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Abstract—Bandwidth smoothing techniques for stored video
perform end to end workahead transmission of frames into
the client playback buffer, in advance of their display times.
Such techniques are very effective in reducing the burstiness
of the bandwidth requirements for transmitting compressed,
stored video. This paper addressesonline bandwidth smoothing
for a growing number of streaming video applications such as
newscasts, sportscasts, and distance learning, where many clients
may be willing to tolerate a playback delay of a few seconds in
exchange for a smaller bandwidth requirement. The smoothing
can be performed at either the source of the videocast or at special
smoothing server(s)(e.g., proxies or gateways) within the network.
In contrast to previous work on stored video, the online smoothing
server has limited knowledge of frame sizes and access to only
a segment of the video at a time. This is either because the feed
is live or because it is streaming past the server. We formulate
an online smoothing model which incorporates playback delay,
client and server buffer sizes, server processing capacity, and
frame size prediction techniques. Our model can accommodate an
arbitrary arrival process. Using techniques for smoothing stored
video at the source as a starting point, we develop an online,
window-based smoothing algorithm for delay tolerant applica-
tions. Extensive experiments with MPEG-1 and M-JPEG video
traces demonstrate that online smoothing significantly reduces
the peak rate, coefficient of variation, and effective bandwidth of
variable-bit-rate video streams. These reductions can be achieved
with modest playback delays of a few seconds to a few tens of
seconds and moderate client buffer sizes, and closely approximate
the performance of optimal offline smoothing of stored video [1].
In addition, we show that frame size prediction can offer further
reduction in resource requirements, though prediction becomes
relatively less important for longer playback delays. However,
the ability to predict future frame sizes affects the appropriate
division of buffer space between the server and client sites. Our
experiments show that the optimal buffer allocation shifts to
placing more memory at the server as the server has progressively
less information about future frame sizes.

I. INTRODUCTION

M ANY MULTIMEDIA applications, such as videocasting
and video-based entertainment services [2]–[4], rely on

the efficient transmission of live or stored video. However, even
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when compressed, high quality video can consume a significant
amount of network bandwidth, ranging from 1–10 Mbps. In ad-
dition, compressed video often exhibits significant burstiness on
a variety of time scales, due to the frame structure of the en-
coding scheme and natural variations within and between scenes
[5]–[12]. The transmission can become even burstier when one
or more video sources are combined with text, audio, and im-
ages as part of an orchestrated multimedia stream. Variable bit
rate (VBR) traffic complicates the design of efficient real time
storage, retrieval, transport, and provisioning mechanisms ca-
pable of achieving high resource utilization.

One possible solution to this problem is for the encoder to re-
duce burstiness by adjusting the quantization level of the frames
across time, particularly during scenes with high bandwidth re-
quirements. However, a constant bit rate (CBR) encoding re-
duces the picture quality, particularly at scene changes or inter-
vals with significant detail or motion, precisely when the effects
are likely to be most noticeable to users. For the same average
bandwidth, a variable bit rate encoding offers higher quality
and a greater opportunity for statistical multiplexing gains than
would be possible with a constant-bit-rate encoding [13], [14].
However, transmission of variable bit rate video requires ef-
fective techniques for transporting bursty traffic across the un-
derlying communication network. Our goal is to combine the
higher quality advantage of VBRencodingwith the simplicity
and resource efficiency of CBRtransmission.

In this paper, we present and evaluate techniques foronline
smoothingto reduce the burstiness of VBR streaming video,
without compromising the quality of the encoding. This
smoothing can be applied at the source or at another node (e.g.,
proxy or gateway) along the path to the client(s). In addition
to reducing resource requirements on high speed backbone
links, bandwidth smoothing is particularly valuable for lower
speed broadband access links that have significantly lower
opportunities for statistical multiplexing. Using knowledge
of frame sizes (number of bits in a frame), the server can
schedule the transmission of frames into the client playback
buffer in advance of each burst. This approach to smoothing
is particularly appropriate for a growing number of videocast
applications, such as newscasts, sportscasts, and distance
learning, where many (or all) of the clients may be willing
to tolerate a playback delay of several seconds or minutes in
exchange for a lower bandwidth transmission.

Previous work on bandwidth smoothing has focused on the
two extremes ofinteractive and stored video. In interactive
video applications, such as video teleconferencing, the sender
typically has limited knowledge of frame sizes and must
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impose strict bounds on the delay to the client(s). As a result,
smoothing for interactive video typically requires dynamic
techniques that can react quickly to changes in frame sizes and
the available buffer and bandwidth resources. For example,
the server can smooth the video on a small time scale by
transmitting at an average rate for a small set of frames, based
on the sizes of existing frames and estimates of future frame
sizes [15], [16]. Such smoothing is especially effective at
removing the short term burstiness of streaming MPEG video,
where a small group of pictures (GOP) may consist of widely
different frame sizes. Since the tight latency constraints limit
smoothing to a few frames, interactive video applications
often require the encoder to lower the frame quantization level
when the source rate exceeds the network capacity on a larger
time scale. Techniques for smoothing interactive video cannot
remove the medium timescale burstiness within and between
scenes without degradation in picture quality.

