into at least six lower-level activities:12

♦ Scenario analysis, including scenario elici-
tation

♦ Scenario formalization
♦ Scenario verification
♦ Scenario generation
♦ Prototype generation
♦ Scenario validation
Figure 1c shows a product (represented by a rec-

tangle) of the project, the user’s manual. Figure 1d
shows a typical pass–fail decision construct (repre-
sented by a diamond and two arrows), which would
typically be used to perform iterative development.
Figure 1e shows a budget constraint (represented
by a smaller, elongated oval) that allocates a maxi-
mum of $120,000 to the salary of the accounting
system specialists.

Figure 2 shows the Acute accounting system,
with distinct atomic activities for accounting and for
the GUI. Figure 3 combines the two design activities
of Figure 2 into one abstract activity.

Notice in Figure 2 five atomic activities—ac-
counting system design and implementation, GUI
design and implementation, accounting system
testing, GUI testing, and integration testing—and
five activities applied to them:

C1: Requires staff with accounting and system
design experience. Estimated effort: 10 staff months.

C2: Requires staff familiar with GUI design.
Estimated effort: 8 staff months.

C3: Requires testing staff with accounting back-
ground. Estimated effort: 3 staff months.

C4: Requires testing staff with GUI design back-
ground. Estimated effort: 2 staff months.

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 8 3

Figure 1. PM-Net graphical symbols of the Acute accounting system.

Atomic
activity

(a)

Acute
design review

Abstract
activity

(b) Product(c)

Acute
scenario
analysis

Constraint(e)

C1Acute
user's manual

Decision

Fail

Pass

(d)

System test

C5: Requires testing staff with integration
testing experience. Estimated effort: 2 staff months.
These constraints state the type of individual

required as well as the amount of effort required.
Data available to the algorithm will determine the
depth of specification of resources.

8 4 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

Fail

TO TDo

C1TI

TI

TO TIAccounting
system

specification

Project
contract

Fail

Pass

C3

Accounting
system
code

Accounting
system

test plan

Accounting
system test

GUI test

Accounting
system
design

Accounting
system design

& imple-
mentation

GUI design
& imple-
mentation

Draft user's
manual

Integration
test plan

Accounting
system code

TO

C2

TI

TO TIGUI
specification

Pass

C4

GUI
code

GUI
test plan

GUI
design

TDo

Draft user's
manual

Integration
test plan

GUI
code

TO

Fail

Fail

Integration
test

Pass

C5

TDo

Baseline
code

System
test plan

User's
manualTI

TI

Figure 2. The hypothetical Acute accounting system, with distinct activities for accounting and for the GUI.

Fail

TO

C1 & C2

Design
and

impleme-
ntation

TI

TI

TI TO

TIAccounting
system

specification

Project
contract

Fail

Pass

C3

Accounting
system
code

Accounting
system

test plan

Accounting
system test

GUI test

Accounting
system
design

TDo
Draft user's

manual

Integration
test plan

Accounting
system code

TO

TI

TIGUI
specification

Pass

C4

GUI
code

GUI
test plan

GUI
design

TDo

Draft user's
manual

Integration
test plan

GUI
code

TO

Fail

Fail

Integration
test

Pass

C5

TDo

Baseline
code

System
test plan

User's
manual

TI

Figure 3. The Acute accounting system combining the two design activities into one abstract activity.

Figure 4 shows a further reduction of Figure 3 to
a PM-Net in which the activities from design through
subsystem test are combined into an abstract ac-
tivity. Notice that the design implementation/sub-
system test—the preintegration process—now con-
tains products externally visible in Figure 3.

Genetic Algorithms

PM-Net uses genetic algorithms to help deter-
mine the optimum allocation of project resources.
Genetic algorithms have been shown to be a robust
solution-space search technique in a variety of op-
timization problems.13

Genetic algorithms emulate these evolution
mechanisms:

♦ natural selection—only the fittest survive;
♦ reproduction—established traits are regrouped

probabilistically into new combinations by the
mechanism of crossover; and

♦ random mutation—allowing for changing
environmental conditions and preventing over-
specialization.

