
5 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 9 . 0 0 © 2 0 0 3 I E E E

of an actor hostile to the system under de-
sign. Misuse cases have many possible ap-
plications and interact with use cases in in-
teresting and helpful ways.

Eliciting security requirements
Security requirements exist because peo-

ple and the negative agents that they create
(such as computer viruses) pose real threats
to systems. Security differs from all other
specification areas in that someone is delib-
erately threatening to break the system. Em-
ploying use and misuse cases to model and
analyze scenarios in systems under design
can improve security by helping to mitigate
threats.

Some misuse cases occur in highly spe-
cific situations, whereas others continually
threaten systems. For instance, a car is most
likely to be stolen when parked and unat-
tended, whereas a Web server might suffer a
denial-of-service attack at any time.

You can develop misuse and use cases re-
cursively, going from system to subsystem
levels or lower as necessary. Lower-level

cases can highlight aspects not considered at
higher levels, possibly forcing another
analysis. The approach offers rich possibili-
ties for exploring, understanding, and vali-
dating the requirements in any direction.
Drawing the agents and misuse cases explic-
itly helps focus attention on the elements of
the scenario.

Let’s compare Figure 1 to games such as
chess or Go. A team’s best strategy consists
of thinking ahead to the other team’s best
move and acting to block it. In Figure 1, the
use cases appear on the left; the misuse cases
are on the right. The misuse threat is car
theft, the use-case player is the lawful driver,
and the misuse-case player the car thief. The
driver’s freedom to drive the car is at risk if
the thief can steal the car. The driver must
be able to lock the car—a derived require-
ment—to mitigate the threat. This is at the
top level of analysis. The next level begins
when you consider the thief’s response. If he
or she breaks the door lock and shorts the
ignition, this requires another mitigating ap-
proach, such as locking the transmission. In

focus
Misuse Cases: Use Cases
with Hostile Intent

Ian Alexander

Misuse cases—
a form of use
cases—help
document negative
scenarios. Use and
misuse cases,
employed together,
are valuable in
threat and hazard
analysis, system
design, eliciting
requirements,
and generating
test cases.

H
umans have analyzed negative scenarios ever since they first sat
around Ice Age campfires debating the dangers of catching a
woolly rhinoceros: “What if it turns and charges us before it falls
into the pit?” A more recent scenario is “What if the hackers

launch a denial-of-service attack?” Modern systems engineers can employ a
misuse case—the negative form of a use case—to document and analyze
such scenarios.1–3 A misuse case is simply a use case from the point of view

security

this way, what begins as an apparently sim-
ple hardware-only design might eventually
call for software subsystems. We can ana-
lyze more complex threats to e-commerce
and other commercial systems in the same
way.

Figure 1 also shows that threat and mit-
igation form a balanced zigzag pattern of
play and counterplay. This “game” is re-
flected in an inquiry cycle style of develop-
ment. Both use and misuse cases can in-
clude subsidiary cases of their own kind,
but their relationships to cases of the oppo-
site kind are not simple inclusion. Instead,
misuse cases threaten use cases with failure,
and appropriate use cases can mitigate
known misuse.

After you know the mitigation ap-
proaches, you can proceed with develop-
ment by trading off user requirements (coun-
tering misuse) and system constraints (such
as cost, weight, size, and development sched-
ule). When you don’t know the mitigation
approaches, you can proceed with both de-
velopment and use/misuse-case analysis,
which is initially top-down. You can iden-
tify, study, prototype, evaluate, and select
mitigation approaches. When mitigations
demand new subsystems or components, the
new devices in turn usually engender new
types of threat. You can analyze these threats
to evaluate the need for further countermea-
sures. Analysis and design become inter-
twined as design choices crystallize and the
system requirements become more specific.

Mitigation measures rarely neutralize se-
curity threats. Thieves pick locks and break
into systems through unsuspected access
paths. However, partial mitigations are still
useful as long as they afford a realistic in-
crease in protection at reasonable cost. Neu-
tralizing all possible threats is wishful think-
ing and can’t be stated as a requirement. For
example, some drivers leave their engines
running when they leave their vehicles for
short periods. Can designers protect against
this sort of misuse? There are plainly more
cases to consider than those in Figure 1.

Eliciting safety requirements from
failure cases

Failure Mode Effects Analysis and re-
lated techniques traditionally evaluate
safety threats. They relate possible causes
to possible effects, make assumptions and
measurements, and calculate probabilities,
leading to an assertion that the system is
sufficiently safe. However, the analysis de-
pends on accurately identifying possible
failure modes. No work is done on un-
imagined failures. Therefore, a technique
like misuse-case analysis that seeks to
identify possible causes of system failure
can feed Failure Mode Effects Analysis
with plausible threats to systems.

