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Audio-Visual Speech Modeling for Continuous
Speech Recognition

Stéphane Dupont and Juergen Luettin

Abstract—This paper describes a speech recognition system
that uses both acoustic and visual speech information to improve
the recognition performance in noisy environments. The system
consists of three components: 1) a visual module; 2) an acoustic
module; and 3) a sensor fusion module. The visual module locates
and tracks the lip movements of a given speaker and extracts
relevant speech features. This task is performed with an appear-
ance-based lip model that is learned from example images. Visual
speech features are represented by contour information of the
lips and grey-level information of the mouth area. The acoustic
module extracts noise-robust features from the audio signal.
Finally, the sensor fusion module is responsible for the joint tem-
poral modeling of the acoustic and visual feature streams and is
realized using multistream hidden Markov models (HMMs). The
multistream method allows the definition of different temporal
topologies and levels of stream integration and hence enables the
modeling of temporal dependencies more accurately than tradi-
tional approaches. We present two different methods to learn the
asynchrony between the two modalities and how to incorporate
them in the multistream models. The superior performance for
the proposed system is demonstrated on a large multispeaker
database of continuously spoken digits. On a recognition task at
15 dB acoustic signal-to-noise ratio (SNR), acoustic perceptual
linear prediction (PLP) features lead to 56% error rate, noise
robust RASTA-PLP (Relative Spectra) acoustic features to 7.2%
error rate and combined noise robust acoustic features and visual
features to 2.5% error rate.

Index Terms—Joint audio-video sensor integration, multistream
hidden Markov models, speech recognition, visual feature extrac-
tion.

I. INTRODUCTION

H UMAN speech perception is inherently a multimodal
process that involves the analysis of the uttered acoustic

signal and includes higher-level knowledge sources such
as grammar, semantics, and pragmatics. One information
source that is mainly used in the presence of acoustic noise
is lipreading or so-called speechreading.1 Hearing impaired
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1Lipreading is the perception of speech purely based on observing the talkers
lip movements. Speechreading is the visual perception of speech which also
includes observation of facial and manual gestures. Audio-visual speech per-
ception is the perception of speech by combining speechreading with audition.

and deaf persons make extensive use of visual speech cues
and some few individuals perform lip-reading to such a degree
that enables almost perfect speech perception [1]. It is well
known that seeing the talker’s face in addition to hearing his
voice can improve speech intelligibility, particularly in noisy
environments [2], [3]. The main advantage of the visual signal
is its complementarity to the acoustic signal [4]. Phonemes
that are most difficult to perceive in the presence of noise
are easier to distinguish visually and vice versa. The visual
signal contains that kind of information that is acoustically
most sensitive to noise [1]. Studies have also shown that
visual information leads to more accurate speech perception
even in noise-free environments [5]. The strong influence of
visual speech cues on human speech perception is demon-
strated by the McGurk effect [6] in which, for example, a
person hearing an audio recording of /baba/ and seeing the
synchronised video of a person saying /dada/ often resulted in
perceiving /gaga/.

Automatic speech recognition (ASR) has been an active re-
search area for several decades, but in spite of the enormous
efforts, the performance of current ASR systems is far from
the performance achieved by humans: error rates are often one
order of magnitude apart [7]. Most state-of-the-art ASR sys-
tems make use of the acoustic signal only and ignore visual
speech cues. They are therefore susceptible to acoustic noise
[8], and essentially all real-world applications are subject to
some kind of noise. Much research effort in ASR has there-
fore been directed toward systems for noisy speech environ-
ments and the robustness of speech recognition systems has
been identified as one of the biggest challenges in future re-
search [9].

In this paper, we focus on audiovisual feature extraction,
modeling, and sensor integration, for noise-robust ASR.
Lip-tracking is performed using a model-based image search.
Visual features are then extracted from the lip contours and
from the mouth region intensity. This is discussed in Section II.
Features from the audio signal are obtained using an acoustic
front-end based on the perceptual linear prediction (PLP) or
on the noise-robust J-RASTA-PLP (relative spectra) methods.
In Section III, we tackle the problem of integrating the infor-
mation obtained from the visual and acoustic front-ends. We
are interested in the possibly decoupled dynamics of the two
modalities. Both are modeled using hidden Markov models
(HMMs) and the joint interaction of visual and acoustic HMMs
is realized using multistream topologies. Section IV describes
our acoustic, visual, and audio-visual speech recognition sys-
tems. Finally, results on a multispeaker digit strings recognition
task are reported.