Genetic algorithms mimic a population of indi-
viduals, each representing a feasible solution to the
scheduling problem. Each individual is assigned a
fitness score, according to how well the individual
solves the problem, including the value of the goal
function obtained.

Individuals with higher fitness scores have bet-
ter opportunities to reproduce with others, creating

offspring who will inherit some features from their
parents. The least-fit individuals are less likely to re-
produce and will gradually disappear in successive
generations unless mutation produces a positive
adaptation. As a result, over many generations, good
characteristics are spread throughout the popula-
tion. By selecting the individuals with higher fitness
scores, the most promising areas of the search space
of the solution population in the scheduling ex-
ample, the most promising schedule options are
explored, while mutation prevents the search from
becoming too narrow. In this way, finding solutions
to a scheduling problem mimics natural evolution.

Resource allocation and scheduling
Through PM-Net, we can apply genetic algo-

rithms to the problems of project scheduling and
resource allocation, as follows:

1. We annotate the task precedence graph with
the resource requirements of each task.

2. We calculate the resource allocation and re-
sulting schedules based on this TPG. The allocation
and scheduling make use of an employee database
and other resources to initially assign random, fea-
sible task allocations.

3. This initial population of schedules evolves
through the execution of genetic algorithms until
an optimal or nearly optimal match of resources to
tasks is obtained.

Specifically, to solve the resource allocation prob-
lem, a PM-Net is mapped to a directed, acyclic TPG,
as shown in Figure 5. A TPG is represented as an or-

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 8 5

C1 & C2 &
C3 & C4

Pre-integration
process

TI

TI

Accounting
system

specification

Project
contract

Fail

Fail

TI

GUI
specification

TDo TO

Fail

Fail

Integration
test

PassPass

C5

TDo Baseline
code

System
test plan

User's
manualTI TO

Figure 4. Further reduction of the Acute PM-Net.

dered pair (V, E) consisting of a finite, nonempty set
of vertices (V) and a finite set of directed edges (E)
connecting the vertices. The collection of vertices
V = {T1, T2, …, Tm} represents the set of software tasks
to be completed, and each vertex consists of esti-
mated effort (staff-months or working days), re-
quired skills, and proficiency of the skill.

Thus, for every v ∈ V, v = {vE, vS}, where vE repre-
sents the estimated effort (staff-months or working
days) and vS represents a list of skills along with the
proficiency for each skill and maximal allowable
units. The directed edge set E = {eij} (where eij repre-
sents a directed edge from vertex Ti to Tj) implies
that a partial ordering or precedence relation (de-
noted by →) exists between tasks. That is, if Ti → Tj,
then Ti must be completed before Tj can be initiated.

We have used domain-specific knowledge to im-
prove the convergence rate of the genetic algo-
rithms for resource allocation. This is facilitated by
the use of the project schedule itself instead of an
encoded bit-string such as a chromosome (also re-
ferred to as a string or a solution). This choice makes
the introduction of domain-specific knowledge eas-
ier, thereby enabling more efficient exploration of
the search space around good points.14 This knowl-
edge is incorporated into the schedule generation,
selection, crossover, and mutation operations to en-

sure that they will
♦ always yield legal schedules,
♦ generate diverse and adaptive schedules, and
♦ guide genetic operators more directly toward

better schedules.
In our approach, each string represents a sched-

ule consisting of two complementary sets of lists: a
set of task assignment lists and a set of employee as-
signment lists. Each task assignment list shows the
group of employees assigned to a particular task in
a schedule. Each employee assignment list shows
the group of tasks assigned to a particular employee
in a schedule.

In our case, the crossover operator works on the
employee assignment lists, while the mutation op-
erator works on task assignment lists. Thus, for the
sake of efficiency, we keep both sets at the same
time, updating the complementary list whenever
the other changes.

