FOCUS

[] [] []

‘ The Software Engineering Code of Ethics and Professional
Practice has recently been approved. This article looks at the
immediate and long-term implications: Why does a profession
need a code of ethics? How will this code function in an

emerging profession like software engineering? What impact \

will it have on software practitioners?
([] ([] ([]

How the New Software
Engineering Code of
Fthics Affects You

Don Gotterbarn, Software Engineering Ethics Research Institute

’ r ccording to the Texas Board of Licensing, software engineering is “a dis-

’ A tinct discipline under which engineering licenses can be issued.”* What

does this mean to practicing software engineers? What are the positive

aspects of this choice to become a profession? How can we exploit this

movement toward professionalism in a positive way? There are many as-yet unan-
swered questions.

One example of this movement toward professionalism is the recent adoption

by the IEEE Computer Society and the Association for Computing Machinery of a

Software Engineering Code of Ethics and Professional Practice http://www-

cs.etsu.edu/seeri/secode.htm). How does this new code fit into the picture? The

Code describes the ethical and professional obligations against which peers, the

public, and legal bodies can measure a software developer’s behavior. The recent de-

bates about the content of the Code, prior to adoption, reflected tensions that

needed to be resolved between current and developing standards. Should the Code

be interpreted as a legal document or as a document intended to inspire good

58 IEEE Software (g‘ November/December 1999 0740-7459/99/$10.00 © 1999 IEEE

practice? Can the Code be used to guide profes-
sionals in their decision-making during software de-
velopment? Or to alert practitioners to those things
for which they are accountable? Understanding how
and why the Code was developed will help us an-
ticipate and plan for the potential consequences of
our decisions.

The development of the Code was an interna-
tional project with participants from every continent.
Major companies helped by posting early drafts on
their bulletin boards for comment by employees. The
draft Code was reviewed by members of several pro-
fessional computing societies and went through sev-
eral revisions (see the “Chronology of the Code”side-
bar for details). Because of the way the Code was
developed, it is not unreasonable to say that this
Code represents a movement toward an interna-
tional consensus of what software engineers believe
to be their professional ethical obligations.

WHY Our OwN CODE OF ETHICS?

The simple answer to this question is that most
other professions operate under explicit ethical
standards stated in profession-unique codes of
ethics. Because professionals have an enormous im-
pact on the lives and well-being of others, they and
those they affect have set higher and broader stan-
dards of practice for professionals than is expected
of nonprofessionals.

Some codes seem trite or irrelevant because they
merely state high-sounding value claims and speak
only toasingle level of professional obligation. A pro-

FOCUS

CHRONOLOGY OF THE CoDE

Draft 1: delivered to IEEE-CS/ACM Steering Committee December
1996.

Draft 2: widely circulated for comment January through March
1997. Published in SIGSOFT and SIGCAS bulletins in July 1997

lished with a turnaround ballot in November 1997 Computer and
Communications of the ACM.

3. Submitted to Steering Committee in December 1997.

Draft 5: passed a complete IEEE formal technical review process in
September 1998.

Draft5.2: passed legal review.

Draft 5.2: approved by the ACM November 1998 and the IEEE
Computer Society December 1998.

Draft 3: circulated to industry and other professionals and then pub-

Draft 4: revision based on comments and ballots regarding version

fessional code actually needs to address three levels
of obligation. The first level is a set of familiar ethical
values, such as integrity and justice, which profes-
sionals share with other human beings by virtue of
their shared humanity. The second level obliges pro-
fessionals to more challenging obligations than
those required at the first level. By virtue of their roles
and special skills, professionals owe a higher order
of care to those affected by their work. Code state-
ments at this level express the obligations of all pro-
fessionals and professional attitudes. The third level

Level 1
Humanity

Integrity, fairness,
care, ...

Level 2
Professionalism

Level 3
Each profession

Higher order of care, societal well-being

Profession-unique standards and professionalism,
standards in profession's code of ethics

Figure 1. The cumulative levels of professional obligation. While all people share the obligations at Level 1, professionals
also carry the responsibilities expressed in Level 2. A member of a particular profession might have additional, unique

obligations, as articulated in Level 3.

November/December 1999 % IEEE Software

59

FOCUS

Sanctions will occur only when the Code
is publicly adopted as a generally accepted
standard of practice.

includes all the obligations of the first two levels
along with several obligations that derive directly
from elements unique to the particular professional
practice. For software engineering, code statements
at this level assert more specific behavioral respon-
sibilities that are closely related to current best prac-
tices[d for example, “3.10 Ensure adequate testing,
debugging, and review of software and related doc-
uments on which they work.” Figure 1 shows the hi-
erarchy and cumulative nature of these levels.