While interactive applications have limited knowledge of
future bandwidth requirements, smoothing algorithms for
stored video [1], [17]–[20] can use prior knowledge of the
frame sizes for the entire stream. In particular, since the video
frames are stored in advance at the server, these bandwidth
smoothing techniques can reduce rate variability on a large time
scale through workahead transmission of frames into the client
playback buffer, as discussed in Section II. Given a fixed client
buffer size, these smoothing algorithms minimize the peak
bandwidth of the video stream, while also optimizing other
important performance metrics [21], such as rate variability,
effective bandwidth, and the number of rate changes. As an
example, experiments with MPEG-1 video traces show that a
one-megabyte playback buffer can reduce the peak and standard
deviation of the transmission rates by a factor of 5–10 [1]. With
the decreasing cost of high-speed memory, video set top boxes
and personal or network computers can easily devote a few
megabytes of buffer space to video smoothing, in exchange for
these substantial reductions in network resource requirements.

Bandwidth smoothing of stored video serves as the starting
point for the development of an effectiveonlinewindow-based
smoothing algorithm for noninteractive videocast applications.
We propose delaying the playback of the video to permit the
source to perform workahead transmission over a larger interval
(window) of frames, based on the buffer space available at the
client site(s) [22]. Alternatively, a special proxy server in the
network could delay the transmission in order to smooth video
destined for a subset of the receivers, such as clients within
a single company or university, as shown in Fig. 1. Similar
approaches have been proposed for placing proxies inside the
network for efficient recovery from packet loss [23] and for
transcoding [24]. Throughout the paper, the termsmoothing
server is used to denote the node at which smoothing is
performed. A stream may cross multiple network domains, and
the client for the smoothed video, called thesmoothing client
could be either the receiver end host, or an intermediate node
in the network (e.g., an egress node in some network domain).

A key difference between online smoothing of streaming
video and smoothing stored video at the source is that in the
online case, the smoothing server does not have access to the
entire video beforehand. The server only has limited knowledge

Fig. 1. Bandwidth smoothing in an internetwork. The live or stored video
stream originates from a multimedia server or a video-on-demand system and
travels through the network to one or more clients, including workstations and
set-top boxes. Smoothing occurs at the video source and/or at servers inside the
network.

of frame sizes and access to only a segment of the video at a
time. This is because either the feed is live or it is streaming past
the server. In Section III, we present the framework for online
smoothing of streaming video which incorporates practical
constraints on the knowledge of future frame sizes, the ability
to perform workahead transmission, and the playback delay,
as well as limitations on client and server buffer sizes and
processing capacity. The model can accommodate an arbitrary
arrival process, which may be the original video stream or its
transformation after traveling through the network from the
source to the smoothing server.

In addition to burstiness within an MPEG group of pictures,
video streams can exhibit substantial burstiness at the time scale
of scene changes [11], since scenes often differ in their bit rates.
In Section IV, we demonstrate that 1–10 s of playback delay can
reduce resource requirements by a factor of two or more beyond
the gains of techniques for smoothing interactive video. In ad-
dition, the smoothing benefits of such delays are also very close
to that of optimal offline smoothing, for finite as well as infinite
client buffers. This suggests that most of the benefits of offline
smoothing can be gained in the online scenario, with smoothing
windows (and therefore playback delays) which are of the order
of scene lengths, and that larger windows have limited utility.

Experiments also show that knowledge of future frame sizes
can moderately improve the effectiveness of online smoothing,
though prediction becomes less important for longer playback
delays. In addition, even for small playback delays, knowledge
of future frame sizes is of limited utility, as the amount of worka-
head smoothing is limited by the amount of data actually avail-
able to the server. However, the ability to predict future frame
sizes still affects the appropriate division of buffer space be-
tween the server and client. Our experiments show that the op-
timal buffer allocation (i.e., the allocation of buffers between the
server and client that produces maximal smoothing gains) shifts
to placing more memory at the server as the server has progres-
sively less information about future frame sizes. We also inves-
tigate the processing requirements for deploying our smoothing
scheme at a video source or at a proxy server inside the network.
We show that, instead of computing the transmission schedule
in every frame time slot, the server can compute a new schedule
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at much coarser time intervals, and at most only a few times in
each smoothing window with very little degradation in perfor-
mance. This permits a workstation or personal computer to com-
pute transmission schedules simultaneously for multiple video
streams. We conclude the paper in Section V with a discussion
of future research directions.

II. SMOOTHING STORED VIDEO

A multimedia server can substantially reduce the bandwidth
requirements of stored video by transmitting frames into the
client playback buffer in advance of each burst. The server con-
trols workahead smoothing by computing upper and lower con-
straints on the amount of data to send, based ona priori knowl-
edge of frame sizes and the size of the client playback buffer.
Then, the bandwidth smoothing algorithm constructs a trans-
mission schedule that minimizes burstiness subject to these con-
straints.