Karen Allenby and Tim Kelly describe a
method for eliciting and analyzing functional
safety requirements for airplane engines by
employing a type of use case.4 Because func-
tional hazards should be intimately derived

J a n u a r y / F e b r u a r y 2 0 0 3 I E E E S O F T W A R E 5 9

Includes

Includes

Includes

Threatens

Mitigates

Drive the car

Steal the car

Lock the car

Car thief

Short the ignition

Driver

Lock the transmission

Threatens

Mitigates

Figure 1. Use/misuse-case diagram of car security requirements. Use-case
elements appear on the left; the misuse cases are on the right.

from system requirements, they see a need for
a way to derive hazards from known system
functions, proposing use cases for this pur-
pose. However, they don’t suggest associating
negative agents with use cases. Their method
tabulates the failures and the causes, types, ef-
fects, and possible mitigations. Mitigations
often involve subsystems, implying a recursive
decomposition. However, because their use
cases describe potentially catastrophic failures
and their effects, calling them misuse cases or
failure cases seems reasonable.

Safety requirement scenarios don’t neces-
sarily involve a human agent (though this is
possible through sabotage or terrorism).
The negative agent is usually the failure of a
safety-related device such as a car brake or
an inanimate external force such as danger-
ous weather. When drivers lose control on
ice-covered roads, it can be advantageous to
anthropomorphize the weather as an agent
“intending” to make the car skid (see Figure
2). This approach captures the force of an
easily understood metaphor to emphasize
the requirement for control in different
weather conditions. Because human lan-
guage is metaphoric, it is wise to express re-
quirements in this way.5

Misuse cases can help elicit appropriate
solutions in the form of subsystem functions
such as traction and automatic braking con-
trols. These functions handle exception
events (such as skidding) through carefully
programmed responses. These responses sat-
isfy requirements that can be written as ex-
ception-handling scenarios. Such scenarios

can either form the exception subsections of
larger use cases (such as “Control the car”)
or can be pulled out into exception-handling
use cases in their own right, as illustrated in
Figure 2, in which explicit “has exception”
links connect the new use cases.

Once you have identified such excep-
tion-handling use cases, you don’t need
misuse cases except to justify design deci-
sions. Justifications are important to pro-
tect design elements and requirements from
being struck down during reviews, espe-
cially when time and money are scarce.
When necessary, you can employ use-case
tools to readily display or hide misuse cases
(see the “Tool Support for Use and Misuse
Cases” sidebar).

As with security requirements, you can
develop safety requirements recursively, go-
ing from system to subsystem levels, or
lower. Again, bottom-up and middle-out
approaches are possible. The explicit pres-
ence of misuse cases should let domain ex-
perts validate safety requirements more eas-
ily and accurately.

Interplay of design, functional, and
nonfunctional requirements

The examples given so far illustrate how
misuse cases interplay with system and sub-
system functions. But you can also see a
misuse case as a hostile action that serves as
a functional goal, such as “Steal the car.”
Such threats are traditionally handled by
writing nonfunctional requirements and
standards governing quality, such as “The

6 0 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

Threatens

Mitigates

Mitigates

ABS: Antilock braking system

Has exception

Has exception

Control the car

Make car skid

Control traction

Control braking with ABS

Driver

Weather

Figure 2. Eliciting and analyzing car safety requirements through use and
misuse cases. Weather is the negative agent.

car shall be constructed to the intrusion re-
sistance (quality) defined in STD-123-456.”

Does this mean that use cases define
functions and misuse cases define nonfunc-
tional requirements? Possibly, but only if
you look at the situation traditionally. An-
other way of looking at the role of misuse
cases is to observe that the typical response
to a threat is for the designers to create a
subsystem (such as a lock), whose function
(preventing intrusion) is to mitigate that
threat. In short, you can say that the mis-
use case elicits the subsystem function (see
Figure 3).

Actually, both use and misuse cases can

help to elicit functional and nonfunctional
requirements, if you accept the distinction.
However, Table 1 makes clear the dynamic
interplay between different types of require-
ments and that one person’s nonfunctional
attribute is another person’s distinct subsys-
tem function. If so, perhaps use cases can
cover all types of requirements or even (as
some have claimed) replace them.

