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Abstract—Bandwidth smoothing techniques for stored video when compressed, high quality video can consume a significant
perform end to end workahead transmission of frames into amount of network bandwidth, ranging from 1-10 Mbps. In ad-
the client playback buffer, in advance of their display times. gjtinn compressed video often exhibits significant burstiness on
Such techniques are very effective in reducing the burstiness ety of ti | due to the f truct f th
of the bandwidth requirements for transmitting compressed, a vgney Or ime scales, due _0 ; e ra_m(_e structure or the en-
stored video. This paper addressesnline bandwidth smoothing €oding scheme and natural variations within and between scenes
for a growing number of streaming video applications such as [5]-[12]. The transmission can become even burstier when one
newscasts, sportscasts, and distance learning, where many clientsor more video sources are combined with text, audio, and im-
may be willing to tolerate a playback delay of a few seconds in 5464 a5 part of an orchestrated multimedia stream. Variable bit

exchange for a smaller bandwidth requirement. The smoothing ' . . - -
can be performed at either the source of the videocast or at special rate (VBR) traffic complicates the design of efficient real time

smoothing server(sfe.g., proxies or gateways) within the network. Storage, retrieval, transport, and provisioning mechanisms ca-
In contrast to previous work on stored video, the online smoothing pable of achieving high resource utilization.

server has limited knowledge of frame sizes and access to only  One possible solution to this problem is for the encoder to re-
a segment of the video at a time. This is either because the feedy,,cq pyrstiness by adjusting the quantization level of the frames
is live or because it is streaming past the server. We formulate . . . . . .

an online smoothing model which incorporates playback delay, ac!’oss time, particularly during scen.es with high bandw@th re-
client and server buffer sizes, server processing capacity, and quirements. However, a constant bit rate (CBR) encoding re-
frame size prediction techniques. Our model can accommodate an duces the picture quality, particularly at scene changes or inter-
arbitrary arrival process. Using techniques for smoothing stored  vals with significant detail or motion, precisely when the effects
video at the source as a starting point, we develop an online, 46 ikely to be most noticeable to users. For the same average

window-based smoothing algorithm for delay tolerant applica- . . . - : .
tions. Extensive experiments with MPEG-1 and M-JPEG video bandwidth, a variable bit rate encoding offers higher quality

traces demonstrate that online smoothing significantly reduces and a greater opportunity for statistical multiplexing gains than
the peak rate, coefficient of variation, and effective bandwidth of would be possible with a constant-bit-rate encoding [13], [14].
variable-bit-rate video streams. These reductions can be achieved However, transmission of variable bit rate video requires ef-
with modest playback delays of a few seconds to a few tens oftaive techniques for transporting bursty traffic across the un-

seconds and moderate client buffer sizes, and closely approximated IVi icati twork. O lis t bine th
the performance of optimal offline smoothing of stored video [1]. erlying communication network. Our goal IS to combine the

In addition, we show that frame size prediction can offer further higher quality advantage of VBBncodingwith the simplicity
reduction in resource requirements, though prediction becomes and resource efficiency of CBRansmission

relatively less important for longer playback delays. However,  |n this paper, we present and evaluate techniquesritine
the ability to predict future frame sizes affects the appropriate smoothingto reduce the burstiness of VBR streaming video,

division of buffer space between the server and client sites. Our ithout - th lit f th di Thi
experiments show that the optimal buffer allocation shifts to WIthOUl compromising the quality or the encoding. 1his

placing more memory at the server as the server has progressively Smoothing can be applied at the source or at another node (e.g.,

less information about future frame sizes. proxy or gateway) along the path to the client(s). In addition
to reducing resource requirements on high speed backbone
|. INTRODUCTION links, bandwidth smoothing is particularly valuable for lower

speed broadband access links that have significantly lower
opportunities for statistical multiplexing. Using knowledge

frame sizes (number of bits in a frame), the server can
hedule the transmission of frames into the client playback
buffer in advance of each burst. This approach to smoothing

is particularly appropriate for a growing number of videocast
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impose strict bounds on the delay to the client(s). As a resu Multimedia Server
smoothing for interactive video typically requires dynamic —= Data
techniques that can react quickly to changes in frame sizes ¢ M Smoothing serve
the available buffer and bandwidth resources. For examp  Client -———oo-X oo ooomq Router
the server can smooth the video on a small time scale I%_
transmitting at an average rate for a small set of frames, bas™
on the sizes of existing frames and estimates of future fran
sizes [15], [16]. Such smoothing is especially effective
removing the short term burstiness of streaming MPEG vide er]
where a small group of pictures (GOP) may consist of widel
different frame sizes. Since the tight latency constraints |imu1en—to;'3136i """""""""""""
smoothing to a few frames, interactive video application Network
often require the encoder to lower the frame quantization level
when the source rate exceeds the network capacity on a la jerl. Bandwidth smoothing in an internetwork. The live or stored video
time scale. Techniques for smoothing interactive video canrff e oS T & B EtEle Soet B e orkstatons and.
remove the medium timescale burstiness within and betwegiitop boxes. Smoothing occurs at the video source and/or at servers inside the
scenes without degradation in picture quality. network.