A. Smoothing Constraints

Consider an -frame video stream, where frameis bits
long, . The entire stream is stored at the server,
and is transmitted across the network to a client which has a

-bit playback buffer. Without loss of generality, we assume
a discrete time-model where one time unit corresponds to the
time between successive frames; for a 30 frames per second full
motion video, a frame time corresponds to 1/30th of a second.
To permit continuous playback at the client site, the server must
always transmit enough data to avoid bufferunderflowat the
client, where

specifies the amount of data consumed at the client by time,
( ). Similarly, to preventoverflowof the

-bit playback buffer, the client should not receive more than

bits by time .
We define aserver transmission plan to be the schedule

according to which the smoothing server transmits video to the
client. , where is the rate at which the server
transmits during time. Any valid server transmission plan
which results in lossless, starvation-free playback, should stay
within the two constraints and , i.e.,

. This is illustrated in Fig. 2. Creating afeasibletrans-
mission schedule involves generating a monotonically nonde-
creasing path that does not cross either constraint curve.

In order to smooth out transmissions at the beginning of the
video, a playback delay of time units can be introduced. The
client underflow (consumption) and overflow curves are shifted
to the right by time units, and are given by

Fig. 2. Smoothed transmission schedule. The figure shows an example of
a smoothed transmission schedule (S) with three runs that stays between the
upper (U ) and lower (L) constraint curves.

and

B. Computing Transmission Schedules

A transmission schedule is feasible if and only if
. In general, multiple feasible transmis-

sion schedules exist. In this context, we focus on an
algorithm that computes the shortest path schedule, subject
to the constraints and [1]. Fig. 2 shows an example
smoothed transmission schedule, where each change in the
transmission rate occurs at the leftmost point along the longest
trajectory from the previous change point.

The shortest path algorithm generates a schedule that
minimizes the peak and variability of the transmission rates

, as well as the effective bandwidth requirement [1]. This
algorithm serves as our starting point for developing effective
online smoothing techniques. In the rest of the paper, we refer
to this as theoptimal offline algorithm.In the next section,
we formulate an online smoothing model which incorporates
an arbitrary arrival process, playback delay, client and server
buffer sizes, server processing capacity, and frame size pre-
diction techniques. We generalize the shortest path algorithm
to operate on a window of video frames by modifying the
underflow and overflow smoothing constraints. The new online
smoothing algorithm periodically recomputes the transmission
schedule as more frames arrive, based on a sliding window of
frames. Smoothing with a small window can remove the short
term burstiness in the video stream, while larger window sizes
can further reduce the bandwidth requirements by smoothing
across scenes with different bit rates, at the expense of longer
playback delays.

III. W INDOW-BASED ONLINE SMOOTHING

Existing techniques for smoothing stored video at the source
serve as a useful foundation for developing new algorithms
for online smoothing of streaming video under client buffer
constraints. However, operating with limited available data, and
limited knowledge of future frame sizes, requires important
changes to the model in Fig. 2. We begin by formulating the
online smoothing model. Our approach involves computing the
online smoothing constraints corresponding to short segments
of the video stream as frames become available at the smoothing
server, and using the existing shortest-path algorithm in this
context to compute (and recompute) transmission schedules for
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Fig. 3. Online smoothing model. The smoothing server has aB -bit buffer
and transmits the video to a smoothing client with aB -bit buffer. The video
arrives according to an arrival vectorA, is scheduled according to a vectorS,
and is played at the client according to a vectorD, with aw-frame smoothing
delay.

finite durations into the future. This online smoothing model
accounts for the constraints placed by the server and client
buffers, as well as the playback delay, knowledge of future
frame sizes, and the overhead for computing a transmission
schedule.

A. Online Smoothing Model

Without loss of generality, we consider a discrete time
model at the granularity of a frame time. The smoothing
server has a -bit buffer and smoothes the incoming video
into a -bit client buffer. The server introduces a-frame
playback delay (beyond the transmission delay) between
the two sites. The smoothing client plays out the stream
according to the original unsmoothed schedule. As shown in
Fig. 3, the video arrives according to acumulative arrival
vector , where is the amount
of data which has arrived at the smoothing server by time

. The correspondingarrival vector is
, where , and

is the amount of data which arrives in time
. Although the server does not

receive more than bits by time , we assume that it has
knowledge of future frame sizes up to a certain time in the
future. At any time , the smoothing server has knowledge
of the next consecutive elements in the arrival vector,
( ), where . is a parameter referred to
as thelookahead intervalin the rest of the paper. We initially
assume the smoothing server has exact knowledge of sizes and
arrival times of the next consecutive frames. In an extended
version of this paper, we also consider online smoothing under
practical frame size prediction schemes [25].

The server receives the entire video by time, with
for . Transmission can continue until

time , since playback at the client is delayed byframe
times to enable smoothing. Thecumulative playback vectoris

, where is the amount of
data which must be transmitted from the smoothing server by
time . For example, if the smoothing client is
the actual end user, the playback vector should satisfy
for and for . The
correspondingplayback vectoris ,
where and . We
assume that , and .
The combined server and client buffer space must be enough to
accommodate the difference between the cumulative arrival and
playback amounts at any instant; that is,

for .
Based on the buffer and delay constraints, the smoothing

server computes a cumulative transmission vector

TABLE I
PARAMETERS IN ONLINE SMOOTHING

MODEL: THIS TABLE SUMMARIZES THE KEY PARAMETERS IN

THE SMOOTHING MODEL

, where is the amount
of data which must be transmitted from the smoothing server
by time , . The correspondingtransmis-
sion vectoris , where

, and . Given this
framework, the online smoothing algorithm computes a trans-
mission vector subject to the arrival and playback vectors,
as well as the constraints on the buffer sizes and playback delay.
The smoothing server generates the transmission schedule in
an online fashion.