Eliciting “-ility” requirements
Misuse cases can help document the types

of nonfunctional or quality requirements
that engineers often call the “-ilities”: relia-
bility, maintainability, portability, and so on.

Use and misuse cases are fundamentally textual structures
and can certainly be handled as simple word-processing docu-
ments without special tools. The diagrams are also often quite
simple, with easy-to-draw notations. However, a requirements
tool specialized for use cases can keep numerous cases organ-
ized and consistent through the life of a large project. A tool
can automatically produce diagrams and metrics, check consis-
tency, and guide requirements elicitation while providing more
or less detailed templates.

I have produced such a toolkit for my own use called Scenario
Plus. It’s a free set of add-ons for Telelogic’s DOORS requirements-
management tool that retains traceability, archiving, and data-ex-
change features. Readers can download the toolkit from the Web at
www.scenarioplus.org.uk. The figures in this article reflect some of
its graphical capabilities. More important is the way the templates
organize use-case text and handle links between cases.

The interplay of use and misuse cases consists of four com-
binations, namely relationships to and from each kind of case.
Table A shows the four-part rule governing the automatic cre-
ation of relationship types according to the sources and targets
of relationships between use and misuse cases. For example,
the toolkit sees a link from a misuse case to a use case as a
threat and labels it “threatens.”

The toolkit implements this mechanism to construct links. The
requirements engineer names the target case within a scenario
step in either the pri-
mary scenario or an
alternative path of the
source case, and un-
derlines the name. The
analysis tool then scans
for underlined phrases
and tries to match them
with existing use- or
misuse-case names

(their goals). For example, the tool fuzzily matches the phrase
“Stealing the car” with the misuse-case goal “Steal the car”
(see Figure A). If it finds no match, the tool asks the user
whether it should create a new case. The tool then links the
cases according to the rule defined in Table A.

This mechanism enables engineers to write use-case steps
simply and readably in English. Users can display the created
links, view them on the diagram as relationships between use
and misuse cases, and navigate them as usual in the require-
ments database.

Users can choose to show or hide misuse cases (along with
their negative agents and relationships). The tool automatically
draws the misuse-case agents on the right side of the diagram
to keep them apart from ordinary actors.

Tool Support for Use and Misuse Cases

J a n u a r y / F e b r u a r y 2 0 0 3 I E E E S O F T W A R E 6 1

Figure A. Automatic creation of links between misuse and use cases through searching for
underlined use case names with simple fuzzy matching.

Table A
Rule governing creation of relationships between
use and misuse cases

Source case

Case type Use Misuse

Target Use Includes Threatens
case Misuse Mitigates Include

Reliability, maintainability, and portability
Whereas security threats stem directly

from genuinely hostile agents, you can elicit
and analyze reliability requirements as
threats caused by agents that are not neces-
sarily intelligent. Such agents include human
error, storms, design errors (such as software
bugs), and interference on telecommunica-
tion links, which can cause software crashes
and other types of failure.

Maintainability and portability require-
ments can also benefit from use/misuse-case
treatment. Here, the negative agents could
be an inflexible design or a wired-in device
dependence. These simple examples illus-
trate that—contrary to the view that use
cases only discover functions—use/misuse-
case analysis can be applied to many types
of requirements.

Other “-ilities”
You can also apply misuse-case solutions

to usability, as when a novice operator con-
fused by the user interface becomes a nega-
tive agent. You can also apply the approach
to hardware aspects such as storability and
transportability to solve the threats of icy

weather and rough handling to delicate
components.

Here, simplicity is a virtue. Misuse cases
involve fundamental situations affecting
many types of systems. If misuse cases were
expressed only in terms of complex calcu-
lus, they might have limited applicability.
Their simplicity suggests robustness in that
they form strong arguments in favor of de-
signing systems in particular ways.

Although I wouldn’t advocate blindly cre-
ating hundreds of misuse cases for all possi-
ble requirements, especially when the chal-
lenges in question are well known in
advance, the technique does appear to be
widely applicable to elicit and justify differ-
ent types of requirements. Does this mean
you can model use cases and forget about
writing nonfunctional requirements and con-
straints? The jury is out. Some things that are
easy to describe in a few words—the system
must be delivered in two years, the unit cost
must be no more than $250, and the mean
time between failures must be at least 10,000
hours of operation—are not ideally written
in scenarios. Although it is often helpful to
think through scenarios to elicit constraints

6 2 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

User

Misuse case

Misuse

Functional requirements

System function

Functional requirements

Nonfunctional requirements

Subsystem function

Figure 3. Interplay of use and misuse cases with functional and nonfunctional
requirements.

