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Quality Image Metrics for Synthetic Images Based on
Perceptual Color Differences

Stephane Albin, Gilles Rougeron, Bernard Péroche, and Alain Trémeau

Abstract—Due to the improvement of image rendering pro- o To compare the results of simulation methods. This happens,
cesses, and the increasing importance of quantitative comparisonsfor example, if different rendering algorithms are used with the
among synthetic color images, it is essential to define perceptually same scene (cf. [2]). It may also be to evaluate the importance

based metrics which enable to objectively assess the visual quality fth . t f h deri lgorith d
of digital simulations. In response to this need, this paper proposes Oline various parameters orone Such rendering aigorithim an

a new methodology for the determination of an objective image t0 facilitate the choice of its parameters.

quality metric, and gives an answer to this problem through three e To guide progressive image synthesis calculations more ef-
metrics. This methodology is based on the LLAB color space for ficiently, for example with a radiosity algorithm [3] or with a
perception of color in complex images, a recent modification of ray tracing one [4]. In this case, the idea is to accurately com-

the CIELab1976 color space. The first metric proposed is a pixel . .
by pixel metric which introduces a local distance map between pute the features of the rendering solution that are perceptually

two images. The second metric associates, to a pair of images, dmportant. A first step in this direction appeared in [5] or in [6].
global value. Finally, the third metric uses a recursive subdivision  In all the cases briefly described just above, perceptually
of the images to obtain an adaptative distance map, rougher but pased image metrics are needed. Any error metric based on ra-
less expensive to compute than the first method. diometric comparisons cannot guarantee that additional errors
Index Terms—Colorimetry, difference metric, image quality, will not be introduced during the display process. Differences

rendering, synthetic images, visual perception. in luminance values may in fact be undetectable after the
display transform has been performed. This fact is all the more
I. INTRODUCTION important because display devices currently in use such as

) o ) monitors or head-mounted displays are far from perfect, with a
T HE computation pf realistic images is cqmposed of tWasduced color gamut, and a limited dynamic range.
main steps. The first one consists of physically based cal-Tools coming from digital image processing are not neces-
culations, where the flow of energy is modeled as accurately &gily well adapted, because they only deal with RGB pictures
possible. This step gives the distribution of light at each point {gnose origin is always unknown. In particular, the mean squared
the scene. The second step is a display process, where the regylt or the root mean squared error, often used in this domain,
of the previous computation are transformed to be presented8 not adequate measures. Comparisons are only based on cor-
a display device. This is a perceptually based step, where Hagponding pixels and do not include any knowledge about the
objective is to satisfy the observer. _ visual human system and the underlying features in the picture.

It is clear that the final stage of the rendering process is|n this paper, we have investigated three ways to define
reached when the image is V|eV\_/ed and judged for sunablhty_l@érceptua"y based metrics in computer graphics by using the
a human observer. Thus, there is a great need to evaluate vigyal color space. The first way is a local pixel by pixel metric
simulations, in particular for the following problems [1]. between images which allows to define a distance map. The

» To validate simulations against measurements. Thigcond way associates with a pair of images a global distance
problem appears, for example, in domains such as lightiggiye whose purpose is to define a kind of metric between the
calculations for indoor or outdoor architecture, street lampgq images. The last way uses a recursive subdivision of the
design, vehicle lights design, etc. images related to the value defined in the second way to define

a distance map which is rougher than in the first way, but less
computationally expensive.

Manuscript received June 11, 1999, revised March 25, 2002. This work WaSThe ObjeCtIVG of thIS Study |S not to Suggest a new metrlc
supported by the Région Rhéne-Alpes through the ACTIV Program. The as-h. h Id tak . f Vi | ch teristi int
sociate editor coordinating the review of this manuscript and approving it fjfnich wou ake a maximum _0 V'_Sua Characteristics Into
publication was Prof. Glenn Healey. account, but to develop a metric which enables to assess the

S. Albin and G. Rougeron are with the Laboratoire d’'Images de Synthésegecuracy (and if possible the efficiency) of the result of a
Saint-Etienne (LISSE), Ecole des Mines de Saint-Etienne, 42023 Saint-Etienne . . . .

France. rendering algorithm in terms of visual aspect. The usefulness

B. Péroche is with the Laboratoire d’lmages de Synthése de Saint-Etier@lesuch an approach, rather than another one more commonly
(LISSE), Ecole des Mines de Saint-Etienne, 42023 Saint-Etienne, France. liigad is linked to the images studied. In our case, images
is also with the Laboratoire d’Informatique Graphique, Image et Modélization t,) d ibed f shi £ ! h
(LIGIM), Université Claude Bernard—Lyon 1, 69 622 Villeurbanne Cedexe@n _ e described as a set 0 S Iny or m.attel surfaces, smoot|
France (e-mail: bperoche@ligim.univ-lyon1.fr). or slightly rough surfaces, interacting with light, shape and

ghtly roug g g p
A. Trémeau is with the Laboratoire d’Informatique Graphique et d’Ingénierighadow. For example, whereas most of image quamy models

de la Vision (LIGIV), Université Jean Monnet—Saint-Etienne, 42007 Saini- . L .
Etienne, France (e-mail: tremeau@vision.univ-st-etienne. fr). take _IntO account the contrast lsensmwty function (CSF) Qf
Publisher Item Identifier 10.1109/TIP.2002.802544. the visual human system to adjust contrast values according