To generate a transmission schedule, the server could con-
ceivably compute a new schedule at every time unit to incorpo-
rate the most recently available frame size information. To re-
duce computational complexity, the server could instead execute
the smoothing algorithm once everytime units ( ).

is referred to as theslide lengththroughout this paper, and
is an integer number of frame slots. Intuitively, the server waits

time units between invocations of the smoothing algorithm.
Table I summarizes the key parameters in our formulation of
the smoothing constraints in Section III-B, as well as our per-
formance evaluation in Section IV.

B. Online Smoothing Constraints

The parameters in the smoothing model translate into a col-
lection of constraints on the smoothing schedule. At any given
time instant , the server can compute the amount
of workahead that has been sent to the client:

The server can also compute the constraints on smoothing from
time to a time in the future, as shown in Fig. 4. To avoid
underflow and overflow at the client buffer, the server transmis-
sion schedule must also obey the lower and upper constraints:

and
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Similarly, to avoid underflow and overflow at the server buffer,
the schedule must obey the upper and lower constraints:

and

In determining , the parameter limits the
server to transmitting data that was known by timeand has ar-
rived by time . The model can be extended to handle a bounded
amount of delay jitter by making the above constraints more
conservative, based on the maximum and minimum amount of
data that may arrive by any time [1], [26].

Using these constraints, the server can compute a schedule
from time to time . In particular,
a feasible schedule must
satisfy

Given this set of constraints and the workahead ,
the smoothing server computes a schedule

for the next time intervals, using the
shortest path algorithm described in Section II; more recent
work has since considered computing the schedule using other
algorithms [27]. As shown in Fig. 4, the upper and lower
smoothing constraints meet at time , due to limited
knowledge and availability of arriving frames. Rather than
waiting until time to generate the next portion of
the transmission schedule, the server computes a new schedule
every time units, where , at the expense of
an increase in computational complexity. Smaller values of
improve the effectiveness of the online smoothing algorithm
by refining the conservative estimate of the data
available for transmission. Oursliding-window smoothing
executes on overlapping windows of frames [Fig. 5(c)]. This
reduces the peak rate and variability of the resultant transmis-
sion schedule over ahopping-window[Fig. 5(b)] approach
(where ). In Section IV-D, we evaluate the impact
of varying this slide length .

C. Cost/Performance Tradeoffs

The overhead associated with computing the shortest path
schedule at each invocation of the online smoothing algorithm
is . The running time of the offline smoothing
algorithm is linear in the number of frames. On a 300 MHz
Pentium PC, the online smoothing algorithm consumes about
1–2 ms to smooth a 30 s window of 30 frames per second video.
This suggests that a commercial off the shelf workstation could
offer smoothing services for a few video streams. However,
computing the smoothed transmission schedule alone for a
dozen streams would take up about 70% of the CPU, without
accounting for network protocol processing and other over-
heads, if the smoothing algorithm were invoked every frame

Fig. 4. Online smoothing constraints. Starting at time� , the server can
compute a transmission schedule based on theworkaheadC (�), the upper
constraintU (�; t), and the lower constraintsL (�; t).

time. For online smoothing to be more scalable, we investigate
the impact of performing the operation less frequently, at
intervals of length .

Given a slide length , the total computation overhead for
the sliding-window algorithm for smoothing a-frame video
is given by . Smaller values of allow the
server to gradually refine the schedule based on new frames, at
the expense of additional computational load at the server. For-
tunately, though, the server does not always have to determine
the schedule for the entire -frame interval, since the
schedule is recomputed everytime units anyway. In fact, the
server stops computing after determining the schedule for the
next time units in the future.

The values of , , and determine how closely our on-
line smoothing algorithm can approach the performance of the
optimal offline algorithm. The client buffer size limits the
amount of workahead data , while the server buffer size

limits the server’s ability to store and smooth a sequence
of large frames. The sizes of the two buffers interact with the
window size . In general, a large value of improves per-
formance, since it permits the server to smooth over a larger
interval of frames. However, if grows too large, relative to

, then the buffer space can limit and adversely impact
smoothing gains.

Larger values of can improve performance by allowing
the server to predict future bursts in frame sizes, particularly
when the window size is small. Varying allows us to deter-
mine whether or not frame size prediction is useful for online
smoothing of noninteractive video. Finally, varyingallows us
to determine how often the server needs to compute transmis-
sion schedules. The next section shows that relatively large slide
lengths, such as or , are sufficient in practical
examples. Similarly, modest values of, , , and allow
online smoothing to achieve most of the performance gains of
the optimal offline algorithm.
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(a)

(b)

(c)

Fig. 5. Sliding window smoothing. This figure shows a sample sequence of
arrivals at the smoothing server, with a large amount of data arriving at timeY :
(a) unsmoothed arrivals, (b) hopping window(� = w + P ), and (c) sliding
window (� < w + P ). The dotted lines in (b) and (c) correspond to the
smoothed schedules for hopping and sliding window smoothing, respectively.