Professional codes that merely address Level 1 do
not help an emerging profession like software en-
gineering clarify expectations and appropriate be-
havior of professionals. Software Engineering’s con-
scious and public choice to become a profession
commits it to all three levels of professional/ethical
obligation.2 The short statement of the Code (see
“The Code: A Short Version” sidebar) is an abstrac-
tion from the complete Code that addresses all three
levels of professional obligation. Itis because of the
third level of obligation that individual professions
need their own profession-unique codes.

But why should a profession have a code of ethics
at all? A code can simultaneously serve several
functions.

¢ It might be designed to be inspirationald ei-
ther for “positive stimulus for ethical conduct by the

practitioner” or to inspire confidence of the cus-
tomer or user in the computing artifact and confi-
dence inits creator.* Unfortunately, inspirational lan-
guage tends to be vague, limiting the code’s ability
to help guide professional behavior.

¢ Historically, there has been a transition away
from regulatory codes, designed to penalize diver-
gent behavior and internal dissent, toward more
normative codes, which give general guidance.
Although a professional can use a normative Code
to examine alternative actions, such codes are only
apartial representation of a profession’s ethical stan-
dards.# Because the use of normative codes requires
moral judgment on the part of the professional, they
should not be considered a complete procedure for
deciding what is right or wrong.

¢ Codesalso serve to educate both prospective
and existing software engineers about their shared
commitment to undertake a certain level of quality

60 IEEE Software (g‘ November/December 1999

in their work and their responsibility for the well-
being of the customer and user of the developed
product.

Codes also serve to educate managers (see
Principle 5 of the full version of the Code,
http://computer.org/tab/swecc/code/htm) of soft-
ware engineers, and to educate those who make
rules and laws related to the profession, about ex-
pected behavior. Managers'and legislators' expec-
tations will affect what is asked of software engi-
neers and what laws are passed relating to software
engineering, respectively. Directly and indirectly,
codes also educate management about their re-
sponsibility for the effects and impacts of the prod-
ucts developed.

Codes also indirectly educate the public at large
about what professionals consider to be a minimally
acceptable ethical practice in that field, even as prac-
ticed by nonprofessionals.

¢ Codes provide a level of support for the pro-
fessional who decides to take positive action. An ap-
peal to the imperatives of a code can be used as
counterpressure against others'urging to act in ways
inconsistent with the Code.

¢ Codes can be a means of deterrence and disci-
pline. They can serve as a formal basis for action
against a professional; for example, some organiza-
tions use codes to revoke mem-
bership or suspend licenses to
practice. Because codes usually
define in detail the minimal be-
havior for all practitioners, the
failure to meet this expectation
can be used as a reasonable foundation for litigation.

¢ Codes have been used to enhance a profes-
sion's public image. They prohibit public criticism of
fellow professionals, even if they violate some ethi-
cal standard.

The specific functions selected for a code affect
its potential impact. Codes designed for an emerg-
ing profession, including Software Engineering, em-
phasize education, guidance, support, and inspira-
tion. Our Code does not specifically address
deterrence and discipline or include standards
for prohibiting someone from practicing software
engineering.

Can you lose your job because you did not fol-
low our Code? Software Engineers are not required
to belong to a single professional organization in
order to practice, and there are no realistic sanctions
that can be imposed for code violations. Sanctions
will occur only when the Code is publicly adopted as

agenerally accepted standard of practice, and when
both society and legislators view the failure to follow
the Code as negligence, malpractice, or just poor
workmanship. The Code clearly defines the respon-
sibility of the profession and the professional to pro-
mote and protect positive values. For this type of
sanction to work, professionals and nonprofession-
als must be educated about the professional oblig-
ations described in the Code.

PROFESSIONAL TENSIONS

There were at least three distinct controversies
during the Code’s development. From least to most
significant respectively, the controversies were about
the approach to ethics; discomfort with strong, pow-
erful, and incomplete ethical imperatives; and di-
vergent views about software engineering technical
standards.

Approaches to ethics

Surprisingly, the major tension centered not
around technical issues but rather on two distinct
approaches to ethics: virtue ethics and rights/oblig-
ations ethics.® Virtue ethics holds the optimistic
view that if people are simply pointed in the right
direction, their moral character will guide them
through ethical problems. Reviewers from this
camp wanted a Code that was mostly inspirational,
with minimum detail. They put a heavy emphasis
on the autonomy of a professional’s judgment. The
other positiond rights/obligations theory[con-
sists of spelling out precisely one’s rights and re-
sponsibilities. Believers in this theory wanted a very
detailed Code. For example, one reviewer wanted
the Code to include a standard of measurement for
each imperative—to state exactly how many tests
need to be done to ensure adequate testing. The
Rights/Obligations folks used a legalistic model to
evaluate each imperative. The problem was that
any imperative acceptable to one group was not
acceptable to the other. The Code addresses this
significant tension in a number of ways.