While interactive applications have limited knowledge of
future bandwidth requirements, smoothing algorithms faf frame sizes and access to only a segment of the video at a
stored video [1], [17]-[20] can use prior knowledge of théime. Thisis because either the feed is live or it is streaming past
frame sizes for the entire stream. In particular, since the vidéee server. In Section Ill, we present the framework for online
frames are stored in advance at the server, these bandwgltioothing of streaming video which incorporates practical
smoothing techniques can reduce rate variability on a large timenstraints on the knowledge of future frame sizes, the ability
scale through workahead transmission of frames into the cliegatperform workahead transmission, and the playback delay,
playback buffer, as discussed in Section Il. Given a fixed clieas well as limitations on client and server buffer sizes and
buffer size, these smoothing algorithms minimize the pegkocessing capacity. The model can accommodate an arbitrary
bandwidth of the video stream, while also optimizing othearrival process, which may be the original video stream or its
important performance metrics [21], such as rate variabilityansformation after traveling through the network from the
effective bandwidth, and the number of rate changes. As source to the smoothing server.
example, experiments with MPEG-1 video traces show that aln addition to burstiness within an MPEG group of pictures,
one-megabyte playback buffer can reduce the peak and standéddo streams can exhibit substantial burstiness at the time scale
deviation of the transmission rates by a factor of 5—10 [1]. Withf scene changes [11], since scenes often differ in their bit rates.
the decreasing cost of high-speed memory, video set top bokeSection IV, we demonstrate that 1-10 s of playback delay can
and personal or network computers can easily devote a fesduce resource requirements by a factor of two or more beyond
megabytes of buffer space to video smoothing, in exchange fbe gains of techniques for smoothing interactive video. In ad-
these substantial reductions in network resource requiremendiion, the smoothing benefits of such delays are also very close

Bandwidth smoothing of stored video serves as the startitmthat of optimal offline smoothing, for finite as well as infinite
point for the development of an effectiealinewindow-based client buffers. This suggests that most of the benefits of offline
smoothing algorithm for noninteractive videocast applicationsmoothing can be gained in the online scenario, with smoothing
We propose delaying the playback of the video to permit tveindows (and therefore playback delays) which are of the order
source to perform workahead transmission over a larger interadiscene lengths, and that larger windows have limited utility.
(window) of frames, based on the buffer space available at theExperiments also show that knowledge of future frame sizes
client site(s) [22]. Alternatively, a special proxy server in thean moderately improve the effectiveness of online smoothing,
network could delay the transmission in order to smooth vidélsough prediction becomes less important for longer playback
destined for a subset of the receivers, such as clients witldelays. In addition, even for small playback delays, knowledge
a single company or university, as shown in Fig. 1. Similaffuture frame sizes s of limited utility, as the amount of worka-
approaches have been proposed for placing proxies inside liead smoothing is limited by the amount of data actually avail-
network for efficient recovery from packet loss [23] and fomble to the server. However, the ability to predict future frame
transcoding [24]. Throughout the paper, the tesmoothing sizes still affects the appropriate division of buffer space be-
server is used to denote the node at which smoothing teveen the server and client. Our experiments show that the op-
performed. A stream may cross multiple network domains, atichal buffer allocation (i.e., the allocation of buffers between the
the client for the smoothed video, called ts@oothing client server and client that produces maximal smoothing gains) shifts
could be either the receiver end host, or an intermediate nddeplacing more memory at the server as the server has progres-
in the network (e.g., an egress node in some network domairjvely less information about future frame sizes. We also inves-

A key difference between online smoothing of streamintigate the processing requirements for deploying our smoothing
video and smoothing stored video at the source is that in theheme at a video source or at a proxy server inside the network.
online case, the smoothing server does not have access tovilgeshow that, instead of computing the transmission schedule
entire video beforehand. The server only has limited knowledgeevery frame time slot, the server can compute a new schedule
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at much coarser time intervals, and at most only a few times in
each smoothing window with very little degradation in perfor-
mance. This permits a workstation or personal computer to com-
pute transmission schedules simultaneously for multiple video
streams. We conclude the paper in Section V with a discussion
of future research directions.

end

Cumulative data
o]

0 time (in frames) N
Il. SMOOTHING STORED VIDEO (

A multimedia server can substantially reduce the bandwidffg: 2. Smoothed transmission scheduleThe figure shows an example of
. . . . a smoothed transmission schedutd (vith three runs that stays between the

requirements of stored video by transmitting frames into th@per () and lower {) constraint curves.

client playback buffer in advance of each burst. The server con-

trols workahead smoothing by computing upper and lower cogng

straints on the amount of data to send, based priori knowl-

edge of frame sizes and the size of the client playback buffer. U¥(t) = min(LY(t — 1) + Be, L(N)).

Then, the bandwidth smoothing algorithm constructs a trans-

mission schedule that minimizes burstiness subject to these cgn- . -
straints. . Computing Transmission Schedules

A transmission schedul&(t) is feasibleif and only if
L¥(t) < S(t) < U™(%). In general, multiple feasible transmis-
i _ . i sion schedule$ exist. In this context, we focus on (V)
Consider anV-frame video stream, where frameés £; bits  5104rithm that computes the shortest path schedylsubject
Iong,.z =1, 2, e N. The entire stream is storgd at thg SeIVefy the constraintd, and U® [1]. Fig. 2 shows an example
and is transmitted across the network to a client which hasa qthed transmission schedule, where each change in the

Be-bit playback buffer. Without loss of generality, we assumg,nsmission rate occurs at the leftmost point along the longest
a discrete time-model where one time unit corresponds to Ws'ectory from the previous change point.

time between successive frames; for a 30 frames per second full,o  shortest path algorithm generates a schedule that