By avoiding introducing unfit or poor schedules
into the populations, this approach confines the
search to feasible and promising regions while not
overly restricting the search space. Consequently, ef-
ficient performance of the search can be achieved
along with nearly optimal results. Caution must be
applied in introducing domain knowledge, as such
knowledge necessarily originates from finite experi-

8 6 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

Researcher’s
CORNER

SM: 9
SR:5, 6

T10

SM: 4
SR:1, 4, 5

T2

SM: 3
SR:1, 2, 3

T1

SM: 7
SR:2, 3

T4

SM: 5
SR:2, 4

T5

SM: 10
SR:1, 2, 3

T7

SM: 11
SR:2, 3, 5

T8

SM: 6
SR:1, 6, 7

T3

SM: 7
SR:4, 5

T6

SM: 6
SR:1, 2, 4

T9

Figure 5. A sample task precedence graph, where SM stands for staff-month and SR stands for skill

required.

ence; overuse could reduce the breadth of the search.
The algorithm basically uses small, heuristically initial-

ized populations,proportional reproduction (known as se-
lection), one-point crossover, and single-assignment mu-
tation schemes. In our problem, a legal schedule must
satisfy the following requirements:

♦ the precedence relations among tasks,
♦ conditions and constraints imposed on each

task, and
♦ completeness of the schedule (that is, all tasks

must appear in the schedule).
The highest-level genetic algorithm appears in

Figure 6.
The lower-level algorithms needed to perform GA-

Scheduling are Generate-Initial-Population, Fitness-
Evaluation, Crossover, Mutation, Selection, and Refine-
Schedule, all of which are described elsewhere.5

Experimental results
To obtain a baseline for purposes of comparison,

we also implemented an optimal-scheduling algo-
rithm based on an exhaustive search. This algorithm,
which requires exponential time to execute, gener-
ates all feasible combinations of schedules and de-
termines which combination produces the best fit-
ness value. The programs were implemented using
C++ on a Sun–Sparc 10 workstation.

Table 1 summarizes the experimental results
from both the exhaustive-search and genetic algo-
rithms. For the first eight projects, the results from
the GA-scheduling algorithm found the optimal so-
lution. In the last three cases, we cannot verify that
the GA-derived schedules are optimal because the
exhaustive method could not identify the optimal
solution; the 11th project would require around 1011

years of computation time on a Sparc 10.
For many engineering tasks, such as software

project management, near-optimal solutions ob-

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 8 7

Researcher’s
CORNER

Algorithm GA-Scheduling

Input: a task precedence graph, TPG = (V, E); an employee database,

Demp; and a skill database, Dskill. The parameters describing the search

are

Pop—population of schedules at the start of the iteration

Newpop—new population

Npop—size of population

ProbC—crossover probability

ProbM—mutation probability

Srefined—refine the best-so-far schedule by exploring neighborhood

Output: one near-optimal schedule, Snear-opt

Begin

1. Generate initial population Pop containing Npop schedules.

2. Compute the fitness value of each schedule in Pop.

3. Perform Selection to obtain Newpop.

4. Perform Crossover Npop/2 times by randomly selecting two

schedules from Newpop and do the crossover with a probability ProbC.

5. Perform Mutation Npop/2 times for each schedule with an adap-

tive probability ProbM and return the schedule back to Pop.

6. Refine the best-so-far schedule, Srefined, in Pop.

7. If convergence criteria not satisfied, loop to 2.

8. Output the final near-optimal schedule, Snear-opt ← Srefined.

End

Figure 6. The highest-level genetic algorithm, called GA-

Scheduling.

Table 1
EXPERIMENTAL RESULTS FROM EXHAUSTIVE SEARCH AND

GA-SCHEDULING ALGORITHMS

Number of Number of Optimal time (min: sec) Optimal time (sec)
Project tasks programmers Combinations (exhaustive search) (GA algorithm)

1 18 9 1.07 × 105 1:01 3
2 18 9 2.92 × 106 28:48 7
3 11 10 3.75 × 106 25:08 11
4 18 9 6.81 × 106 65:58 8
5 30 9 4.73 × 107 674:40 12
6 50 9 1.00 × 108 2394:00 30
7 10 19 2.11 × 108 711:55 7
8 18 10 6.15 × 108 645:32 9
9 15 19 7.60 × 1012 n/a 18

10 20 9 2.20 × 1012 n/a 18
11 18 19 6.81 × 1021 n/a 14

tained from limited computation will suffice.
Extensive simulation results by tuning parameters
such as population size, mutation, and crossover
rates can be found elsewhere.5

The combination of the PM-Net representation
and genetic algorithms will allow project man-

agers to realize optimal or nearly optimal schedules,
without manually exploring the exponentially large
search space of all feasible resource-to-activity
assignments.