To address the problem of insufficient guidance
for decision making, the Code incorporates some
directions for ethical decision making in the pre-
amble and an acknowledgment that the Code’s
normative premises should not be read as complete
descriptions or legalistic statements. The Code aids
decision making by overcoming two difficulties
with other codes. First, most codes of ethics provide

FOCUS

THE CoDE: A SHORT VERSION

Software Engineering Code of Ethics and Professional
Practice

|IEEE-CS/ACM Joint Task Force on Software Engineering Ethics
and Professional Practices

Short Version: Preamble

The short version of the code summarizes aspirations at a
high level of abstraction. The clauses that are included in the
full version give examples and details of how these aspirations
change the way we act as software engineering professionals.
Without the aspirations, the details can become legalistic and
tedious; without the details, the aspirations can become high
sounding but empty; together, the aspirations and the details
form a cohesive code.

Software engineers shall commit themselves to making the
analysis, specification, design, development, testing and main-
tenance of software a beneficial and respected profession. In
accordance with their commitment to the health, safety and
welfare of the public, software engineers shall adhere to the fol-
lowing Eight Principles:

1. Public. Software engineers shall act consistently with the
public interest.

2. Client and employer. Software engineers shall act in a
manner that is in the best interests of their client and employer
consistent with the public interest.

3. Product. Software engineers shall ensure that their prod-
ucts and related modifications meet the highest professional
standards possible.

4. Judgment. Software engineers shall maintain integrity
and independence in their professional judgment.

5. Management. Software engineering managers and lead-
ers shall subscribe to and promote an ethical approach to the
management of software development and maintenance.

6. Profession. Software engineers shall advance the in-
tegrity and reputation of the profession consistent with the
public interest.

7. Colleagues. Software engineers shall be fair to and sup-
portive of their colleagues.

8. Self. Software engineers shall participate in lifelong learn-
ing regarding the practice of their profession and shall promote
an ethical approach to the practice of the profession.

The full version of the Code is available at http://www-cs.
etsu.edu/seeri/secode.htm and http://computer.org/tab/swecc/
code.htm#full.

November/December 1999 % IEEE Software

61

FOCUS

Several companies have already adoptec
the Code, and its principles have been
incorporated into their standards of practice.

afinite list of principles that are often presented as
a complete list; readers might presume that only
the things listed should be of ethical concern to the
professional. Second, many codes provide little (if
any) guidance for situations where rules having
equal priority appear to conflict. This equal prior-
ity leaves the ethical decision-maker confused. The

Software Engineering Code addresses both of these
limitations.

The Code does not leave the reader without sup-
port. Here are some of its suggestions about how to
make decisions:

These Principles should influence software en-
gineers to consider broadly who is affected by
their work; to examine if they and their col-
leagues are treating other human beings with
due respect; to consider how the public, if rea-
sonably well informed, would view their deci-
sions; to analyze how the least empowered
will be affected by their decisions; and to con-
sider whether their acts would be judged wor-
thy of the ideal professional working as a soft-
ware engineer. In all these judgments concern
for the health, safety and welfare of the public
is primary; that is, the “Public Interest”is cen-
tral to this Code.

This section also provides guidance in selecting
between apparently conflicting principles in the
Code by stating that the primary concern in all de-
cisions must be public well being, as opposed to loy-
alty to the employer or the profession.

The Code addresses the rights-virtue tension
in another way—through its structure. The Code is
organized around eight broadly based themes.
Under each theme or principle is a series of clauses
giving examples of how that theme applies to soft-
ware engineering practice. Thus, under “Principle
1, PUBLIC, Software engineers shall act consistently
with the public interest” is the illustrative clause
1.04, “Disclose to appropriate persons or authori-
ties any actual or potential danger to the user, the
public, or the environment, that they reasonably
believe to be associated with the software or re-
lated documents.”