motion video, a frame time corresponds to 1/30th of a seconginimizes the peak and variability of the transmission rates
To permit cont|_nuous playback at the_chent site, the servermgg%:[ as well as the effective bandwidth requirement [1]. This
always transmit enough data to avoid bufterderflowat the  510qrithm serves as our starting point for developing effective
client, where online smoothing techniques. In the rest of the paper, we refer
to this as theoptimal offline algorithm.In the next section,
L(t) = Z ’; we formulate an online smoothing model which incorporates
an arbitrary arrival process, playback delay, client and server
buffer sizes, server processing capacity, and frame size pre-
specifies the amount of data consumed at the client by timediction techniques. We generalize the shortest path algorithm
t=1,---, N (L(0) = 0). Similarly, to prevenbverflowof the to operate on a window af video frames by modifying the
Bc-bit playback buffer, the client should not receive more thaimderflow and overflow smoothing constraints. The new online
smoothing algorithm periodically recomputes the transmission
U(t) = min(L(t — 1) + Be, L(N)) schedule as more frames arrive, based on a sliding window of
frames. Smoothing with a small window can remove the short
bits by timet. term burstiness in the video stream, while larger window sizes
We define aserver transmission plafi(¢) to be the schedule €an further reduqe th_e bandw_ldth requirements by smoothing
according to which the smoothing server transmits video to tREr0SS scenes with different bit rates, at the expense of longer
client. 5(t) = °!_, s, wheres; is the rate at which the serverPlayback delays.
transmits during time. Any valid server transmission plafi{(¢)
which results in lossless, starvation-free playback, should stay I1l."WINDOW-BASED ONLINE SMOOTHING
within the two constraintd.(t) andl/(¢), i.e., L(t) < S(t) < Existing techniques for smoothing stored video at the source
U(t). This is illustrated in Fig. 2. Creating feasibletrans- serve as a useful foundation for developing new algorithms
mission schedule involves generating a monotonically nondgr online smoothing of streaming video under client buffer
creasing path that does not cross either constraint curve.  constraints. However, operating with limited available data, and
In order to smooth out transmissions at the beginning of thited knowledge of future frame sizes, requires important
video, a playback delay af time units can be introduced. Thechanges to the model in Fig. 2. We begin by formulating the
client underflow (consumption) and overflow curves are shifteghline smoothing model. Our approach involves computing the
to the right byw time units, and are given by online smoothing constraints corresponding to short segments
of the video stream as frames become available at the smoothing
L) = {0, 0<t<w—-1 server, and using the existing shortest-path algorithm in this
Tl Lit—w), w<t<N+w context to compute (and recompute) transmission schedules for

A. Smoothing Constraints
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TABLE |

—t BS BC PARAMETERS IN ONLINE SMOOTHING
A S(w) D(w) MODEL: THIS TABLE SUMMARIZES THE KEY PARAMETERS IN
THE SMOOTHING MODEL

Fig. 3. Online smoothing model The smoothing server hasis -bit buffer

and transmits the video to a smoothing client witBBa-bit buffer. The video ~ Parameter Definition
arrivgzs according to an arrival vectdr, is scheduleq according to a vectsy w Smoothing delay (in number of frame slots)
and is played at the client according to a vedibrwith aw-frame smoothing : . o
delay. Bg Smoothing server buffer size (in bits)

B¢ Smoothing client buffer size (in bits)
finite durations into the future. This online smoothing mode ~ © Knowledge of future arrivals (in number of frame slots)
accounts for the constraints placed by the server and clie Stide length for smoothing (in number of frame slots)
buffers, as well as the playback delay, knowledge of futur A Arrival vector to smoothing server (in bits per frame slot)
frame sizes, and the overhead for computing a transmissi b Playback vector at smoothing client (in bits per frame slot)
schedule. S Transmission vector from smoothing server (in bits per frame slot)

A. Online Smoothing Model

Without loss of generality, we consider a discrete tim&(w) = (S0, S1, -+, Sn4w), Where S; is the amount
model at the granularity of a frame time. The smoothingf data which must be transmitted from the smoothing server
server has @s-bit buffer and smoothes the incoming videdy time¢, 0 < ¢ < N + w. The correspondingransmis-
into a Be-bit client buffer. The server introduceswaframe Sion vectoris s(w) = (so, s1, -+, S, ** -, Sn+4w), Where
playback delay (beyond the transmission delay) betweém = So, ands; = 5; — S;—1, 1 <4 < N + w. Given this
the two sites. The smoothing client plays out the streaff@mework, the online smoothing algorithm computes a trans-

according to the original unsmoothed schedule. As shown HSsion vectos(w) subject to the arrival and playback vectors,
Fig. 3, the video arrives according to amulative arrival as well as the constraints on the buffer sizes and playback delay.

vectorA = (Ag, A1, ---, Antw), Where A4; is the amount The smoothing server generates the transmission schedule in
of data which has arrived at the smoothing server by tin@ online fashion. o

i,0 < i < N + w. The correspondingrrival vector is To generate a transmission schedule, the server could con-
a = (ag, ay, -+, ayn, -+, An4w), Whereay = Ay, and ceivably compute a new schedule at every time unit to incorpo-
a; = A; — A,_; is the amount of data which arrives in timg'ate the most recently available frame size information. To re-
(i —1,i),1 < i < N + w. Although the server does notduce computational complexity, the server could instead execute
receive more thamd; bits by timei, we assume that it hasthe smoothing algorithm once evemtime units ( < a < w).
knowledge of future frame sizes up to a certain time in the is referred to as thelide lengththroughout this paper, and
future. At any timer, the smoothing server has knowledg@ an integer number of frame slots. Intuitively, the server waits
of the next P consecutive elements in the arrival vectorg time units between invocations of the smoothing algorithm.
(Gr41, -+, arpp), WhereP > 0. P is a parameter referred to Table | summarizes the key parameters in our formulation of
as thelookahead intervain the rest of the paper. We initially the smoothing constraints in Section IlI-B, as well as our per-
assume the smoothing server has exact knowledge of sizes #gnance evaluation in Section IV.

arrival times of the nex” consecutive frames. In an extended _ _ _

version of this paper, we also consider online smoothing undgr Online Smoothing Constraints

practical frame size prediction schemes [25]. The parameters in the smoothing model translate into a col-
The server receives the entire video by tiliewith 4; = ection of constraints on the smoothing schedilét any given
Ay forj = N,---, N 4+ w. Transmission can continue untilime instant- (- < N +w), the server can compute the amount

time N +w, since playback at the client is delayedibyrame  of workaheadC™ (r) that has been sent to the client:
times to enable smoothing. Tlremulative playback vectas

D(w) = (Do, Dy, -+, Dyyw), WhereD; is the amount of
data which must be transmitted from the smoothing server by
time, 0 < ¢ < N 4+ w. For example, if the smoothing client is
the actual end user, the playback vector should satfy= 0

C¥r)y=8;—D;, =C%r—1)+ s, —d;.