As an extension, it is possible to assign a proba-
bility-of-success rate to each decision place in PM-
Net. Moreover, PM-Net supports project planning
by predicting the future state of the project. We fur-
ther divide the software project prediction problem
into two classes, wherein one or more decision
places in PM-Net drive the goal function beyond the
domain of acceptable performance. These concepts
extend the conventional critical-path notion.

We plan to enhance PM-Net in several ways.
♦ Incorporating additional factors such as vari-

able cost factors, risk management, software qual-
ity, and reliability into the framework by extending
the resource database, generalizing the goal func-
tion, and adding new heuristics. Level loading of re-
sources is an example of such factors.

♦ Developing external linkages that will, for ex-
ample, allow the status of artifacts to be obtained
automatically from the project configuration man-
agement system.

♦ Developing the PM-Net tools environment
with expanded visualization techniques.

Because such extensions are labor intensive by
themselves, we invite software vendors to work with
us on adding these capabilities to existing man-
agement tool suites.

We believe PM-Net provides a solid foundation
from which to attack many issues in software pro-
ject management. Furthermore, we feel PM-Net
serves as a concrete model for building intelligent
tools to support and enhance the project manage-
ment process. ❖

REFERENCES
1. V.R. Basili and J.D. Musa, “The Future Engineering of Software:

A Management Perspective,” Computer, Vol. 24, No. 9, Sept.
1991, pp. 90–96.

2. L.C. Liu and E. Horowitz, “A Formal Model for Software Project
Management,” IEEE Trans. Software Eng., Vol. 15, No. 10, Oct.
1989, pp. 1280–1293.

3. D.J. Reifer, Software Management, IEEE Computer Soc. Press,
Los Alamitos, Calif., 1993.

4. C. Jones, “Software Management: The Weakest Link in the Soft-
ware Engineering,” Computer, Vol. 27, No. 5, May 1994, pp. 10–11.

5. C. Chao, SPM-Net: A New Methodology for Software
Management, doctoral dissertation, Univ. of Illinois at Chicago,
Dept. of Electrical Eng. and Computer Science, 1994.

6. R.C. Tausworthe, “The Work Breakdown Structure in Software
Project Management,” J. Systems and Software, Vol. 1, No. 3,
1980, pp. 181–186.

7. B.I. Blum, Software Engineering: A Holistic View, Oxford Univ.
Press, New York, 1992.

8. M.R. Cantor, Object-Oriented Project Management with UML,
John Wiley & Sons, New York, 1998, p. 160.

9. R.K. Wysocki, R. Beck Jr., and D.B. Crane, Effective Project
Management, John Wiley & Sons, New York, 1995, p. 280.

10. J.L. Peterson, “Petri Nets,” ACM Computing Surveys, Vol. 9, No. 3,
Sept. 1977, pp. 223–252.

11. B.W. Boehm and R. Ross, “Theory-W Software Project
Management: Principles and Examples,” IEEE Trans. Software
Eng., Vol. 15, No. 7, July 1989, pp. 902–916.

12. P. Hsia et al., “Formal Approach to Scenario Analysis,” IEEE
Software, Vol. 11, No. 3, Mar. 1994, pp. 33–41.

13. M. Srinivas and L.M. Patnaik, “Genetic Algorithms: A Survey,”
Computer, Vol. 27, No. 6, June 1994, pp. 17–26.

14. J.Y. Suh and D. Van Gucht, “Incorporating Heuristic Information
into Genetic Search,” Proc. 2nd Int’l Conf. Genetic Algorithms,
Erlbaum, Mahwah, N.J., 1987, pp. 100–107.