Table 1
Applicability of use and misuse cases for eliciting

different types of requirements
Elicitation through Use case Misuse case

Functional requirement Important mechanism Useful, but indirect
Nonfunctional requirement Possible Important mechanism

and nonfunctional requirements, they are of-
ten better summarized as statements.

Eliciting exceptions
An exception-handling use case can de-

scribe how the system under design will re-
spond to an undesirable event to prevent a
possibly catastrophic failure. The response
can lead to the resumption of normal opera-
tions or to a safe shutdown, as when a train
stops after it passes a danger signal. Misuse-
case analysis is one way to hunt down possi-
ble exceptions. Sometimes it is worth docu-
menting misuse-case scenarios in detail;
other times, just the name of the misuse case
can identify gaps in system requirements.

A clear relationship exists between ex-
ception classes and the negative actors who
initiate misuse cases. These classes are sim-
ply-named categories of exception, generic
situations that cause systems to fail. You
can generate candidate exception scenarios
and elicit requirements to prevent system
failure from a proven list of exception
classes. However, such lists are rare.

You can also employ simple requirements
templates to elicit exceptions. Good tem-
plates help elicit and validate requirements
simply because they remind us of questions
to ask, such as “Could there be any portabil-
ity requirements here?” To elicit exceptions,
you step through all the scenarios in the use
cases, asking, “Could anything go wrong
here?” This is effective and general, but not
guaranteed to find all possible exceptions.

For each template heading or misuse
case, there can be several requirements, but
if only one is found—or if you confirm that
there is no requirement—the approach is
worthwhile. In other words, a template, like
a misuse case, implies an inquiry method.

However, devising threats and negative
agents with misuse cases is sometimes a
more powerful technique than simply step-
ping through a template or thinking about
exceptions, for several reasons.

� Inverting the problem from use to mis-
use opens a new avenue of exploration,
helping to find requirements that might
have been missed.

� Asking “Who might want this to go
wrong?” and “What could they do to
make this go wrong?” in the misuse-case
approach contributes to searching sys-

tematically for exceptions by using the
structure of the scenarios themselves as a
guide, with a more specific intent than a
plain search for exceptions provides.

� Knowing explicit threats offers imme-
diate justification for the search and in-
dicates the priority of the discovered
requirements.

� Personifying and anthropomorphizing
the threats adds the force of metaphor,
applying the powerful human faculty of
reasoning about people’s intentions to
requirements elicitation.

� Making elicitation into a game makes the
search enjoyable and provides an algo-
rithm for it—“Team 1 outthinks Team
2’s best move, and vice versa.” The stop-
ping condition is whether the threat’s size
and probability justify the cost of the
mitigation, given its probability of de-
feating a threat. There is an obvious par-
allel here with cost-benefit analysis.

� Providing a visual representation of
threat and mitigation makes the reason-
ing behind the affected requirements im-
mediately comprehensible.

I find both templates and a scenario-
directed search for exceptions useful in re-
quirements elicitation. Misuse cases offer an
additional way toward that holy grail, the
“complete” set of requirements.

Eliciting test cases
Any scenario can lead to a test case. Good

testing goes beyond happy-day scenarios to
explore boundary conditions and exceptions.

Misuse cases can clearly help identify ex-
ceptions and failure modes, any of which
might be worth testing or verifying by other
means. The habit of thinking out negative
scenarios is arguably an essential skill for
the test engineer.

Products of use/misuse-case analysis that
can contribute to effective test planning include

� Specific failure modes (especially useful
for real-time, embedded, and safety-
related systems)

� Security threats (especially useful for
distributed commercial and government
systems)

� Exception-handling scenarios (always
useful, often directly translating to test
scripts)

J a n u a r y / F e b r u a r y 2 0 0 3 I E E E S O F T W A R E 6 3

Good testing
goes beyond
happy-day
scenarios
to explore
boundary

conditions and
exceptions.

A test engineer could view misuse cases
as existing purely to ensure better system
testing. A quality engineer could equally
well argue that their purpose is to improve
the quality of delivered systems.

Design trade-offs
with misuse cases

An important element of system design is
to satisfy any conflicting user demands. The
situation is complicated by the fact that each
design choice opens up new possibilities for
both use and misuse. Designers must there-
fore trade off one option against another.