1057-7149/02$17.00 © 2002 IEEE



962 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 9, SEPTEMBER 2002

to spatial frequency, our metrics does not: in our study, ondrientations and scales. It has also the ability to discern intensity
contours generate high spatial frequencies, and these contdungtions of varying degree of smoothness in the image. The
are useless in our image quality metric as they do not vary framethod begins by an orthogonal wavelet transform. A detection
one rendering process to another one. One of the assumptiohsoherent structures follows that allows to detect significant
used in this paper is that color contrast attributes betwestuctures in an image. Then, the coefficients of the wavelet
objects in a scene play an important role in image qualityansform are modulated with a contrast sensitivity function
visual assessment, because the visual appearance of an objaith measures the response of the human vision system to
depends, not only of its own characteristics, but also of thfferent frequencies. Finally, the images are compared in the
characteristics of objects surrounding it [7]-[9]. mean square sense.

The remainder of the paper is organized as follows. In|n [6], the perceptually based visual differences predictor
Section II, we remind some previous works on the problem geveloped by Daly [20] is used to monitor the perceived

the evaluation of a metric between images. In Section Ill, Wgality of two rendering algorithms used in computer graphics:
describe structures which allow to compute the color contrastggressive radiosity and a Monte Carlo algorithm.

an object from its surrounding elements. Section IV introducespgre recently, a number of accurate and efficient metrics

some tools which will be fundamental for our algorithm. Th@ased on human perception have been developed for realistic
algorithm is described in Section V, and some results af@age synthesis [21], [22], such as the visual difference metric

discussed in Section V1. Finally, a conclusion and some furthggsnosed by Bolirt al.[23], or the visual discrimination metric
developments are given in Section VII. proposed by Lubiret al. [24].

As the visual human system has a varying sensitivity to error
Il. PREVIOUS WORK that is based upon the viewing context, these metrics used
In the domain of d|g|ta| image processing, a numerous hguallty descriptors that take into account hlgh background illu-
erature deals with the problem of the evaluation of a metdgination levels, luminance and chrominance of objects, high
between images ([10] and [11] for still monochrome picture§patial frequency, and high contrast features (visual masking).
[12]). Several techniques have been developed to give a quAf- important feature of some of these metrics is that they
tified answer to themes standard in this field, like image corfiandle luminance-dependent features and spatially-dependent
pression, color quantization or search in image databases, fR#tures independently, such as in [21]. The metric proposed by
example [13]-[16]. Bolin et al.in [23] is simpler than those introduced by Lulgh
In computer graphics, only few works deal with this prob|enﬂ|. [24], moreover, it uses a Haar wavelet basis for the cortical
even if the definition of a metric turned out to be very useful. Iffansform and a less severe spatial pooling operation. One
[17], the authors conducted experimental verification betwe@glvantage of these metrics is that they deal with color images.
the simulation of a scene by a rendering algorithm such as raOther works of general purpose, concerning image quality
diosity and a model of the same scene. In a first step, a radmetriCS based on visual models, have also been publlshed in
metric comparison is presented. A radiosity algorithm is usedf@cent years [25], [26]. We must also mention some work done
generate synthetic computer images. An experimental appard4dVvatson who has taken into account viewing distance effects,
allows to make measurements of radiant energy flux densi@)@ﬂ“’ast masking effects, and other Cognitive effects linked to
These measures are then compared with the predictions of @aly stages of the human visual system [27], [28].
radiosity method. In a second step, perceptual comparisons are
made. Color science methods are used to create a color televi-
sion image from the output of the radiosity method. This picture
is then compared by a group of experimental subjects againsPerceived differences between synthetic images are due to
a real model as seen through the back of a view camera. Thighlight smoothing effects, jaggedness effects on illuminated
allowed to check the psycho-visual validity of the simulation. surfaces, ghost figures from object shadows, and other effects
Paper [18] is the first one which tried to introduce a metritess emphasized. They reflect the degree of correspondence of
between images in computer graphics. The authors used tHfgages displayed tmemorized realitfsee experiments done
algorithms stemming from digital image coding literature, an@ [29]). That is to say the perceptual quality of an image
which are based on Fourier transform and filtering. Rushmei@¢pends closely to its naturalness. This basic assumption may
et al. made comparisons on luminance images, not on displayel followed by a second one according to which background
ones. These images were coming, on one hand, from a C@ipmination level, and luminance and chrominance contrast
based system put in front of a given scene, and, on the otféifibutes between objects in a scene, play an important role
hand, from simulations of the same scene obtained by sevdfaimage quality visual assessment: the visual appearance of
rendering algorithms (flat shading, Radiance ray tracing wifth object depends not only of its own characteristics, but also
varying levels of quality specified). For appreciating the perfoff the characteristics of objects surrounding it [7]-[9]. It is
mance of a metric algorithm, Rushmegral. introduced five therefore essential to
rather pragmatic evaluation criteria. * isolate each object of the scene from elements which
In [19], a wavelet based perceptual metric is proposed, surround it;
whose purpose is very similar to ours. The proposed metric hase evaluate the color contrast between any object to elements
the ability to measure variations in images at specific locations, which surround it.