ACKNOWLEDGMENTS
We would like to acknowledge the original contributions

of Chikuang Chao and the programming effort by Su-Yin
Hsieh.

8 8 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

About the Authors

Carl Chang directs the International
Center for Software Engineering at the
University of Illinois at Chicago. He previ-
ously worked for GTE Automatic Electric
and AT&T Bell Labs. He is vice president
for press activities of the IEEE Computer
Society and chairs the Curricula 2001
joint task force of the Computer Society

and ACM that is aimed at renovating computing curricula for
the next millenium. He was IEEE Software‘s editor-in-chief from
1991 to 1994.

Chang received his PhD in computer science from
Northwestern University. He is an IEEE senior member and a
member of the ACM, Upsilon Pi Epsilon, and Sigma Xi. Contact
Chang at cchang@computer.org.

Mark Christensen works as an indepen-
dent contractor in systems and software
engineering. He enjoys solving hard
problems at the boundaries of hardware
and software and has worked on and de-
livered computer-controlled radio fre-
quency and opto-mechanical systems.
Previously, Christensen was head of the

software engineering department, including the IT group,
and then vice president of engineering at Northrop
Grumman’s Electronic Systems site.

Christensen received his PhD in math from Wayne State
University and his master’s in physics from Purdue University.
He is a member of the IEEE Computer Society, INCOSE, and
SIAM. Contact Christensen at markchri@concentric.net.

Call for Articles & Reviewers
Malicious Information Technology:

The Software vs. The People
Publication: Sept./Oct. 2000

Software was intended to improve the quality of human life by doing tasks more quickly, reliably, and efficiently. But today, a “software vs.
people” showdown appears imminent. Software is increasingly a threat to people, organizations, and nations. For example, the spread of the
Melissa virus illustrates the ease with which systems can be penetrated and the ubiquity of the consequences; it caused many companies to
shut down their e-mail systems for days. The origin of these threats stems from a variety of problems. One problem is negligent development
practices that lead to defective software. Security vulnerabilities that occur as a result of negligent development practices (such as commercial
Web browsers allowing unauthorized people to access confidential data) are likely to be discovered by rogue individuals with malicious
intentions. Other security vulnerabilities are deliberately programmed into software (logic bombs, Trojan Horses, Easter eggs). Regardless of
why information systems are vulnerable, the end result can be disastrous and widespread.

Because of the increased danger that malicious software now poses, we seek original articles on the following topics:

• Intrusion detection
• Information survivability
• Federal critical-infrastructure protection plans
• Federal laws prohibiting encryption exports vs. US corporations
• State of the practice in security testing
• The Internet’s “hacker underground”
• Corporate information insurance
• Penalties for those convicted of creating viruses
• Case studies in information security and survivability

Submissions due: 1 April 2000

Authors: Submit one electronic copy in RTF interchange or MS-Word format and one PostScript or PDF version to the magazine assistant at software@computer.org.
Articles must not exceed 5,400 words including tables and figures, which count for 200 words each. For detailed author guidelines, see
www.computer.org/software/edguide.htm. Reviewers: Please e-mail your contact information and areas of interest to a guest editor.

Guest Editors:

Nancy Mead
Carnegie Mellon University

nrm@sei.cmu.edu

Jeffrey Voas
Reliable Software Technologies

jmvoas@rstcorp.com

IEEE

PURPOSE The IEEE Computer Society is the
world’s largest association of computing pro-
fessionals, and is the leading provider of
technical information in the field.

ME M B E R S HI P Members receive the
monthly magazine COMPUTER, discounts, and
opportunities to serve (all activities are led by
volunteer members). Membership is open to
all IEEE members, affiliate society members,
and others interested in the computer field.