The server can also compute the constraints on smoothing from
timer to atimet > 7 in the future, as shown in Fig. 4. To avoid

for0 <j <wandD; =37y Liforw <i < N+w.The 40w and overflow at the client buffer, the server transmis-
correspondinglayback vectois d(w) = (do, fil’ " dNtw) sion schedule must also obey the lower and upper constraints:
wheredy = Dypandd; = D; — D;_1,1 <7 < N +w. We

assume thatd;, > D;1, 0 < ¢ < N,andAy = Dyjw. .

The combined server and client buffer space must be enough to LV(r, t) = Z d; =D, — D-

accommodate the difference between the cumulative arrival and i

playback amounts at any instant; thatf; + B¢ > max(A; —

D;_y)fori=0,1,---, N +w. and

Based on the buffer and delay constraints, the smoothing
server computes a cumulative transmission  vector Up(r, t)y=LY(7,t— 1) + Be.
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Similarly, to avoid underflow and overflow at the server buffel
the schedule must obey the upper and lower constraints:

min(7+P, t)

U;)(Ta t) = Z a; — D‘r = Amin(‘r+P, t) — D‘r
=0

and
LY (7, t)=Us’(r,t+1) — Bs.

In determiningl3* (7, t), the parametanin (7 + P, t) limits the

server to transmitting data that was known by tirrend has ar-

rived by timet. The model can be extended to handle a bound®

amount of delay jitter by making the above constraints mo _—

conservative, based on the maximum and minimum amount .

data that may arrive by any time [1], [26]. - c T towaP
Using these constraints, the server can compute a schec !

from timer to time¢, = min(7 +w+ P, N +w). In particular, Time

a feasible schedul§*(r, t) (t =7+ 1,7+ 2, ---, t;) must

satisfy Fig. 4. Online smoothing constraints Starting at timer, the server can

compute a transmission schedule based onwthkaheadC* (7), the upper
S'w(fn t) constrain7 ¥ (r, t), and the lower constrain&>(r, t).

umulative data

max(Ly'(7, t), Ly (7, 1)) <
< min(UP (7, t), U’ (7, t)).
) ) ) , time. For online smoothing to be more scalable, we investigate
Given this set of constraints and the workahe@®(7), the impact of performing the operation less frequently, at
the smoothing server computes a scheddlg: j € jntervals of length.
(741, ---, £-)} for the nextw + P time intervals, using the  Gjyen a slide lengthy, the total computation overhead for
shortest path algorithm described in Section II; more recepls sliding-window algorithm for smoothing Al-frame video
work has since considered computing the schedule using Otl?sebiven byO((w + P)N/a). Smaller values ofv allow the
algorithms [27]. As shown in Fig. 4, the upper and lowegaryer to gradually refine the schedule based on new frames, at
smoothing constraints meet at time+ w + P, due to limited  {he expense of additional computational load at the server. For-
knowledge and availability of arriving frames. Rather thagnately, though, the server does not always have to determine
waiting until timer + w + P to generate the next portion ofie schedule for the entirer + P)-frame interval, since the
the transmission schedule, the server computes a new schedi&qule is recomputed evemtime units anyway. In fact, the

everya time units, wherel < « < w + P, at the expense of saryer stops computing after determining the schedule for the
an increase in computational complexity. Smaller values of eyt , time units in the future.

improve the effectiveness of the online smoothing algorithm The values ofw, @, and P determine how closely our on-
by refining the conservative estimaté;’(r, t) of the data |ine smoothing algorithm can approach the performance of the
available for transmission. Ousliding-window smoothing ' optimal offline algorithm. The client buffer sizB¢ limits the
executes on overlapping windows of frames [Fig. 5(c)]. Thigmount of workahead data* (+), while the server buffer size
re_zduces the peak rate and_ varia_bility of _the resultant transmgé limits the server’s ability to store and smooth a sequence
sion schedule over @opping-window[Fig. 5(b)] approach qf |arge frames. The sizes of the two buffers interact with the
(wherea = w + P). In Section IV-D, we evaluate the impactindow sizew. In general, a large value af improves per-

of varying this slide lengtl. formance, since it permits the server to smooth over a larger
interval of frames. However, ifv grows too large, relative to
C. Cost/Performance Tradeoffs Be + Bs, then the buffer space can limit and adversely impact