I1l. PRINCIPLES SUBJACENT TO ALOCAL ANALYSIS
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In order to reach this objective, we have to use o .
— F o 5
« aninitial segmentation step, which can be easily perform( ™ ﬂx = _L:} &
when geometrical features are available to strength p . ,.-'r | < 15 ®
color features; otherwise it is necessary to use ma \\ ,.-‘r L
.. . g
sophisticated segmentation process [30]; \\ ! .-"-'-’-K :
« an adjacency graph construction step, which can be eas 7.+ —— -_;'ﬁ .k *
achieved when adjacency relationships are described A | . ®
a linear model [31], [32]. "“a::_ b ® s &
" 5 LT
In order to record all adjacency relationships between all tl W) = oo

objects in a scene, i.e., all color contrasts between regions, we
have considered two similar structures: the region adjacengy. 1. (a) Region adjacency graph and (b) line-graph associated. Adjacency
graph (RAG) and its line-graph, which can be illustrated bylationships between regions. For example, if we consider adjacent regfipns (
Fig. 1 and defined by the following principle (ci. Fig. 2 forird 127 (1 370t e cen se e ecge rejes efechel e
an example). v,. Consequently, these two edge are adjacent relatively to the vertex

The RAG associates a vertex with each region and an edge
with each pair of adjacent regions. At each vertggorresponds
therefore a regio?; and two color valueg; ando; represen-
tative of the color distribution of this region. At each edgge
corresponds a pair of adjacent regiofs,(#2;) and a color dis-
tanced(R;, R;) which differentiates colorimetrically these two

regions. The associated line-graph (LG) is defined as follows: | W ]
vertices are the edges of the RAG and its edges the adjac h (’: '@v.'.
relations between the edges of the RAG (i.e., two vertigasid L M
v; of LG are connected if the edges of the RAG, represented i—+ M

v; andw, in LG, are adjacent).
Thanks to these structures, it will be possible, from a theoret- @ )
ical point of view, to compute the color contrast of each object _ _ _
from its surrounding elements. Nevertheless, as there is no orﬁ?rz- Color contrasts between pairs of adjacent objects of the “Cornell-box.
. . . ) . a) Image Cornell-box segmented and (b) adjacency relationships between
relation between colors (from a colorimetric point of view), Weegions.
are limited to compute only color contrasts between pairs of

adjacent objects.

Let us recall that our purpose is to quantify perceived diffe .
ences between color images computed by a rendering algoritt |l (i) center of interest
. - . o]
Consequently, for these images, it is more accurate, in ter f/ > focus area

of perceived quality, to use local color attributes than color &
tributes between neighbor regions, because the observeris n
sensible to color contrasts inside objects than to color contra
between objects. That is to say, the local rendering of obje:
is the main perceived attribute of quality of synthetic image
In order to analyze the local rendering of each image area, '
will propose in Section IV-A to use a neighborhood operatc
based on the principle of focus of attention. Then, to analyze

the difference of local rendering between two images, we witlg. 3. Subdivision of the visual field in two rectangular masks centered on
propose in Section IV-B to use the LLAB color distance basé@e (i. 7) pixel location.

on the principle of color appearance measurement.

dy //’/ [ background area

\ image studied

2 degrees

20 degrees

« the background which corresponds to a field of view of
20° [34].

Two masks are associated with each pixelj) of the picture
In this section, we shall present three concepts used by ¢89]-

algorithm: the visual field, theLAB color space, and a refine- @ A rectangular areg(¢, j), of aperture 2, located around

IV. SOME TOOLS

ment process of computation of image differences. pixel (¢, j), with nl, pixels on the leftpr, pixels on the right,
nto pixels on the top andb, pixels on the bottom. This area
A. Visual Field corresponds to the focus.