B O A R D O F G O V E R N O R S
Term Expiring 1999: Steven L. Diamond, Rich-
ard A. Eckhouse, Gene F. Hoffnagle, Tadao Ichikawa,
James D. Isaak, Karl Reed, Deborah K. Scherrer
Term Expiring 2000: Fiorenza C. Albert-
Howard, Paul L. Borrill, Carl K. Chang, Deborah M.
Cooper, James H. Cross III, Ming T. Liu, Christina M.
Schober
Term Expiring 2001: Kenneth R. Anderson,
Wolfgang K. Giloi, Haruhisa Ichikawa, Lowell G.
Johnson, David G. McKendry, Anneliese von
Mayrhauser, Thomas W. Williams
Next Board Meeting: 25 February 2000,
San Diego, California

I E E E O F F I C E R S
President: KENNETH R. LAKER
President-Elect: BRUCE A. EISENSTEIN
Executive Director: DANIEL J. SENESE
Secretary: MAURICE PAPO
Treasurer: DAVID A. CONNOR
VP, Educational Activities: ARTHUR W. WINSTON
VP, Publications: LLOYD A. “PETE” MORLEY
VP, Regional Activities: DANIEL R. BENIGNI
VP, Standards Association: DONALD C. LOUGHRY
VP, Technical Activities: MICHAEL S. ADLER
President, IEEE-USA: PAUL J. KOSTEK

EXECUTIVE
COMMITTEE

President: LEONARD L. TRIPP *
Boeing Commercial
Airplane Group
P.O. Box 3707, M/S19-RF
Seattle, WA 98124
O: (206) 662-4437
F: (206) 662-14654404
l.tripp@computer.org

President-Elect:
GUYLAINE M. POLLOCK *
Past President:
DORIS L. CARVER *
VP, Press Activities:
CARL K. CHANG*
VP, Educational Activities:
JAMES H. CROSS II*
VP, Conferences and Tutorials:
WILLIS K. KING (2ND VP) *
VP, Chapter Activities:
FRANCIS C.M. LAU *
VP, Publications:
BENJAMIN W. WAH (1ST VP)*
VP, Standards Activities:
STEVEN L. DIAMOND *
VP, Technical Activities:
JAMES D. ISAAK *
Secretary:
DEBORAH K. SCHERRER *
Treasurer:
MICHEL ISRAEL*
IEEE Division V Director
MARIO R. BARBACCI
IEEE Division VIII Director
BARRY W. JOHNSON *
Executive Director
and Chief Executive Officer:
T. MICHAEL ELLIOTT

C O M P U T E R S O C I E T Y W E B S I T E
The IEEE Computer Society’s Web site, at http://
computer.org, offers information and samples
from the society’s publications and conferences, as
well as a broad range of information about tech-
nical committees, standards, student activities, and
more.

COMPUTER SOCIETY O F F I C E S
Headquarters Office
1730 Massachusetts Ave. NW,

Washington, DC 20036-1992

Phone: (202) 371-0101

•

Fax: (202) 728-9614

E-mail: hq.ofc@computer.org
Publications Office
10662 Los Vaqueros Cir., PO Box 3014
Los Alamitos, CA 90720-1314
General Information:
Phone: (714) 821-8380

•

membership@computer.org

Membership and Publication Orders:
Phone (800) 272-6657

•

Fax: (714) 821-4641

E-mail: cs.books@computer.org
European Office
13, Ave. de L’Aquilon
B-1200 Brussels, Belgium
Phone: 32 (2) 770-21-98 • Fax: 32 (2) 770-85-05
E-mail: euro.ofc@computer.org
Asia/Pacific Office
Watanabe Building, 1-4-2 Minami-Aoyama,
Minato-ku, Tokyo 107-0062, Japan
Phone: 81 (3) 3408-3118 • Fax: 81 (3) 3408-3553
E-mail: tokyo.ofc@computer.org

E X E C U T I V E S T A F F
Executive Director & Chief Executive Officer:

T. MICHAEL ELLIOTT
Director, Volunteer Services: ANNE MARIE KELLY
Chief Financial Officer: VIOLET S. DOAN
Chief Information Officer: ROBERT G. CARE
Manager, Research & Planning: JOHN C. KEATON

25Oct1999

®