The overhead associated with computing the shortest pathoothing gains.
schedule at each invocation of the online smoothing algorithmLarger values ofP can improve performance by allowing
is O(w + P). The running time of the offline smoothingthe server to predict future bursts in frame sizes, particularly
algorithm is linear in the number of frames. On a 300 MHwhen the window size is small. VaryingP allows us to deter-
Pentium PC, the online smoothing algorithm consumes abaunine whether or not frame size prediction is useful for online
1-2 ms to smooth a 30 s window of 30 frames per second videmoothing of noninteractive video. Finally, varyiagallows us
This suggests that a commercial off the shelf workstation coulal determine how often the server needs to compute transmis-
offer smoothing services for a few video streams. Howevesion schedules. The next section shows that relatively large slide
computing the smoothed transmission schedule alone foteagths, such as = w/2 ora = w/4, are sufficientin practical
dozen streams would take up about 70% of the CPU, withaeamples. Similarly, modest valueswf B, Bs, andP allow
accounting for network protocol processing and other ovesnline smoothing to achieve most of the performance gains of
heads, if the smoothing algorithm were invoked every frantbe optimal offline algorithm.
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X work bandwidth required to transmit the video through a inter-
mediate switch having &byte buffer, with a tolerable loss rate
of v. For a video with transmission rateg sz, - --, sy, the ef-
fective bandwidth is computed &s2(3" 7, ¢®*'/N)/6 where
M 6 = —log «/b. Note that the effective bandwidth decays expo-
M nentially as a function of the switch buffer size. However, a large
switch buffer reduces the effective bandwidth at the cost of in-
troducing longer delays. For continuous media transmission, a
reasonable operating region would limit this delay to a few tens
of packets or ATM cells. This corresponds to switch buffer sizes
of 1-3 KB. For the evaluations presented in this paper, we use
. a 3 KB switch buffer.
Y time Upper and lower bounds on the performance metrics are ob-
(@ tained by considering the unsmoothed video stream and the op-
X timal offline schedule. The results reported here are based on
a 23-min MPEG trace ofizard of Ozwith a peak (mean)
rate of 11 Mbps (1.25 Mbps), a 97 min MPEG traceStér
Warswith a peak (mean) rate of 5.6 Mbps (0.5 Mbps), and a
20-min M-JPEG encoding @eauty and the Beastith a peak
(mean) rate of 7.3 Mbps (3.4 Mbps). Experiments with other
————— - compressed video sources show similar behavior. Note that in
- an MPEG encoding, & frame is interframe coded, and the pre-
ceding and succeedidgor P) frame are required for decoding
a B frame. As such, to guarantee starvation free playback at the
client, both preceding and succeedih(pr P) frames must ar-
1 L . rive before the display deadline offaframe. The playout vec-
Y time tors forStar WarsandWizard of Ozavere constructed to capture
(b) these constraints [25].
X For our experiments, we assume that the video coming into
the smoothing server is played back at the client with-iame
time lag. The arrival vecto therefore is the consumption
T vector shiftedw time units to the left. Another valid service
model would assume that the arrival vector is some smoothed
transmission schedule; we do not consider that here.

Size (bytes)

Size (bytes)

A — A. Basic Performance Trends

Size (bytes)

We first explore the case where the smoothing server has
no knowledge of future frame sizes. Fig. 6 demonstrates the
benefits of online smoothing an MPEG-1 encoding of the
Y time movie Star Wars[7], which has an unsmoothed peak rate of

© 5.6 Mbps. Smoothing over a small time scale of 4 frames
reduces the peak rate to 2.9 Mbps [Fig. 6(a)]. However, the
Fig. 5|- Sliging Windr?_w smoothing ghils figure shows ?dsamDIE_S_equeﬁr}ce ofesultant schedule still exhibits significant burstiness, which
) mermoated oAl ) e sinden 5 . and () Siing - Can be removed using alarger smoothing window. For example
window (a < w + P). The dotted lines in (b) and (c) correspond to thdhe sliding window algorithm with a 1 s (30 frame) window
smoothed schedules for hopping and sliding window smoothing, respectivelproduces a much smoother schedule, and reduces the peak
bandwidth by an additional 50% to 1.4 Mbps [Fig. 6(b)].
Fig. 6(c) shows the transmission schedule for a 30 s (900
frame) window, which nearly converges with the optimal

In this section we study the interaction between the parawffline smoothed schedule for the same startup delay and client
eters in Table |, and their impact on smoothing performance lhaffer size. The corresponding peak rate is reduced by another
help in determining how to provision server, client, and netwoiflactor of 2 to 0.75 Mbps. This suggests that noninteractive
resources for online smoothing. The study focuses on bandwititte applications which can tolerate latencies of a few tens
requirements, in particular the peak rate, coefficient of variaf seconds can realize almost all of the potential benefits of
tion (standard deviation normalized by the mean rate), and thmoothing. Note that the window size here is of the same order
effective bandwidth of the smoothed video stream. The effeas scene length distributions in videos [11]. The above trends
tive bandwidth [28], [29] statistically corresponds to the netlearly demonstrate the utility of using a smoothing window

IV. PERFORMANCE EVALUATION
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Fig. 7. Window size. These graphs plot the peak rate for MPEzard of
Ozas a function of the window size for various client buffer size® ., with

a =1, Bs = oo, andP = oo. The peak rate of the unsmoothed trace is 11
Mbps.

B. Window Sizey) and Client Buffer SizeK)

We next consider the influence of the size of the smoothing
window and the client buffer, both of which impose constraints
on workahead transmission. To focus on these two parameters,
we assume that the smoothing server has a sufficiently large
buffer (i.e., Bs = oc) and has prior knowledge of all frame
sizes in the entire video (i.eF, = o). The graph in Fig. 7 illus-
trates the dramatic benefits of online smoothing even for small
window sizes, and small client buffers. For example, a client
buffer of only 46 KB (the size of the largest frame in the video)
and a small 4-frame smoothing window reduces the peak rate
by 72% over the unsmoothed video. Increasing the smoothing
window w increases the startup delay at the client. This has
two important implications for smoothing. A largergives the
server more time to transmit any frame, and also allows the
server to perform workahead transmission more aggressively,
as it has access to a larger number of frames. Hence, for a given
client buffer size, as the length of the smoothing window in-
creases, the peak rate decreases at first. However, increasing
beyond a certain point (e.g., beyond 2 sEy = 512 KB) does
not help as the client buffer becomes the limiting constraint on
smoothing. The curves flatten out in this region.

For a small window, the main constraint on smoothing is the
window sizew and so the performance is similar across different
client buffer sizes. As increases, the benefits of a larger client
buffer become apparent. For example, for a 10 s (300 frame)
window, a 2 MB client buffer results in a peak rate which is
just 2% larger than the peak rate under an infinite client buffer,
while the corresponding figure for a 46 KB buffer is 70% larger.