IV. PERFORMANCEEVALUATION

In this section we study the interaction between the param-
eters in Table I, and their impact on smoothing performance to
help in determining how to provision server, client, and network
resources for online smoothing. The study focuses on bandwidth
requirements, in particular the peak rate, coefficient of varia-
tion (standard deviation normalized by the mean rate), and the
effective bandwidth of the smoothed video stream. The effec-
tive bandwidth [28], [29] statistically corresponds to the net-

work bandwidth required to transmit the video through a inter-
mediate switch having a-byte buffer, with a tolerable loss rate
of . For a video with transmission rates , the ef-
fective bandwidth is computed as where

. Note that the effective bandwidth decays expo-
nentially as a function of the switch buffer size. However, a large
switch buffer reduces the effective bandwidth at the cost of in-
troducing longer delays. For continuous media transmission, a
reasonable operating region would limit this delay to a few tens
of packets or ATM cells. This corresponds to switch buffer sizes
of 1–3 KB. For the evaluations presented in this paper, we use
a 3 KB switch buffer.

Upper and lower bounds on the performance metrics are ob-
tained by considering the unsmoothed video stream and the op-
timal offline schedule. The results reported here are based on
a 23-min MPEG trace ofWizard of Ozwith a peak (mean)
rate of 11 Mbps (1.25 Mbps), a 97 min MPEG trace ofStar
Warswith a peak (mean) rate of 5.6 Mbps (0.5 Mbps), and a
20-min M-JPEG encoding ofBeauty and the Beastwith a peak
(mean) rate of 7.3 Mbps (3.4 Mbps). Experiments with other
compressed video sources show similar behavior. Note that in
an MPEG encoding, a frame is interframe coded, and the pre-
ceding and succeeding(or ) frame are required for decoding
a frame. As such, to guarantee starvation free playback at the
client, both preceding and succeeding(or ) frames must ar-
rive before the display deadline of aframe. The playout vec-
tors forStar WarsandWizard of Ozwere constructed to capture
these constraints [25].

For our experiments, we assume that the video coming into
the smoothing server is played back at the client with a-frame
time lag. The arrival vector therefore is the consumption
vector shifted time units to the left. Another valid service
model would assume that the arrival vector is some smoothed
transmission schedule; we do not consider that here.

A. Basic Performance Trends

We first explore the case where the smoothing server has
no knowledge of future frame sizes. Fig. 6 demonstrates the
benefits of online smoothing an MPEG-1 encoding of the
movie Star Wars[7], which has an unsmoothed peak rate of
5.6 Mbps. Smoothing over a small time scale of 4 frames
reduces the peak rate to 2.9 Mbps [Fig. 6(a)]. However, the
resultant schedule still exhibits significant burstiness, which
can be removed using a larger smoothing window. For example,
the sliding window algorithm with a 1 s (30 frame) window
produces a much smoother schedule, and reduces the peak
bandwidth by an additional 50% to 1.4 Mbps [Fig. 6(b)].
Fig. 6(c) shows the transmission schedule for a 30 s (900
frame) window, which nearly converges with the optimal
offline smoothed schedule for the same startup delay and client
buffer size. The corresponding peak rate is reduced by another
factor of 2 to 0.75 Mbps. This suggests that noninteractive
live applications which can tolerate latencies of a few tens
of seconds can realize almost all of the potential benefits of
smoothing. Note that the window size here is of the same order
as scene length distributions in videos [11]. The above trends
clearly demonstrate the utility of using a smoothing window
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(a)

(b)

(c)

Fig. 6. Online smoothing example. These graphs plot example transmission
schedules for a portion of the MPEG-1Star Warsvideo for offline and online
smoothing withB = 5 MB, P = 0, � = 1, andB = 1: (a) 4-frame
smoothing, (b) 1-s smoothing, and (c) 30-s smoothing.

size which is sufficiently large to enable smoothing across
different scenes in the video.

Fig. 7. Window size. These graphs plot the peak rate for MPEGWizard of
Ozas a function of the window sizew for various client buffer sizesB , with
� = 1, B = 1, andP = 1. The peak rate of the unsmoothed trace is 11
Mbps.

B. Window Size () and Client Buffer Size ( )

We next consider the influence of the size of the smoothing
window and the client buffer, both of which impose constraints
on workahead transmission. To focus on these two parameters,
we assume that the smoothing server has a sufficiently large
buffer (i.e., ) and has prior knowledge of all frame
sizes in the entire video (i.e., ). The graph in Fig. 7 illus-
trates the dramatic benefits of online smoothing even for small
window sizes, and small client buffers. For example, a client
buffer of only 46 KB (the size of the largest frame in the video)
and a small 4-frame smoothing window reduces the peak rate
by 72% over the unsmoothed video. Increasing the smoothing
window increases the startup delay at the client. This has
two important implications for smoothing. A largergives the
server more time to transmit any frame, and also allows the
server to perform workahead transmission more aggressively,
as it has access to a larger number of frames. Hence, for a given
client buffer size, as the length of the smoothing window in-
creases, the peak rate decreases at first. However, increasing
beyond a certain point (e.g., beyond 2 s for KB) does
not help as the client buffer becomes the limiting constraint on
smoothing. The curves flatten out in this region.