1520–9210/00$10.00 © 2000 IEEE
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II. V ISUAL SPEECHFEATURE EXTRACTION

Facial feature extraction is a difficult problem due to large ap-
pearance differences across persons and due to appearance vari-
ability during speech production. Different illumination condi-
tions and different face positions cause further difficulties in
image analysis. For a real-world application, whether it is in a
car, an office or a factory, the system should be able to deal with
these kinds of image variability.

The main approaches for extracting visual speech informa-
tion from image sequences can be grouped into the following
approaches:

1) image-based;
2) visual-motion-based;
3) geometric-feature-based; and
4) model-based.

In the image-basedapproach [10]–[13], the grey-level image
containing the mouth is either used directly or after some image
transform as feature vector whereas thevisual-motion-based
method [14] assumes that visual motion during speech produc-
tion contains relevant speech information.Geometric-feature-
basedtechniques [15], on the other hand, assume that certain
measures such as the height or width of the mouth opening
are important features. Finally, in themodel-basedapproach
[16]–[18], a model of the visible speech articulators, usually
the lip contours, is built and its configuration is described by a
small set of parameters. The advantage of the latter approach is
that important features can be represented in a low-dimensional
space and can often be made invariant to image transforms like
translation, scaling, rotation and lighting. A disadvantage is that
the particular model used may not consider all relevant speech
information. The main difficulty in the model-based approach is
the definition of the model and the development of image search
procedures that accurately find the correspondence between the
model and the image.

The system presented here falls into the category of
model-based feature extraction. We have used anappear-
ance-based modelof the visual articulators [4], [17]: point
distribution models [19] are used to track the lips and to extract
relevant speech features from each image. Psychological
studies suggest that the inner and outer lip contours are im-
portant visual speech features. The shape parameters obtained
from the tracking results are therefore used as features for the
speech recognition system. Lip shape information provides
only part of the visual speech information. Other information is
contained in the visibility of teeth and tongue, protrusion, and
finer details. We therefore also extract intensity information
from the mouth area.

A. Shape Modeling

The lip shape is represented by the coordinates of a point
distribution model, outlining the inner and outer lip contours:

where are
the coordinates of theth point . A shape
is approximated by a weighted sum of basis shapes which are
obtained by a Karhunen-Loéve expansion

(1)

Fig. 1. Grey-level profile extraction. The grey-level vectors are sampled
perpendicular to the lip contour and centred at the model points.

where denotes the mean shape vector,
the matrix of the first

column eigenvectors corresponding to the largest eigenvalues
and a vector containing the weights
for the eigenvectors, computed for the covariance matrix of a
representative set of example images.

B. Intensity Modeling

Intensity modeling serves two purposes: firstly, it is used as
a mean for a robust image representation to be used for image
search in locating and tracking lips; secondly, it provides visual
linguistic features for speech recognition. We therefore need to
define dominant image features of the lip contours that we try
to match with a certain representation of our model, but which
also carry important speech information. Our approach to this
problem is as follows. One-dimensional grey-level profiles
of length are sampled perpendicular to the contour and cen-
tered at point , as shown in Fig. 1.

The profiles of all model points are concatenated to construct
a global profile vector of dimension

. Similar to shape modeling, the intensity vector
can be approximated by a weighted sum of basis intensities by
the K-L expansion using

(2)

where denotes the mean intensity vector,
the matrix of the first

column eigenvectors corresponding to the largest
eigenvalues and a vector containing the weights for each
eigenvector. This approach is related to thelocal grey-level
modelsdescribed in [20] and to theeigen-lipsreported in [11].

C. Image Search

The task of image search is to localize and track the lips in
the image and to extract shape and intensity features. We define
image search as finding the shape weight vectorof the model
that maximizes the posterior probability (MAP) of the model
given the observed image

(3)

is independent of and can therefore be ignored in the
calculation of . We assume equal prior shape probabilities

within certain limits (e.g., 3 standard deviations)
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and zero probability otherwise. This reduces the MAP to the
likelihood function which is defined as

(4)

where the intensity weight vector can be obtained using

(5)

and where represents the intensity profile of the image cor-
responding to the model configuration. The intensity weight
vector is constrained to stay within certain limits (e.g.,

3 standard deviations), assuming equal prior intensity proba-
bilities within these limits.