62 IEEE Software (g‘ November/December 1999

Discomfort with the rules

Some reviewers' discomfort was founded in per-
ceptions of powerlessness. These people reacted to
a few Code principles with “That is a good idea
but....”Forexample, some claimed that Clause 3.05,
“Ensure an appropriate methodology for any project
onwhich they work or propose to work,”was an un-
realistic demand; they could not
give such assurances unless they
were project manager. There was
also considerable debate about
Clause 3.0600 “Work to follow pro-
fessional standards, when available,
that are most appropriate for the task at hand, de-
parting from these standards only when ethically or
technically justified.” Some were concerned that the
precise standard was not (and could not be) speci-
fied (see the following section). Some wanted to re-
ject this clause because they thought that being the
first to market gaining economic advantagel] jus-
tified abondoning standards. The tension between
competing best practices was another concern. The
fear of a legalistic interpretation of the Code’s nor-
mative principles also caused concern.

It is important to note that many of the review-
ers moved in an opposite direction. They wanted to
strengthen the rules and close loopholes. For ex-
amples, Clause 6.08 was “Take responsibility for de-
tecting, correcting, and reporting significant errors
in the software and associated documents on which
they work.” Most reviewers advocated removing the
word “significant” because they did want to leave
room for someone to claim, “I found lots of errors,
but I didn't think any of them significant.” This kind
of strengthening of principles was fairly common.
For example, 1.04 requires that a software engineer
disclose any dangers created by the software.
Reviewers inserted the phrase “actual or potential
dangers”to prohibit someone from not reporting a
danger because it was not yet real. They also
changed the expression “ Be fair and truthful”to “Be
fair and avoid deception”in all statements, particu-
larly public ones, concerning software or related
documents (clause 1.06). This not only prohibits
falsehoods but also covers the case of not disclos-
ing relevant information, deception by omission.

Interaction between technical and ethical
standards

On several occasions, someone asked the task
force to put specific standards or best practices into
the Code, for example, “Path testing must be done

on all software with a cyclomatic complexity greater
than 12.”We decided against this, because we were
particularly sensitive to the relationship between
ethical and technical software engineering stan-
dards. We considered some of these relationships to
be obvious: when an organization accepts techni-
cal standards, it routinely follows them to improve
the quality of work. It would be unethical (and in
some cases legally negligent) not to follow these
standards carefully. In other situations, software en-
gineering “standards” and best practices compete
with each other. The Code says choose from among
the competing best practices.

As our discipline gains knowledge, our stan-
dards improve. Next year’s competing best prac-
tices will be different from this year’s. Nevertheless,
the Ethics Code accommodates this dynamic as-
pect of science and software engineering. If we had
included specific standards, the Code would likely
be obsolete the moment it was approved, because
techniques are constantly improving and because
the Code's revision process is at least a year long.
Moreover, including some standards and exclud-
ing others could lead to a premature “blessing” of
some standards, encouraging a harmful retarda-
tion of the development of better software devel-
opment techniques. Instead, the Code refers to
‘currently accepted standards”in the hope that, as
standards are increasingly well defined and ac-
cepted, the Code can encourage their use.

A CommoN COMMITMENT

In spite of these controversies, software engi-
neering professionals understand the significance
of their work and their ethical obligations to their
products' stakeholders. As the Preamble to the full
version of the Code states,

Because of their roles in developing software
systems, software engineers have significant
opportunities to do good or cause harm, to
enable others to do good or cause harm, or to
influence others to do good or cause harm.

There was near unanimity that software engi-
neers must behave proactively when they are aware
of potential difficulties in a system. Several clauses
in the Code require preemptive reporting of poten-
tially dangerous situations, and clauses 6.12 and
6.13 outline a procedure for whistle blowing.

FOCUS

EARLY ADOPTERS

Several major organizations have already adopted the Code or have
incoroporated its principles into their standards of best practice. They
include

¢ Construx Software, Bellevue, Washington

¢ Institute for Management Information Systems, United Kingdom

¢ Monmouth University SE training for the US Army Com-
munications and Electronic Command Software Engineering Center,
Fort Monmouth, New Jersey

¢ Pointer Software Systems, Israel

¢ Siemens Information Systems’ Software Development Center,
Bangalore, India

¢ United Kingdom Royal Mail

Your organization is invited to join the growing number of organi-
zations that have adopted the Code. Adoption of the Code will pub-
licly endorse your companies' commitment to quality and good prac-
tice, and endorsement will serve the profession at large by promoting
a universal standard of practice. For more information, contact the
Software Engineering Professional Ethics Project at SEPEP@etsu.edu.

Because some people wanted a concise, rela-
tively high level, inspirational code and others
wanted a more detailed document that would guide
practitioners in making technical decisions ethically,
we compromised. The Code comes in two versions:
the short document fulfills the desire for concise-
ness, and the long one offers more details.