For example, Web portal users must be
able to access the provided services. This ac-
cess can be threatened by many security as-
saults, from sabotage by rogue employees to
sophisticated attacks by hackers. Security it-
self can also threaten system use if it is so
strict that it frustrates lawful users and leads

them to seek alternative services. On the
other hand, loose controls that are more
comfortable for such users invite misuse.
Figure 4 illustrates these dilemmas by
adding “aggravates” and “conflicts with”
relationships between cases.

Once designers identify the threats, miti-
gations, and possible conflicts between de-
sign options, they can make informed
choices in light of system goals and require-
ments. Misuse cases, their relationships, and
the use cases that ultimately are not imple-
mented (say, loose security control) form
part of the justification for system design.
They could all be discarded, but only at the
risk of repeating the same trade-off argu-
ments during the next system upgrade. Mis-
use cases thus have a definite role to play
during system design and in addressing de-
sign issues and trade-offs during in-service
operations and maintenance.

6 4 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

Threatens

Includes

es

Threatens

Aggravates

Aggravates

Threatens

Mitigates

Mitigates

Includes

Includes

Aggravates
Threatens

Includes

Includes
Includes

Mitigates

Mitigates

Mitigates

Rogue
employee

Sabotage

Service
user Service

user

Access the services

Security

Control strictly

Frustrated by controls

Log access attempts

Denial-of-service attack

Operate firewall

Intrude into system

Recognize users

Brute-force password attack
Hacker

Conflicts with

Impersonate users

Attack unblocked ports

Control loosely

Includes

Figure 4. Use and misuse cases for Web portal security.

Putting use and misuse cases to
work

My colleagues and I at DaimlerChrysler
are investigating the appropriate forms of
use cases to help recycle reuse requirements
for control software in cars.6–8 Use cases
can assist not only software development,
which is the domain addressed by popular
accounts,9,10 but also hardware and inter-
faces of all kinds. A large system comprising
many subsystems, such as a car, must be an-
alyzed in successively greater detail in sub-
system models to cope with the complexity
of the functionality. Use-case models can
also help express the purpose of system and
subsystem features to different audiences.

Engineers can apply use and misuse cases
at any system level. This approach dovetails
well with both the recursive decomposition
inherent in the software engineering life cy-
cle and with participative, inquiry cycle ap-
proaches that invite groups of people to
solve problems in stages by asking suitable
questions. Use and misuse cases help users
and engineers communicate about develop-
ment issues. For example, a project develop-
ing automotive software to control audio en-
tertainment and safety announcements must
not only consider the driver’s entertainment
needs—a basic use case—but also allow traf-
fic announcements to override them. Indeed,
if a safety announcement is to override both
entertainment and traffic announcements,
the software system must consider interac-
tions between a range of subsystems.

Cars increasingly rely on software to per-
form functions previously provided by
hardware. When a car has separate radio,
compact disc player, and warning systems,
the radio and CD player can’t interfere elec-
tronically with the warning system, but nei-
ther can the entertainment be faded under
the warning system’s control to let users
hear the warnings. Therefore, designers are
beginning to reduce the radio and CD
player to minimal hardware and implement
their control functions in software. This in-
tegration not only permits desirable new be-
havior such as fading audio but also opens
the door for undesirable interactions be-
tween subsystems. So, the entertainment
subsystem must inherit whole-car scenarios
and develop its own more detailed use and
misuse cases to handle them. This process is
the use-case equivalent of system decompo-

sition and information hiding. Use/misuse-
case analysis can contribute to each stage of
system development, alongside other pro-
cesses that identify objects and define mes-
sages to be passed between them.

Getting started with misuse cases
The best way to get started is with a

small, informal workshop in which you and
other stakeholders identify negative agents
that might threaten your system. You then
brainstorm a list of misuse cases for each
agent. If you already have use cases, search
for ways in which misuse cases could
threaten them. This might lead you to create
more misuse cases, or it might lead to rela-
tionships between existing use and misuse
cases. You can then consider how to miti-
gate the misuse cases, should they arise.
This can lead to creating new subsystem
functions in the form of use cases. A conflict
analysis might then be appropriate. You
might also want to consider the costs and
benefits of differing design approaches and
alternative subsystem functions.

Some misuse cases require little docu-
mentation; others might need a fully
worked-out primary scenario for a use case.
Subsystem use cases created in this process
will need to be documented as usual and ex-
amined to see whether they are susceptible
to their own misuse cases. This can require
several iterations. Later in the project, you
might want to consider all misuse cases as
candidate test cases to ensure the system
under design behaves as expected.