¢ A rectangular are&(z, 7), of aperture 20, located around
The visual field is subdivided into two areas (see Fig. 3): pixel (4, j), with, respectivelyplag, nra, ntso, andnbsg pixels
« thefocus,which is a visual field of 2 associated with the on the left, on the right, on the top, and on the bottom. This area
foveal vision [33]; corresponds to the background.
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To compute these masks, the following formulas are used:

=i 1 24y, tan G — 7112”, tan 52 1
nl=i— -
2 w o a2h " s a’2h 2 - % /_\ ﬁ

q Q. 2 2p .
r :% < 2J np'p ta,n 2 + TLP’I’ tan > ) _Z n120 n12 0 nrz nr20 perSpeCtIVC

ay, . ay, 2 a
Npe tan < — 2 jtan 5" tan

. Fig. 4. Weight distributiono (7, 5) associated with pixgli, 7) location.
1< 2'L711,,ctanﬁ—néctanﬁ ) 9 9 o(i, 7) pixeli, 7)

_i_ 2 2
nt =1 2 a, . a, 2 a,
Npe tan 5+ + 2 tan 57 tan =

background. Let us denote by the luminance (expressed in

1 2 jnpe tan % +n2, tan %2 lumm~2 sr— 1) of the reference source (hef#6500), and by

nb = > < - 2 p; 5 2 & ) —3j (1) Y, thelightness of the achromatic background surrounding the
Mpe tan S — 2 tan 52~ tan 55 colored surface.
where Three parameterd’s, F,, and F- are used to perform the
« i andj are the coordinates of the pixel in relation to th&omputations. Their values, given in Table |, are dependent upon
center of the screen: the ratioY'5/100. Let Xy = 95.05, Yy = 100.0 andZy =

« a, is the field of view of the area to be computed, (= 2 108.88 be the tristimulus values of reference whid&500. The

or 20°); various appearance attributes are obtained by the following for-

« oy, anda, are the horizontal and vertical apertures; ~ mulas:

. Zé’,]umd npe are the number of pixels per row or per Li =116 f(Y)" — 16

Visual acuity is roughly decreasing iry6 [10], [36], where A =500(f(X) - f(Y))

6 is the angle in relation to the visual axis. This relation is esti- B=200(f(Y) - f(Z))
mated by the following weight distribution (cf. Fig. 4):

. o . wherez = 1+ Fr/Yb/100.
a cons_tant weight equal tg one is given to each p|x\é\1 If X,/ Xy, Y,/ Yy OF Zy/Zx > 0.008856,
belonging to the focus area,;

« a weight linearly decreasing from 1 to 0 is given to pixels f(X) = (X,,/XN)l/FS
located respectively at the center of the background and at FY) = (Yj/XN)l/FS
its boundary. . . H2) =(2.)X ,)1/Fs

We shall denote by, the sum of the weights associated to —\er/ AN ’
the focus, and byy, the sum of the weights associated to the |t x /x V,/Yy or Z./Zy < 0.008856,
background. On the borders of the picture, the masks are clipped

and the values of; andw, are updated accordingly. F(X) = (0.008856/ 75 — 16 Y /0.00885 « X,/ Xx + 16
' 116 )/ tEN T 16

B. A Color Distance Computed From the LLAB Space 16 16
The LLAB space [37], [38], derived from th@IE Lab1976 f(Y) = <0~008 856"/ — E) / 0.00885* Y,./Yy + 116
color space, has been settled [39]:

* togive a precise prediction of color appearance bet\_/\/_ee?@z) - <0.008 856/ Fs _ ﬁ) /0.008 85 % Z, | Zn + 16
pair of complex images under different viewing conditions 116 116

(91, [40_](;I ; | e O =(4.907 + 0.162C + 10.92
« to provide a uniform color space for color gamut mapping

and color difference evaluation; - 1n(0.638 +0.07216C)) FoSc
* to include single mathematical equations and to easifyhere

derive its reverse model.

The use of thd.LAB space needs two steps. The first one is C=v A%+ B2,
a BFD chromatic adaptation transform [41]. It is used to con- Sc =1.040.471og L — 0.057(log L)?

vert tristimulus values\(, Y, Z, of the surface under any source

illuminant to tristimulus valuesX.,.Y,.Z, under the reference

iluminant 26500. wherearctan 2 is the function which returns an angle between
The second step is a computation, modified with regard tband 360

the color spac€IELab1976color space, of the following per-

hr, = arctan2(b/a)

ceived attributes: lightnesg.{ ), redness—greenness ), yel- Ar =Cpcos(hr)
lowness—bluenes$y(,), colorfulness ), hue angle/;) and By, =Crsin(hr)
hue composition&). Hp =Hp1+ (Hpo— Hpi)(hp — hp1)/(hpo — hr1)

Let us remind that the computation of these attributes is
related to the following experiment: a colored surface wittvherel.;; andh . are the hue angles having nearest lower and
a vision angle of 2 is surrounded by a uniform achromatichigher values of.;, respectively.
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TABLE |

VALUES OF PARAMETERS F's, Fi, AND F¢ 1 . -
part af anen M* T inbersecosd

by the focus area

Fs | FL | Fe '
& part al anca B* & inbersocded
Average surround (20 < Y5/100) | 3.0 | 1.0 | 1.00 : by il SUFTDURK Grea