Fig. 6. Online smoothing example These graphs plot example transmissiorf OF & gvenw, the performance Improves 'n't_'a"y ac in- _
schedules for a portion of the MPEGStar Warsvideo for offline and online creases, until the client buffer becomes sufficiently large that it

smoothing withBo = 5 MB, P = 0, a = 1,andBs = co: (a) 4-frame  dpes not constrain the achievable smoothing. The window size

smoothing, (b) 1-s smoothing, and (c) 30-s smoothing.

then becomes the main constraint on smoothing. For a 15-frame
window, increasing the client buffer beyond 186 KB (the size of
the largest consecutive 15 frames in the video) has no effect.

size which is sufficiently large to enable smoothing across To highlight the interplay between the smoothing window

different scenes in the video.

sizew and client buffer sizéB, Fig. 8 plots the peak rate for
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Fig. 9. Effects of lookahead.The graph plots effective bandwidth as a
Fig. 8. Client buffer size. These graphs plot the peak rate Berauty and the  function of P/ w for various window sizesv, for Wizard of Ozwith o = 1,
Beast as a function of the client buffer sizB.. for various window sizesv, By = oo, b = 3 KB, andy = 0.001.
witha = 1, Bg = oo, andP = 0.

) ) ) ] and, therefore, improves awareness of future increases in frame
online smoothing (withx = 1, P = 0) as a function oB¢, for  gi,e5 However, the actual amount of workahead transmission
Beauty and the Beasthe plotsn_lustre_lte the cr|t|ca_l dependen_cgf1at can be performed at any time is limited by the amount of
of the peak rate on the smoothing window and client buffer sizg, that has already arrived at the server by that time. The data
For very small values oBc, the performance of the online 5 4ijaple at the server is the main constraint on workahead trans-
algorithm for small window sizes is similar to that for muchyission under small window sizes. Hence, increasing the looka-
larger windows. This is because the client buffer size ImposgS,q does not help since the server does not have enough data to
the main constraint on workahead transmission in this regiongj.e advantage of this knowledge. For a larger window size, the
client buffer sizes. These results suggest that small Windows @@y er has access to a larger amount of data and, as such, is able
sufficient to reap most of the benefits of smoothing for low-lag, smooth more aggressively. Similar behavior is observed for
tency applications with relatively small client buffers. In ordefj,o peak rate in the bottom two curves in Fig. 7 which compare
to remove burstiness on a larger time scale, the window:sizey, o performances of the offline and online (Wi th= o) sched-

should grow along with the buffer sizBc, based on a rough 5 For small to moderate window sizes, there is a significant
estimate of the frame sizes in the video streamu/grows rel- - gigerence between the two schedules, indicating that the lim-

ative toBc, the algorithm can effectively utilize the client bufferiia g gata availability at the server is the primary factor limiting
to smooth the stream at a larger time scale. A larger smoothif\giine smoothing performance in this region.
window size, in the range of 1-5 min, would be appropriate for gjq g jjlustrates that lookaheads which are very small com-

a latency tolerant client with a low bandwidth connection to the. .4 to the window size hardly impact the effective bandwidth.

network. In addition, as shown in Fig. 8, such large windows a[e,rger |gokaheads which are comparable to the window sizes
especially appropriate for videos suchBesauty and the Beast e the most effective in decreasing the effective bandwidth. If
which exhibits substantial burstiness on the 20 s to 5 min time;g large, and if the lookahea is very small compared ta

scale. For example, the peak rateBerauty and the Beadtops qn, the effect of this added information is marginal, and most of

by more than a factor of two whenis increased from 20 S 10 5 1y smoothing gains come from having the large window. Thus,
min. The _effectlve bandwidth exhibits similar trends which arg); ine 9000 frame (five minute) window, the effective band-
reported in [25]. width decreases very slowly for small lookahead values, and a
large lookahead is necessary to achieve any notable improve-
ment. The effectiveness of online smoothing increases Rijth

We next investigate the performance impact ti#t the until a point is reached where, and hence the data available
number of known future frame sizes beyond the curreat any time for transmission becomes the main constraint on
smoothing window, has on online smoothing. Our experimergmoothing. Increasing the lookahead beyond this point has little
(here and in [25]) suggest that lookahead offers, at best, omfffect on smoothing. For most of the plots, the incremental bene-
moderate reductions in the peak rate and rate variability.  fits of lookahead beyond one or two times the window size (i.e.,

Fig. 9 plots the effective bandwidth d3increases, for dif- P/w > 1 or P/w > 2) are minimal. Other experiments [25]
ferent smoothing window sizes. Thieaxis represents the looka-with a finite client buffer show that the benefits of prediction
headP as a fraction of the smoothing window size In order are even less dramatic when the buffer sizes imposes an addi-
to isolate the impact of lookahead, we assume that the cligihal constraint on smoothing.
buffer size B is sufficiently large that it does not constrain So far, our evaluations assumed that the lookahead informa-
the smoothing, i.eB- = oo. For a given smoothing window tion consisted of actual future frame sizes. The corresponding
sizew, increasing? provides information further into the future performance serves as an upper bound on the performance of

C. Knowledge of Future Frame Siza3)(
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any prediction scheme which may be used to estimate future = 12 'ONLINE(w')

frame sizes. We have also explored how a practical predic- s 10 ONLINE(Q.5w) —— |

tion scheme fares when used in conjunction with our online =3 O o S

smoothing algorithm. Our studies [25] indicate that for short £ st Ol\(lL'INE(\qI; Ca

lookahead intervals of up to 1-2 s, a simple scheme such as the %

GOP (group of pictures) based prediction for MPEG video (the S 6r 1

estimated sizes of the nextframes is identical to the sizes of %

the lastz frames) in [15] performs remarkably well, resulting % 4r 1

in peak rate and rate variability measures which are very close 2 o e

to those for perfect prediction. w . . b}
0 300 600 900

D. Computation Periodc) w (frames)

Recall that the benefits of online smoothing depend on (@)
how often the server recomputes the transmission schedule to
incorporate new arriving frames. To investigate the sensitivity
of online smoothing to the computation frequency, Fig. 10(a)
compares the performance of the online algorithm for different
values ofa across a range of window sizes for Wizard of