Large projects with an established
methodology might need to prepare misuse-
case guidelines to include with the other stan-
dards. These guidelines should cover apply-
ing misuse cases to requirements elicitation,
analysis, design trade-offs, and verification.

T he interplay of use and misuse cases
during analysis can help engineers
elicit and organize requirements

more effectively. Functional and nonfunc-
tional requirements thus elicited similarly in-
terplay with each other—and with design de-
cisions—throughout the design process.
Thinking about misuse cases will probably
pick up numerous issues that could have
caused systems failures or added time and ex-

J a n u a r y / F e b r u a r y 2 0 0 3 I E E E S O F T W A R E 6 5

Some misuse
cases require

little
documentation;

others might
need a fully
worked-out

primary
scenario for
a use case.

pense to development projects. Use/misuse-
case analysis is not only promising but also
complements existing analysis, design, and ver-
ification practices.

References
1. I. Jacobson et al., Object-Oriented Software Engineering: A

Use Case Driven Approach, Addison-Wesley, Boston, 1992.
2. G. Sindre and A.L. Opdahl, “Eliciting Security Require-

ments by Misuse Cases,” Proc. 37th Conf. Techniques of
Object-Oriented Languages and Systems, TOOLS Pacific
2000, 2000, pp. 120–131.

3. G. Sindre and A.L. Opdahl, “Templates for Misuse Case
Description,” Proc. 7th Int’l Workshop Requirements
Eng.: Foundation for Software Quality (REFSQ 2001),
2001.

4. K. Allenby and T. Kelly, “Deriving Safety Requirements
Using Scenarios,” Proc. 5th Int’l Symp. Requirements
Eng. (RE 01), IEEE CS Press, Los Alamitos, Calif., 2001,
pp. 228–235.

5. C. Potts, “Metaphors of Intent,” Proc. 5th Int’l Symp.
Requirements Eng. (RE 01), IEEE CS Press, Los Alami-
tos, Calif., 2001, pp. 31–38.

6. I. Alexander, “Use/Misuse Case Analysis Elicits Non-
Functional Requirements,” to be published in Computing
and Control Eng. J.

7. I. Alexander and T. Zink, “Systems Engineering with Use
Cases,” to be published in Computing and Control Eng. J.

8. I. Alexander and F. Kiedaisch, “Towards Recyclable Sys-
tem Requirements,” Proc. 9th IEEE Conf. and Work-
shop Eng. Computer-Based Systems, IEEE Press, Piscat-
away, N.J., 2002.

9. A. Cockburn, Writing Effective Use Cases, Addison-Wes-
ley, Boston, 2001.

10. D. Kulak and E. Guiney, Use Cases: Requirements in
Context, Addison-Wesley, Boston, 2000.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

6 6 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

About the Author
Ian Alexander is an independent consult-
ant and trainer who specializes in requirements
engineering. He collaborates with DaimlerChrysler
Research and Technology on reusing requirements
in different series of cars. His principal research
interest is improving the requirements engineer-
ing process by modeling business goals, processes,
constraints, and scenarios. He received an MA in

natural sciences from Cambridge University and an MSc in computer science
from Imperial College, London. He serves on the committee of the BCS Re-
quirements Engineering Specialist Group and heads the Requirements Engi-
neering section of the IEE Professional Network for Systems Engineers. He is a
Chartered Engineer and an IEE member. Contact him at iany@easynet.co.uk.

Articles and
ReviewersFO

R

Pu
bl

ica
tio

n:
 N

ov
em

be
r/

De
ce

m
be

r 2
00

3

Su
bm

iss
io

n
de

ad
lin

e:
 1

5
Ap

ril
 2

00
3

Guest Editor: Robert Glass, rlglass@acm.org; 1416 Sare Rd., Bloomington, IN 47401

IEEE

CALLCALL
The State of the Practice of Software Engineering

This special issue will focus on the actual current practice of software engineer-ing in industry—what software engineering practice is, and, by implication, isnot. The issue will present an accurate, baseline view of practice upon whichother practitioners, and software engineering researchers, can build as they prepare usfor the future. It will describe current practice, not judge it. This issue will not, for ex-ample, focus on “best practices.”

Submissions must present information that accurately characterizes software engi-neering as currently practiced. Surveys, for example, are appropriate; case studies, un-less their findings can be generalized to a broad spectrum of practice, are not. Studiesof particular domains of practice are welcome. The issue will consist of contributed pa-pers as well as invited articles from people intimately familiar with software practice.
Submit articles online at http://cs-ieee.manuscriptcentral.com.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