Dim surround (1 < ¥b/100 < 20) | 3.5 | 1.0 | 1.15 part of anen N°-5 intersecied

b tha fiscus ares

Dark surround (Y'b/100 < 1) 42 11.0 | 0.95

A notion of colorimetric distance is defined as follows. Le
us suppose we deal with tWO colored surfaces, egCh one beiPQS Example of study areas partly intersected by a focus area or by its
§urrqunded by an achromatic background_, and hit by any t\& kkground.
illuminants. Tristimulus value<,.Y;.Z,. are first computed, in
order to adapt the lighting conditions to what should be give=
under reference illuminad?6500. Then, for each surface, light-

ness L), chromaticity C;) and hue anglei(;) are computed. [ b o Er i biat st
The color difference is then: | - ;
AEp = /(AL + (ACL)? + (AHL)? @) g 6 ™ focus aren

where: 3 n,

AL I I hackground area

L — 4L — L
ACL =Cy, - (4 3
AHL 22\/ 0201 Sin((hg—hl)/Q). :

C. Refinement of the Study Area by Segmentation

As explained in the previous section, the computation of tt i -
various appearance attributes associated with_th&B color
space corresponds to a situation where a uniform target placed
in front of a uniform achromatic background is shown to a ig. 6. Exampl_e of a study area defined from a focus area subdivised into a

. ) . . _target area and its surround.

observer. But, study areas defined in Section IV-A contain a
part of the scene where it is possible to find some objects with
various appearances (for example, cf. Fig. 5). In order to get
closer to the experimental situation, we shall suppose that, inThe metric computation programs that we propose take as
the focus area, the visual attention of the observer leads hiniriput two computed images, represented by two files imgl1.lum
bring out the object aimed at the direction of the pixel from thand img2.lum. In these files, each pixel is associated to three
rest of the scene, which then makes up the background. floating numbers. These numbers are supposed to be CIE 1931

It is thus necessary that the rendering algorithm used to pRGB tristimulus values. This last color space has been defined
duce the picture gives to the metric algorithm a segmentationaifthe end of an equalization experiment brought with the fol-
the image. In our case, the ray tracing algorithm used generatesing monochromatic primaries: 700.0, 546.1, and 435.8 nm
besides a computed image, a file containing for each pixel tf#2].
number of the object and/or the number of the face hit by theThus, there is a preprocessing step to first obtain XYZ
primary ray (but such a result can also be obtained with the iteristimulus values.
buffer technique).

With this information, we may refine the study area. For th#. RGB to XYZ Conversion
purpose, we subdivide it into two areas (for example, cf. Fig. 6): The matrix transformation used is

* the target, composed of all the pixels belonging to the

lrget ane -
surround arci

V. OUR METHOD

. . X 0.49 0.31 0.20 R
focus and having th m ect or face number than the
Coenliral p?xef_‘ g the same object or face number tha v | = [ 0.17697 081240 001063 || @ |. ©3)
’ A 0.00 0.01 0.99 B

« thesurround,composed of all the pixels belonging to the
background plus all the pixels from the focus which haveet us note that the rendering computation, leading to the im-
not been put in the target. ages that are going to be compared, assigns to the light source

At the end of this segmentation step, the values pindw, tristimulus values? = 1, G = 1 and B = 1. Obviously, after
are updated in order to represent, respectively, the sum of trensformation, we also ha'® = 1,Y = 1 andZ = 1. We
weights of the target and the sum of the weights of the surroursthall suppose, to avoid a chromatic adaptation computation, that
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the source located in the scene is of tyP€500. By the in-
verse transform, the tristimulus values of this source must be:
R =0.841, G = 1.089 and B = 1.033. As this source is the
only one present in our test scenes, it is sufficient to respectively
multiply RGB tristimulus values coming from fileum by

RANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 9, SEPTEMBER 2002

o If dist(, j) < imperceptibility_threshold, then Red=
Green= Blue = 0;

o If imperceptibility_threshold < dist(i, j) <
acceptability_threshold, then 0 < Red = Green =
Blue < 255, with a linear interpolation;

these last three numbers, and then to apply them the transforme If dist(i, §) > acceptability_threshold, Red= Green=

matrix.
So, the light source supposed to send out a power of 100 W
is given a luminous powek = 6.8310° lum m~Zsr—L. C.

Blue = 255.

Computation of a Distance Map Based on a Color

Dispersion Measure

B. Computation of a Distance Map Based on Visual
Characteristics

The purpose of our method is to compare the sensations of

Different descriptors can be used to measure the degree of
homogeneity of an image area [7], [9]:

« either to measure its spatiocolor dispersion (i.e., the local

two virtual observers supposed to be present in the scene. We color contrast). To measure locally this dispersion, we pro-

make the hypothesis that their visual attention is equally at-
tracted in all directions.
We proceed as follows, for each pixel of images 1 and 2.

1) The sizes of the study areas associated with vision angles
of 2° and 20 are computed with equation (1).