For a small window, the main constraint on smoothing is the
window size and so the performance is similar across different
client buffer sizes. As increases, the benefits of a larger client
buffer become apparent. For example, for a 10 s (300 frame)
window, a 2 MB client buffer results in a peak rate which is
just 2% larger than the peak rate under an infinite client buffer,
while the corresponding figure for a 46 KB buffer is 70% larger.
For a given , the performance improves initially as in-
creases, until the client buffer becomes sufficiently large that it
does not constrain the achievable smoothing. The window size
then becomes the main constraint on smoothing. For a 15-frame
window, increasing the client buffer beyond 186 KB (the size of
the largest consecutive 15 frames in the video) has no effect.

To highlight the interplay between the smoothing window
size and client buffer size , Fig. 8 plots the peak rate for
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Fig. 8. Client buffer size. These graphs plot the peak rate forBeauty and the
Beast, as a function of the client buffer sizeB for various window sizesw,
with � = 1, B = 1, andP = 0.

online smoothing (with , ) as a function of , for
Beauty and the Beast. The plots illustrate the critical dependence
of the peak rate on the smoothing window and client buffer size.
For very small values of , the performance of the online
algorithm for small window sizes is similar to that for much
larger windows. This is because the client buffer size imposes
the main constraint on workahead transmission in this region of
client buffer sizes. These results suggest that small windows are
sufficient to reap most of the benefits of smoothing for low-la-
tency applications with relatively small client buffers. In order
to remove burstiness on a larger time scale, the window size
should grow along with the buffer size , based on a rough
estimate of the frame sizes in the video stream. Asgrows rel-
ative to , the algorithm can effectively utilize the client buffer
to smooth the stream at a larger time scale. A larger smoothing
window size, in the range of 1–5 min, would be appropriate for
a latency tolerant client with a low bandwidth connection to the
network. In addition, as shown in Fig. 8, such large windows are
especially appropriate for videos such asBeauty and the Beast,
which exhibits substantial burstiness on the 20 s to 5 min time
scale. For example, the peak rate forBeauty and the Beastdrops
by more than a factor of two when is increased from 20 s to 5
min. The effective bandwidth exhibits similar trends which are
reported in [25].

C. Knowledge of Future Frame Sizes ()

We next investigate the performance impact that, the
number of known future frame sizes beyond the current
smoothing window, has on online smoothing. Our experiments
(here and in [25]) suggest that lookahead offers, at best, only
moderate reductions in the peak rate and rate variability.

Fig. 9 plots the effective bandwidth as increases, for dif-
ferent smoothing window sizes. The-axis represents the looka-
head as a fraction of the smoothing window size. In order
to isolate the impact of lookahead, we assume that the client
buffer size is sufficiently large that it does not constrain
the smoothing, i.e., . For a given smoothing window
size , increasing provides information further into the future

Fig. 9. Effects of lookahead.The graph plots effective bandwidth as a
function ofP=w for various window sizesw, for Wizard of Ozwith � = 1,
B = 1, b = 3 KB, and = 0:001.

and, therefore, improves awareness of future increases in frame
sizes. However, the actual amount of workahead transmission
that can be performed at any time is limited by the amount of
data that has already arrived at the server by that time. The data
available at the server is the main constraint on workahead trans-
mission under small window sizes. Hence, increasing the looka-
head does not help since the server does not have enough data to
take advantage of this knowledge. For a larger window size, the
server has access to a larger amount of data and, as such, is able
to smooth more aggressively. Similar behavior is observed for
the peak rate in the bottom two curves in Fig. 7 which compare
the performances of the offline and online (with ) sched-
ules. For small to moderate window sizes, there is a significant
difference between the two schedules, indicating that the lim-
ited data availability at the server is the primary factor limiting
online smoothing performance in this region.

Fig. 9 illustrates that lookaheads which are very small com-
pared to the window size hardly impact the effective bandwidth.
Larger lookaheads which are comparable to the window sizes
are the most effective in decreasing the effective bandwidth. If

is large, and if the lookahead is very small compared to,
then the effect of this added information is marginal, and most of
the smoothing gains come from having the large window. Thus,
for the 9000 frame (five minute) window, the effective band-
width decreases very slowly for small lookahead values, and a
large lookahead is necessary to achieve any notable improve-
ment. The effectiveness of online smoothing increases with,
until a point is reached where, and hence the data available
at any time for transmission becomes the main constraint on
smoothing. Increasing the lookahead beyond this point has little
effect on smoothing. For most of the plots, the incremental bene-
fits of lookahead beyond one or two times the window size (i.e.,

or ) are minimal. Other experiments [25]
with a finite client buffer show that the benefits of prediction
are even less dramatic when the buffer sizes imposes an addi-
tional constraint on smoothing.

So far, our evaluations assumed that the lookahead informa-
tion consisted of actual future frame sizes. The corresponding
performance serves as an upper bound on the performance of
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any prediction scheme which may be used to estimate future
frame sizes. We have also explored how a practical predic-
tion scheme fares when used in conjunction with our online
smoothing algorithm. Our studies [25] indicate that for short
lookahead intervals of up to 1–2 s, a simple scheme such as the
GOP (group of pictures) based prediction for MPEG video (the
estimated sizes of the nextframes is identical to the sizes of
the last frames) in [15] performs remarkably well, resulting
in peak rate and rate variability measures which are very close
to those for perfect prediction.