ONLINE(w) ——
ONLINE(0.5w) —>— |
ONLINE(0.25w) -
ONLINE(0.125w) & |
ONLINE(1) --#--

~ o ©
T

Effective Bandwidth (Mbps)

Oz with a 512 KB client buffer and® = 0. As expected, 6 1
for a given window size, the performance improves as the L

computation period decreases, with the best performance é:\}:x\ ]
exhibited atae = 1. Even a very large computation period 4 “@i.:;;lt:ﬁ >>>>>> E
of « = w still achieves considerable smoothing gains. For 3 B

example, for a 10 s smoothing window, with = 10 s, the

effective bandwidth is reduced to 52% of the corresponding

unsmoothed value. However, there is a significant difference

in performance betweem = w anda = 1. For the same 10 s ()

window, the effective bandwidth far = w is still 168% larger rig. 10. Frequency of schedule computation.These graphs plot the

than the corresponding value far= 1. performance of online smoothing for different computation periedgross a
When o = u, the server efleciely performbiop- {3005 rOu szem. WO TS 0 B e 2K i SO

ping-window smoothing over consecutive nonoverlappmé;(, — 32 MB.

windows. As a result, the server only smoothes within a

window, but cannot reduce burstiness across different windows,,es of«. For the scenarios we examine, nearly all of the

This can lead to situations such as that depicted in Fig. panefits of online smoothing could be achieved by choosing
If @ window boundary occurs at positioXY’, then, under 4 pey = /2 or o = w/4. This is important from a practical
the hopping-window algorithm, the first few large frames i\ noint, since a smaller computation frequency (e.g., once

the window starting at¥'y” would inflate the peak rate of gqry few seconds or tens of seconds) substantially reduces the
the smoothed schedule. This accounts for the relatively paep(j overheads of online smoothing.

performance whemx = w. Any smaller computation period
can smooth out bursts at the beginning of a smoothing windgw Server and Client Buffers}s and B¢)

by workahead transmitting part of the burst at an earlier time, . . .
. . : . . Until now, our evaluations assumed that the smoothing server
in an earlier window. Although smaller computation period .

as enough buffer to accommodate a window of angon-

decrease the burstiness of the video stream, the performance .. : . . .
. s secutive frames in the video. We now investigate how buffer
differences between = 1, w/8, w/4, w/2 are not significant.

Fig. 10(b) plots the effective bandwidth measure for t lacement at the server and client impacts online smoothing.

M-JPEGBeauty and the Beastace for different values of, he minimum combined buffer requirement at the server and

. lient for a smoothing window ab frame times is the envelope
for a much larger 32 MB client buffer. Compared to MPEéfthe largestv+1 consecutive frames in the video (tlidrame

video, M-JPEG videos do not exhibit much small time scafe . . . .
- . . : moothing window and the frame being currently displayed at
rate variability, since each frame is encoded mdependentﬂ){. .
. . . . .. the client)

Therefore, small window sizes offer relatively little opportunity
for smoothing, and hence little difference across a range of B(.,) = max(L(i) — L(i — w — 1)), w+1<e< N,
values for window sizes below one second. However, for larger T
windows, there is a significant performance difference betweémthis context, it is necessary to distinguish between two kinds
the effective bandwidths of the schedule produced with «w  of workahead that can occur in smoothingorkahead for
and those produced with smaller valuesof smoothinguses workahead to smooth out burstiness in the

Our experiments suggest thashould be smaller tham for  video stream. Yet, if the server does not have sufficient buffer
good online smoothing performance, and within that constraimd, accommodate frames, it may have to transmit aggressively
significant smoothing gains are possible even for relatively large prevent overflow of the server buffer. Suetorkahead

0 1800 3600 5400 7200
w (frames)
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Fig. 11. Buffer allocation with no knowledge of future frame sizes.These 0.8 e —
graphs plot the peak rate for different allocations of the server and client buffers P=0
for Wizard of Oawith w = 30, P = 0, anda = 1. The experiment varies the 5 p - 1
distribution of a total buffer size a¥/ = F'* 404 KB between an:-byte server 0.7 | p _ 2 g |
buffer and an(AM — «)-byte client buffer. | P _ 7
P =inf -a-
o . . . 06 1 . 1
to prevent overflows detrimental to online smoothing, as it
actually increases the burstiness of the transmission schedule. © 0.5 i .
1) No Lookahead = 0): We first consider the situation . :
when the smoothing server has no knowledge about future frame 04 b T ]
sizes (i.e.,P = 0). Fig. 11 plots the peak rate of the smoothed ot o)
schedule fowizard of Oawith a 30-frame smoothing window, 031 e, o
as a function of the buffer allocation at the smoothing server.
For this video trace, the largest window of 31 frames consists 0.2 T
of 404 KB. Each curve in the graph represents the peak rate for 0 10 20 30 40 50 60 70 80 90 100
the smoothed schedules for a total buffer budget= 404 = F Server Buffer (%)
KB (F'is a constant factor) wherE = 1, 1.25, 2, 3 from top (b)

to bottom. The most striking feature in the graphs is the extreme o _ _
Fig. 12. Buffer allocation with partial knowledge of future frame sizes.