2) Weights are attached to each pixel according they belong
to the focus or to the background.

3) The sum of weightss; andw; are computed.

4) The focus is refined by separating the target from the
surround.

5) Values ofw; andw, are updated.

We may notice that the results coming from these first
five steps are identical for the two images. Then, for each
pixel of each image:

6) Y; is computed as the weighted average of coordinates
Y(z, ) of pixels belonging to the background area

w,
b (¢, j)Ebackground

Y, w(i, 7).100.

7) Depending on the value of ratkéb/100, values ofFs,
Fy,, and F are computed.

8) Foreach pixel of the target area, coordindigsC, and
hr, are computed.

9) The pixel by pixel erroAE;, between images 1 and 20f
can therefore been computed, for each pixel of the targgy,
by formula (2)¢

10) The mean error is then given to the central pixel of the
target, i.e.,

1
dist(i, j)=— >  AEL

w
f (¢, j)Ctarget

As output, our program provides an image of distances,
as a file .dist which contains, for each pixel, a real number
corresponding to the computed distance. To allow the visual-
ization of areas with low or high errors, we define a displayable
image of distances. From fileglist, false grayscale images
are built. With two thresholds defined by the user and called
imperceptibility_threshold and acceptability_threshold,
gray levels are assigned as follows:

lwhatever the value of these errors, these will be all the more perceptible
to the observer that they appear in the focus area, as the acuity is maximal in
the focus area unlike to the background area; that is the reason why errors are
computed only in the target area.

o3 (i, )

pose to compute thetandard deviation of colors; (4, j),
of each image ared(¢, j) centered around pix&k, 5),
defined by (see [43])

1
~ Card [(i,))

2

(@, 3")ef G, 5)

128G, 5" — its (i, DI

wherec(4, ) is the color components vector of pixe) 5)

and
>

(@,3")ef 0, 5)

1
= Card f(i, j)

—

M

—

(i, 5) e, 5');

« either to measure its color dispersion according to its
principal component, especially the standard deviation of
the most representative color gamut of the area under study
(cf. [44]). To locally measure this dispersion, we propose
first to compute the KRHUNEN L@&VE transformation
corresponding to the image area considered [45], [46],
then to select the “most significant” color feature among
features given by this transformation, i.e., the feature
which gives the highest eigenvalue of the covariance
matrix of colors distributions in this area, and lastly to
compute the standard deviation of this feature.

Two measures can be used to measure, locally, the difference
homogeneity between image areas in relation to the principal
lor feature. They are

« the FAsHER distance, defined locally by

dpisn(t, J)
max  dpin(?, §
@, 3)CFG ) W, 7)

if ¢1(i, )% < eande?(i, j)2 < ¢

Dpisn(i, j) =1—

dFish(iv J) = |N1(i7 J) - NQ(iv J)|
otherwise
.. LN 2
|\t (i, ) — 124, 5)]
Hi, 5)? + <20, )

dpish(i, J) = CCWdf(L, J)( )

where it and ¢! are respectively the mean and the
standard deviation of the most significant color feature of
image ared (¢, j) centered around pixél, j), computed
for image 1. Likewiseu? and<? are computed for the
second image to be compared to the first one.
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 the normalized mean squared error measure [47], defined+ Cornell_diff, computed with a ray tracer taking global
locally by illumination into account with an evaluation of the diffuse
component [48] (computation time: 4 min 9 s);
|£1(,L~/7 7Y — (i, j’)|2 e Cornell_mc,computed \{vith a Monte Carlo_ method with
(@, 5 £ i, §) 256 samples per hemisphere (computation time: 14 h,
&, §')? 5 min, 13 s).
(&, 5)EFG, §) The last picture will be considered as our reference. Thus, we
shall compute an image of distances between Cornell_amb and
whereg!(i’, 5/ is the color coordinate of pixg¥’, j/) ¢ ~Cornell_mc, and then between Cornell_diff and Cornelll_mc.
(i, j) defined, forimage 1, according to the most signif- _Whatever the ray tracer _met_hod used, we can conslder that
icant color feature of image argidi, j) centered around it iS computationally intensive in regards to computations re-
pixel (i, §). Likewise,&2(i’, j/) for image 2. quired by image quality metrics. Whatever the image quality
metrics used, we can consider that they have more or less the
same efficiency in terms of computing time. On the other hand,
) they have not the same efficiency to quantify such or such vi-
Of course, we may compute the mean distance from the figg| characteristic. That is the reason why the features used in
.dist computed in Section V-B. But, as we shall see in th@js study have been selected according to their ability to assess

results, the computation time is then very high. the accuracy of the result of a rendering algorithm in terms of
Thus, we propose another solution, based on a Monte Caylgua| aspect.

process. The method is as follows: we randomly chegsieels
(4, j) and for each such pixel, we compukt(i, j) as defined g Analysis of Results

in Section V-B. Finally, the global distaneebetween the two , . .
images is defined ag = (1/n) Y, dist(i, 5). We shall give some results on the computation of distance

From our experience, a valte about 1000 or 2000 gives maps (cf. Sections V-B and V-C), of global distances (cf. Sec-

a global distance with an error less than 2% in relation tofin V-D), and of ada-ptive distance maps (cf. Section V-E).
complete computation. 1) Distance Maps:The computation time to obtain the dis-

tance file is about 35 min, on a 200 Mhz MIPS R10 K processor.