D. Computation Period ()

Recall that the benefits of online smoothing depend on
how often the server recomputes the transmission schedule to
incorporate new arriving frames. To investigate the sensitivity
of online smoothing to the computation frequency, Fig. 10(a)
compares the performance of the online algorithm for different
values of across a range of window sizes, for Wizard of
Oz, with a 512 KB client buffer and . As expected,
for a given window size, the performance improves as the
computation period decreases, with the best performance
exhibited at . Even a very large computation period
of still achieves considerable smoothing gains. For
example, for a 10 s smoothing window, with s, the
effective bandwidth is reduced to 52% of the corresponding
unsmoothed value. However, there is a significant difference
in performance between and . For the same 10 s
window, the effective bandwidth for is still 168% larger
than the corresponding value for .

When , the server effectively performshop-
ping-window smoothing over consecutive nonoverlapping
windows. As a result, the server only smoothes within a
window, but cannot reduce burstiness across different windows.
This can lead to situations such as that depicted in Fig. 5.
If a window boundary occurs at position , then, under
the hopping-window algorithm, the first few large frames in
the window starting at would inflate the peak rate of
the smoothed schedule. This accounts for the relatively poor
performance when . Any smaller computation period
can smooth out bursts at the beginning of a smoothing window
by workahead transmitting part of the burst at an earlier time
in an earlier window. Although smaller computation periods
decrease the burstiness of the video stream, the performance
differences between are not significant.

Fig. 10(b) plots the effective bandwidth measure for the
M-JPEGBeauty and the Beasttrace for different values of ,
for a much larger 32 MB client buffer. Compared to MPEG
video, M-JPEG videos do not exhibit much small time scale
rate variability, since each frame is encoded independently.
Therefore, small window sizes offer relatively little opportunity
for smoothing, and hence little difference across a range of
values for window sizes below one second. However, for larger
windows, there is a significant performance difference between
the effective bandwidths of the schedule produced with
and those produced with smaller values of.

Our experiments suggest thatshould be smaller than for
good online smoothing performance, and within that constraint,
significant smoothing gains are possible even for relatively large

(a)

(b)

Fig. 10. Frequency of schedule computation.These graphs plot the
performance of online smoothing for different computation periods� across a
range of window sizesw, with P = 0,B =1, b = 3 KB, and = 0:001:
(a) Wizard of OzhasB = 512 KB, whereas (b)Beauty and the Beasthas
B = 32 MB.

values of . For the scenarios we examine, nearly all of the
benefits of online smoothing could be achieved by choosing
to be or . This is important from a practical
viewpoint, since a smaller computation frequency (e.g., once
every few seconds or tens of seconds) substantially reduces the
CPU overheads of online smoothing.

E. Server and Client Buffers ( and )

Until now, our evaluations assumed that the smoothing server
has enough buffer to accommodate a window of anycon-
secutive frames in the video. We now investigate how buffer
placement at the server and client impacts online smoothing.
The minimum combined buffer requirement at the server and
client for a smoothing window of frame times is the envelope
of the largest consecutive frames in the video (theframe
smoothing window and the frame being currently displayed at
the client)

In this context, it is necessary to distinguish between two kinds
of workahead that can occur in smoothing.Workahead for
smoothinguses workahead to smooth out burstiness in the
video stream. Yet, if the server does not have sufficient buffer
to accommodate frames, it may have to transmit aggressively
to prevent overflow of the server buffer. Suchworkahead
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Fig. 11. Buffer allocation with no knowledge of future frame sizes.These
graphs plot the peak rate for different allocations of the server and client buffers
for Wizard of Ozwith w = 30, P = 0, and� = 1. The experiment varies the
distribution of a total buffer size ofM = F �404KB between anx-byte server
buffer and an(M � x)-byte client buffer.

to prevent overflowis detrimental to online smoothing, as it
actually increases the burstiness of the transmission schedule.

1) No Lookahead ( ): We first consider the situation
when the smoothing server has no knowledge about future frame
sizes (i.e., ). Fig. 11 plots the peak rate of the smoothed
schedule forWizard of Ozwith a 30-frame smoothing window,
as a function of the buffer allocation at the smoothing server.
For this video trace, the largest window of 31 frames consists
of 404 KB. Each curve in the graph represents the peak rate for
the smoothed schedules for a total buffer budget
KB ( is a constant factor) where from top
to bottom. The most striking feature in the graphs is the extreme
asymmetry with respect to buffer placement. From left to right,
the curves (for ) have three distinct regions for all values
of . At the left is the region where the server buffer allocation is
less than 370 KB, the minimum buffer required to accommodate
any 30 consecutive frames in the video. Here the smoothing is
extremely sensitive to the buffer allocation, and the peak rate
decreases dramatically with small increases in the server buffer
allocation (i.e., small decreases in the client buffer allocation).