The Code received a consistently high level of
agreement about the behavior expected of a pro-
fessional software engineer. Software engineers
generally agree about their obligations. However,
it was clear from the comments that various forces
pressure software engineers to not always fulfill
these obligations. We have also been gratified at
the level of interest from the business sector.
Several major companies have already adopted the
Code (see the “Early Adopters” sidebar), and its
principles have been incorporated into their stan-
dards of practice. The Code of Ethics and Pro-
fessional Practice has also been included as part
of employment contracts that are signed at the
time of employment.

A code fulfilling its educational function will
change the approach of many to software de-
velopment. The adoption of the Code by multiple

November/December 1999 % IEEE Software

63

64

FOCUS

societies and businesses moves it toward a profes-
sion’s code rather than that of an individual profes-
sional society. As the Code is publicized and con-
tinues to gain support from other professional
societies and corporations, it will become a de facto
standard. Just as several potential customers have
decided that they don't want to do business with
CMM Level 1 companies, so people eventually will
decide that they will not do business with those
who do not follow the Code. As the Code becomes
accepted, it will provide counter-pressure against
those who ask their staff to behave unprofession-
ally and unethically. If nothing more, it will help
many become aware that their behavior might be
unethical. The existence of this standard will make
them pause and think about the potential effects of
their actions.

The Software Engineering Code of Ethics and
Professional Practice is a useful tool. It educates
and inspires Software Engineers. The Code in-
structs practitioners about the standards that so-
ciety expects them to meet and what their peers
strive for and expect of each other. The Code of-
fers practical advice about issues that matter to
professionals and their clients, and it serves to in-
form policy makers about ethical constraints im-
posed on software engineers.

The Code indirectly educates the public at large
about the responsibilities that are important to and
accepted by the professiond what Software
Engineers consider to be minimally acceptable prac-
tice even when a nonprofessional practices it. Thus
the code can be a catalyst to simultaneously raising
the internal expectations of a profession and the ex-
pectations of the society at large.

The Code is a dynamic document, a method for
education, inspiration, and continued study and de-
bate (see the “Work in Progress”sidebar). It provokes
serious discussion about the software engineering
discipline, its responsibilities, and its future. The
Code directs us to be a part of that future as we im-
prove our profession and ourselves. 0

REFERENCES

1. Texas Board of Professional Engineers, “Board Establishes
Software Engineering Discipline,” http://www.main.org/
peboard/sofupdt.htm (current 22 Oct. 1999).

2. D.Gotterbarn, “Software Engineering Ethics,” Encyclopedia of
Software Engineering, J. Marciniak, ed., John Wiley & Sons, New
York, 1994.

3. M.W. Martin et al., Ethics in Engineering, 2nd ed., McGraw-Hill,
New York, 1989.

IEEE Software (g‘ November/December 1999

A WoRk IN PROGRESS

The Computer Society and the ACM continue
to support this effort and have recently formed a
Software Engineering Professional Ethics Project
under the auspices of the Software Engineering
Coordinating Committee. This project’s tasks in-
clude promoting the adoption of the Code by in-
dustry and other professional bodies as well as
developing education materials and case stud-
ies to help aspiring software engineers under-
stand the obligations of a practicing professional.
Those interested in participating should contact
sepep@etsu.edu.

Eal

R. Anderson, “The ACM Code of Ethics: History, Process, and
Implications,” Social Issues in Computing, McGraw-Hill, New
York, 1995, pp. 48-72.

D. Gotterbarn, “Software Engineering: The New Profes-
sionalism,” The Professional Software Engineer, C. Myer, ed.,
Springer-Verlag, New York, 1996.

S.L. Edgar, Morality and Machines: Perspectives on Computer
Ethics, Jones and Bartlett Publishers, Sudbury, Mass., 1997.

o

o

About the Author

Don Gotterbarn is director of the
Software Engineering Ethics Research
Institute and a professor of computer
science at East Tennessee State Uni-
versity, where he helped develop a mas-
ter’s of software engineering curriculum.

His research has focused on perform-

d ance prediction for a distributed Ada
compilation, object-oriented testing, software engineering
education, and software engineering ethics. Under a US
National Science Foundation grant he is currently developing
an ethics audit decision support tool for project
management.

Gotterbarn holds a PhD from the University of Rochester.
He chaired the Joint IEEE Computer Society-ACM Task Force
on Software Engineering Ethics and Professional Practice and
is the vice chair of Computers and Society. Contact him at the
Software Engineering Ethics Research Inst., East Tennessee
State Univ., Box 70,711, Johnson City, TN 37614-0711;
gotterba@etsu.edu, http://www-cs.etsu.edu/gotterbarn.