This computation time is very high because the algorithm is in-

herently sequential and for a 522512 pixels size picture, the
The purpose of this method is to obtain a distance majre of the background mask is around 10A00 pixels near

showing more or less rough areas of the pictures with low gife center of the picture. Consequently, the first distance map

high errors. (see Section V-B) is quite more computationally intensive than
Let« be areal number in [0, 100] arkcbe a real number. We the second one (see Section V-C).

suppose that the pictures havé"ax 2" pixels size to make the  The two distance maps, associated with the two couples of

NMSE(i, j)=1—

D. Computation of a Global Distance

E. Adaptive Computation of a Distance Map

calculations easier: images of Fig. 7, have been first computed from the distance
1) by the method explained in Section V-D, a valiés map presented in Section V-B, and next displayed, on Fig. 8,
computed for the pair of pictures; with the following parameters: imperceptibility _threshel@®.5

2) if at most(1 — «) percent valued(i, j) do not belong to and acceptability_threshold 6.
interval[d — k, d + k], then subdivide the pictures in four Let us notice that these thresholds have been chosen at the
equal subimages and go to 1; end of an experimental study conducted in our laboratory by
3) otherwise, assign valugto the area. around 20 people [35]. Let us also notice that in order to obtain

At the end of this algorithm, a quadtree data structure ha&oother images
been defined, where each leaf is assigned a vélué/e may 1) Alinear interpolation has been applieditpbetween 4.2
use exactly the same process than in Section V-B to obtain a and 3.0, forl < Y/100 < 20.
displayable image of distances. Of course, the obtained distanc€) Instead of assigning to the central pixel the mean of the
map is rougher than that obtained in Section V-B. But, as we  errors, we took the median value. This has the effect of
shall see in the Section VI, this method is less computationally ~ erasing the residual noise coming from antialiasing.
expensive, without degradation of the computation of the global The four distance maps (cf. Figs. 9 and 10), associated with
distance. the two couples of images of Fig. 7, have been first computed
from the distance map presented in Section V-C.

For each image of Fig. 7, we have displayed [cf. Fig. 9(c),
(e), and (g)], its standard deviation, computed locally. This dis-
A. Data Base play uses a black and white scale from the smallest value to the

For our tests, we use a lot of 512 512 pixels size pic- highest oné.

tures showing a standard scene in computer graphics: thé:oreach imag_e Of_ Fig.7,_we hav_e displgyed [cf. Fig. 9(d), (7)
“Cornell_box.” In Fig. 9, three of them are shown: and (h)], the projection on its principal axis, computed locally.

* Cornell_ambgcomputed with a standard ray tracer with an 2 gamma correction has been applied to local variances values to enhance
ambient term (computation time: 3 min, 27 s); the most noticeable local contrasts.

VI. RESULTS
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(b)

©

Fig. 7. Testimages. (a) cornell_amb, (b) cornell_diff, and (c) cornell_mc|

\_ ="/

L
(a) (b)
Fig. 8. Images of distances. (a) Amb/MC and (b) Diff/MC.

(©
'I' I ‘
(e)
This display uses a RGB color scale, such as each pixel is
sociated with a color which represents the axis direction of t
most significant color feature computed in the area centere
this pixel.
In regards to these images, we may notice the following.
« All the images studied (cf. Fig. 7) seem to have, locally, ) )
the same color dispersion. Let us notice nevertheless some : _ -
differences at the top of the walls, due to highlight ef'fects;{,'g’;ﬂ9 ;ire';‘;f3?;2'6”‘1"‘(39'13“323”;‘1} lﬁ?.: -'tts Standatrd dev'a-:'on gompu,ted from
ght: its projection on its principal axis
and some differences at the bottom of the boxes, dued@nputed from local areas of size ¥010. (a) Cornell segmented, (b) Cornell
shadows effects. segmented, (c) cornell_amb, (d) cornell_amb, (e) cornell_diff, (f) cornell_diff,
« All the images studied (cf. Fig. 7) present, in fact, Iocally(,g) comell_me, and (h) cornell_mc.
a color rendering slightly different. For example, look
at the wall located at the left side of the scene. The also). It is important to notice that it is the discretization
change of direction, computed from the principal color  of this highlight effect which introduces this jaggedness
feature, underlies a jaggedness effect which differs from  effect. This effect modifies only the color rendering of
one image to the other. This effect is due to a local the main color attribute of the surface under study; that
illumination effect which modifies linearly the lightness is the reason why it appears only on this component and
of the surface under consideration (eventually its color not on the set of color components.
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Next, for each couple of images of Fig. 7, the locally conm.
puted FSHER distance has been displayed [cf. Fig. 10(a) arfi
(c)]- This display uses a black and white scale for which blac
pixels (value near zero) represent image elements for which-
difference is maximal and white pixels (value near 1) represe
image elements for which the difference is minimal.