Since the server has no knowledge about future frame sizes,
it is constrained to compute a smoothed schedule based on the
frames it already possesses, and may not be able to take advan-
tage of the large available client buffer in this region of server
buffer size. During runs of consecutive large frames in the video,
less aggressive transmission may result in a situation where the
server is forced to transmit large amounts of data at a later time,
to prevent buffer overflow, thereby increasing the burstiness of
the transmitted schedule. In the worst case, this effect can result
in a peak rate equal to that of the unsmoothed trace. Note that in
this region of server buffer allocation, for a given , the perfor-
mance metrics are identical across different client buffer alloca-
tions, illustrating that the server buffer is the main limiting factor
on smoothing. This underlines the importance of allocating at
least enough buffer at the server to accommodate a window of

frames. Once the server has enough buffer to accommodate
30 frames, the phenomenon of workahead to prevent overflow

(a)

(b)

Fig. 12. Buffer allocation with partial knowledge of future frame sizes.
These graphs plot the (a) peak rate and (b) coefficient of variation for different
allocations of the server and client buffers forWizard of Ozwith w = 30 and
� = 1. The experiment varies the proportion of the total buffer size ofM =
F � 404 KB that is allocated to the smoothing server, whereF = 1:25.

disappears, considerably improving the peak rate and rate vari-
ability. The curves then enter a middle region where the perfor-
mance is insensitive to the buffer distribution. The width of this
region increases from to . In this region, the
peak rate and coefficient of variation are identical across dif-
ferent values of . For and , this flat region in-
cludes allocations with enough buffer space for both the server
and client to accommodate any consecutive 30 frames.

The client buffer becomes an impediment to smoothing only
for small client buffer sizes. This occurs at the extreme right of
the graphs in the figure. Note that the minimum client buffer al-
location in these plots is the size of the largest frame in the video,
as the client has to have at least enough space to accommodate
any one frame in the incoming stream. As we observed in Fig. 7,
even with this small buffer size, some smoothing gains are pos-
sible. The above trends indicate that, in situations where the
smoothing server has no knowledge about future frame sizes,
sufficient buffers should be allocated to the server for accom-
modating consecutive frames in the video, with the remaining
allocated to the client. Furthermore, a total buffer allocation of
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is sufficient to achieve all the benefits of online
smoothing with a frame smoothing window.

2) Impact of Lookahead ( ): We next evaluate how
knowledge of future frame sizes impacts the server-client buffer
allocation tradeoffs. Fig. 12(a) and (b) plot the peak rate and
coefficient of variation for and frames for
Wizard of Oz.From top to bottom the different curves corre-
spond to and frames, where is the looka-
head. The graphs show that for any buffer allocation at the server
and client, the peak rate and coefficient of variation decrease
as the lookahead increases. With more knowledge about fu-
ture frame sizes, the server is better able to anticipate the space
requirements of future frames. By factoring this information
into the smoothing algorithm, much before these frames arrive,
the server is better able to accommodate future bursts by per-
forming workahead more aggressively (if required) earlier on.
This helps avoid the need to transmit a large burst of data to pre-
vent server buffer overflow. In the region where the server has
less buffer than needed to accommodate 30 consecutive frames,
the improvements are especially dramatic. For example, using a
7-frame lookahead, and equal buffer allocation at the server and
client, the peak rate reduces to 39% of the corresponding values
for the no lookahead case.

It has been shown in [30] that for the infinite knowledge
( ) case, the peak rate curve is symmetric for
and has a minimum at . We find similar behavior
for both the coefficient of variation and the effective bandwidth
[25]. These results suggest that an even allocation of buffer
space is best when the server has complete knowledge of the
video, and that more buffer space should be allocated to the
server when the knowledge about future arrivals is limited.

V. CONCLUSION

In this paper, we have shown that delaying the transmission
of video frames by time units permits our window-based on-
line smoothing algorithm to substantially reduce the bandwidth
requirements for distributing streaming video by performing
workahead transmission of frames into the client playback
buffer. Our online algorithm builds on previous work on tech-
niques for smoothing stored video. Our algorithm incorporates
constraints caused by the limited availability of “future” frames
in an online setting, the need to recompute the transmission
schedule as new frames arrive, and limitations on buffer
sizes and processing capacity. Our experiments show that the
algorithm substantially reduces the peak transmission rate and
effective bandwidth, allowing low bandwidth clients to receive
the video stream with a modest playback delay. The smoothing
algorithm achieves these performance gains with modest
playback delays up to a few tens of seconds, and reasonable
client buffer sizes in the range of hundreds of kilobytes to a few
megabytes. Prediction of future frame sizes, coupled with a
careful allocation of the server and client buffers, offers further
performance improvements.

We have also shown that the algorithm has relatively small
processing and memory requirements, making it possible to
deploy smoothing servers inside the network. Based on these
results, we are developing an architecture and prototype imple-

mentation of a smoothing server [31]. We are also considering
ways to combine online smoothing with other effective tech-
niques for adjusting video transmission to the delay, bandwidth,
and loss properties of the underlying communication network.
For example, emerging network services could integrate
window-based smoothing with layered encoding schemes and
packet retransmission protocols, particularly in the context of
multicast video and audio services. We are currently investi-
gating a technique for caching the initial frames of popular
video streams at an intermediate proxy server [26]. One of the
benefits of suchprefix cachingis that it allows the smoothing
server to decouple the smoothing window size from the client
perceived startup latency. Thus all the advantages of using a
larger smoothing window can be achieved, without increasing
client playback delay.
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