asymmetry with respect to buffer Pla_cement_' From left to r'gh{éhese graphs plot the (a) peak rate and (b) coefficient of variation for different
the curves (fo” > 1) have three distinct regions for all valuesallocations of the server and client buffers Wizard of Ozawith w = 30 and

of F. Atthe leftis the region where the server buffer allocation i = 1. The experiment varies the proportion of the total buffer sizé/ot=
. . . x 404 KB that is allocated to the smoothing server, whére= 1.25.
less than 370 KB, the minimum buffer required to accommoda‘fe
any 30 consecutive frames in the video. Here the smoothing is
extremely sensitive to the buffer allocation, and the peak ralesappears, considerably improving the peak rate and rate vari-
decreases dramatically with small increases in the server buffdility. The curves then enter a middle region where the perfor-
allocation (i.e., small decreases in the client buffer allocationjnance is insensitive to the buffer distribution. The width of this
Since the server has no knowledge about future frame sizesgion increases fromi’ = 1.25 to F' = 3. In this region, the
it is constrained to compute a smoothed schedule based onpkeak rate and coefficient of variation are identical across dif-
frames it already possesses, and may not be able to take adfament values of". For ' = 2 and F' = 3, this flat region in-
tage of the large available client buffer in this region of servetudes allocations with enough buffer space for both the server
buffer size. During runs of consecutive large frames in the videand client to accommodate any consecutive 30 frames.
less aggressive transmission may result in a situation where th&he client buffer becomes an impediment to smoothing only
server is forced to transmit large amounts of data at a later tinfier, small client buffer sizes. This occurs at the extreme right of
to prevent buffer overflow, thereby increasing the burstiness tfe graphs in the figure. Note that the minimum client buffer al-
the transmitted schedule. In the worst case, this effect can resodiation in these plots is the size of the largest frame in the video,
in a peak rate equal to that of the unsmoothed trace. Note thaagithe client has to have at least enough space to accommodate
this region of server buffer allocation, for a give}3, the perfor- any one frame in the incoming stream. As we observed in Fig. 7,
mance metrics are identical across different client buffer allocawven with this small buffer size, some smoothing gains are pos-
tions, illustrating that the server buffer is the main limiting factosible. The above trends indicate that, in situations where the
on smoothing. This underlines the importance of allocating sitnoothing server has no knowledge about future frame sizes,
least enough buffer at the server to accommodate a windowsoffficient buffers should be allocated to the server for accom-
w frames. Once the server has enough buffer to accommodatedatingw consecutive frames in the video, with the remaining
30 frames, the phenomenon of workahead to prevent overflallocated to the client. Furthermore, a total buffer allocation of
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M = 2B(w) is sufficient to achieve all the benefits of onlinementation of a smoothing server [31]. We are also considering

smoothing with av frame smoothing window.

ways to combine online smoothing with other effective tech-

2) Impact of LookaheadH > 0): We next evaluate how niques for adjusting video transmission to the delay, bandwidth,
knowledge of future frame sizes impacts the server-client buffend loss properties of the underlying communication network.
allocation tradeoffs. Fig. 12(a) and (b) plot the peak rate af@r example, emerging network services could integrate
coefficient of variation forf” = 1.25 andw = 30 frames for window-based smoothing with layered encoding schemes and
Wizard of Oz From top to bottom the different curves correpacket retransmission protocols, particularly in the context of

spond toP = 0, 1, 2, 7 andoco frames, whereP is the looka-

multicast video and audio services. We are currently investi-

head. The graphs show that for any buffer allocation at the sergating a technique for caching the initial frames of popular
and client, the peak rate and coefficient of variation decreagideo streams at an intermediate proxy server [26]. One of the
as the lookahead increases. With more knowledge about benefits of suctprefix cachingis that it allows the smoothing
ture frame sizes, the server is better able to anticipate the spseever to decouple the smoothing window size from the client
requirements of future frames. By factoring this informatioperceived startup latency. Thus all the advantages of using a
into the smoothing algorithm, much before these frames arriverger smoothing window can be achieved, without increasing
the server is better able to accommodate future bursts by pelent playback delay.

forming workahead more aggressively (if required) earlier on.
This helps avoid the need to transmit a large burst of data to pre-
vent server buffer overflow. In the region where the server has 1]
less buffer than needed to accommodate 30 consecutive frameg,
the improvements are especially dramatic. For example, using a
7-frame lookahead, and equal buffer allocation at the server an%
client, the peak rate reduces to 39% of the corresponding value
for the no lookahead case. (3]
It has been shown in [30] that for the infinite knowledge
(P = x0) case, the peak rate curve is symmetricifag [0, M| [5]
and has a minimum at = M /2. We find similar behavior
for both the coefficient of variation and the effective bandwidth 6]
[25]. These results suggest that an even allocation of buffelI
space is best when the server has complete knowledge of the
video, and that more buffer space should be allocated to thé’)
server when the knowledge about future arrivals is limited. 8]

V. CONCLUSION [

In this paper, we have shown that delaying the transmission
of video frames byw time units permits our window-based on-
line smoothing algorithm to substantially reduce the bandwidth
requirements for distributing streaming video by performing
workahead transmission of frames into the client pIaybaclLll]
buffer. Our online algorithm builds on previous work on tech-[12]
niques for smoothing stored video. Our algorithm incorporates
constraints caused by the limited availability of “future” frames [13]
in an online setting, the need to recompute the transmission
schedule as new frames arrive, and limitations on buffefl4]
sizes and processing capacity. Our experiments show that ﬂpﬁs]
algorithm substantially reduces the peak transmission rate and
effective bandwidth, allowing low bandwidth clients to receive
the video stream with a modest playback delay. The smoothinBel
algorithm achieves these performance gains with modest
playback delays up to a few tens of seconds, and reasonabfé]
client buffer sizes in the range of hundreds of kilobytes to a few
megabytes. Prediction of future frame sizes, coupled with i8]
careful allocation of the server and client buffers, offers further
performance improvements. 19]

We have also shown that the algorithm has relatively smalﬂ
processing and memory requirements, making it possible tg
deploy smoothing servers inside the network. Based on theé%ol
results, we are developing an architecture and prototype imple-
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