Let us notice that, for most of surface areas, treER dis-
tance corresponds in fact to the color distance because th{®
areas are quite homogeneous. The smaller the parameteevall &
is, the more the distance takes into account the color dispers
of study areas, to weight the color distance compared to stan- @)
dard deviations computed for each area according to the main

of perceived differences between images (look after highlig
effects on walls and shadow effects linked to boxes); nevertt
less, it induces a noisy effect which is difficult to isolate fron
significant elements.

For each couple of images of Fig. 7, the locally compute
NMSE distance has been displayed [cf. Fig. 10(b) and (d)], wif

the same grayscale than in the previous figures. ] L .
Let us notice that the second measure is less sensitive % =
high color contrasts than those defined by edge elements,

more sensitive to sloped color contrasts than those obtained © %)
from jaggedness illumination effects on homogeneous Surfaces. |, - . \c/amb, (o) MC/DIf, (c) MC/Amb, and (d) MC/DIff. For each
As for the HsHER distance, this measure induces a NOiS¥ the images, we have at left: the Fischer distance computed locally according

effect which is difficult to isolate from significant elementsto a mask of size 1& 10 and to & = 10 — 4 and at right: the NMSE measure
Consequently, even though these measures seem to reffe@puted locally according to a mask of size:400.

closely perceived differences between images, we are faced
to the problem of dissociating elements linked to perceptible
differences from noisy elements, in order to compute a global
value really significant of noticeable differences. This problem
can be overcame by masking the most homogeneous areas
before computing images differences. Nevertheless, let us
notice that, in our study, the noisy effect which has been noticed
in our measures comes, in part, from imagenell_mcitself,

as we can see in Fig. 9(h).

These latter measures do not require to establish a segmenta-
tion between image areas because their field of interest is limited
by definition to the internal part of the surfaces of the scene, so
theses measures are useless to describe the edges of adjacent Fig. 11.  Animage of adaptive distance.
surfaces. They are therefore complementary to the color dis-
tance preyiously introducet_j in Section IV-B for which the field VII. CONCLUSION AND FURTHER DEVELOPMENTS
of analysis covers both the internal part of surfaces and the edges
of adjacent surfaces. That is the reason why it is sometimes in!n this paper, we have proposed three algorithms to compute a
tersecting to prevail this latter measure over the two other ong§rceptual metric between colored images, specific to computer
even if these former measures are more W|de|y known and usﬁfﬁphlcs The tests made show the relevance of this tool. For all

2) Global Distance: The distance between pictures Corthe scenes computed with rendering algorithms with increasing
nell_diff and Cornell_mc computed with our Monte Carldluality, the algorithms provide sound results in relation with our
method is 3.40. The true distance computed with all the pixe@¥pectations.
is 3.37. The computation time needed by the Monte CarloHowever, this workis only a first attempt on the way to define
method is around 16 s. a perceptual metric for computer graphics. In particular, nothing

3) Adaptive Distance MapsWe may see on Fig. 11 theproves that the only mean distance computed on the whole set
adaptive distance map associated with two images of Fig.d pixels defines a mathematical distance. A new parameter (or
with the same parameters than in Section VI-B-1. In this cagggrhaps several), more judicious, could be developed by using
the computation time is around 8 min (to be compared 8patial and statistical distributions of the distances. By way of
the 35 min needed to compute a distance map). The globalidation, we shall attempt to satisfy the five criteria of [18]
distance computed pixel by pixel is the same (3.37) than the at least the three criteria given in [19]. Finally, it could be
one computed with the help of the distance map. particularly useful to apply this kind of tool during a rendering
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computation, in order to dynamically and efficiently guide the[18] H. Rushmeier, G. Ward, C. Piatko, P. Sanders, and B. Rust, “Comparing
running of the algorithm (cf. [5] and [6]).

For the future, we could set up to a finer segmentation of the
study area, by taking shadows and highlights into account, fdit9]
example.

Some psycho-visual experiments should be driven near bothoj
a group of experimental subjects and a set of images, in order
to help us to measure the quality of the metric and that of th&?H!
computed images. In particular, we should like to be able to
guantify the five-grade quality scale (excellent, good, fair, poor

bad) and impairment scale (imperceptible, perceptible but n

2]

annoying, slightly annoying, annoying, very annoying) quoted23]

in [11] with respect to the above thresholds. The experiment
procedure that could be used would be based on the objecti

!

picture quality scale (PQS) proposed by Miyahetral.in [49].
It would also use some principles of the experimental procedur@5]
we have developed in [40].
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