The Downhill Simplex Method [21] is applied to find a min-
imum of the cost function. We assume that a coarse estimate
of the mouth location is given for the first image of a sequence
to initialize the search process, for example by a face detection
algorithm. Subsequent frames are processed by using the pre-
vious search results to initialize the Downhill Simplex Method.
The obtained shape weight vectorand intensity weight vector

obtained from image search are used as visual feature vectors.
The accuracy of the lip-tracking algorithm might be esti-

mated by comparing the results with the correct coordinates of
the lip countour. These coordinates are however not available
and might only be obtained by hand-labeling which is a
very labourious and subjective task. Instead of evaluating the
tracking performance separately we only evaluate the com-
bined performance of lip-tracking, visual feature extraction,
and visual speech modeling using the visual speech recognition
performance. Experiments where lip-tracking performance has
been evaluated separately can be found in [4].

Much visual speech information is contained in the dynamics
of lip movements rather than the actual shape or intensity. Fur-
thermore, dynamic information is likely to be more robust to
extra-linguistic variability, i.e., intensity values of the lips and
skin will remain fairly constant during speech, while intensity
values of the mouth opening will vary during speech. On the
other hand, intensity values of the lips and skin will vary be-
tween speakers, but temporal intensity changes might be similar
for different speakers and robust to illumination. Similar com-
parisons can be made with shape parameters. Dynamic param-
eters parameters) of the shape and intensity vectors were
therefore used as additional features.

The feature extraction method described here has been com-
pared with several image-based approaches (low-pass filtering,
principal components analysis, optical flow) by Grayet al. [22]
and was found to outperform all of these methods. It was also
found that the performance of image-based approaches can be
considerably improved by the use of lip tracking results to nor-
malize the images prior to processing.

III. A UDIO-VISUAL SENSORINTEGRATION

A. Problem of Audio-Visual Sensor Integration

The strong influence of visual stimuli on human speech per-
ception has notably been demonstrated by the McGurk effect
[6]. How humans integrate visual and acoustic information is

not well understood. Several models for human integration
have been proposed in the literature. They can be divided into
early integration (EI) and late integration (LI) models [1]. In the
EI model, integration is performed in the feature space to form
a composite feature vector of acoustic and visual features. Clas-
sification is based on this composite feature vector. The model
makes the assumption of conditional dependence between the
modes and is therefore more general than the LI model. It
can furthermore account for temporal dependencies between
the modes, such as the voice-onset-time2 (VOT), which are
important for the discrimination of certain phonemes. In the LI
model, each modality is first pre-classified independently of
each other. The final classification is based on the fusion of the
outputs of both modalities by estimating their joint occurrence.
In comparison with the early integration scheme, this method
assumes that both data streams are conditionally independent.
Furthermore, temporal information between the channels is
lost in this approach. Audio-visual speech recognition (AVSR)
systems based on EI models have, for example, been described
in [11] and [23] and systems based on LI models in [12] and
[15]. Although it is still not well known how humans integrate
different modalities, it is generally agreed that integration
occurs before speech is categorized phonetically [1], [24]. This
conclusion is supported by several studies regarding the VOT
perception [25], [26] and the McGurk effect. In acoustic speech
perception, on the other hand, there is much evidence that
humans perform partial recognition across different acoustic
frequency bands [27], [28], which assumes conditional inde-
pendence across bands. The auditory system seems to perform
partial recognition which is independent across channels,
whereas audio-visual perception seems to be based on early
integration, which assumes conditional dependence between
both modalities. These two hypotheses are controversial since
the audio-visual theory of early integration assumes that no
partial categorization is made prior to the integration of both
modalities.

The approach described here follows Fletcher’s theory of
conditional independence [27], [28], but it also allows the
modeling of different levels of synchrony/asynchrony between
the streams and can therefore account for some temporal
dependencies, which otherwise can only be modeled by an EI
integration model. Tomlinsonet al. [23] have addressed the
issue of asynchrony between the visual and acoustic streams.
Under the independence assumption, composite models were
defined from independently trained audio and visual models.
Although our work is related with [23], we propose different
strategies for modeling (learning) the asynchrony between the
two streams.

The bimodal speech signal can be considered as an observa-
tion vector consisting of acoustic and visual features. According
to Bayesian decision theory, the maximuma posterioriproba-
bility classifier (MAP) is denoted by

(6)

2The time delay between the burst sound, coming from the plosive part of a
consonant, and the movement of the vocal folds for the voiced part of a voiced
consonant or the subsequent vowel.
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Fig. 2. General form of a K-stream model with anchor-points between speech units, forcing synchrony between the streams.

where represents a particular word string, represents
the sequence of acoustic feature vectors, andrepresents
the sequence of visual feature vectors. If the two modali-
ties are independent, the likelihood becomes

. In this work, the modalities are assumed
to be independent although certain temporal constraints and
reliability weights are introduced.

Previous AVSR systems based on conditional independence
have essentially addressed the problem of isolated word
recognition. Most of these contributions were mainly focused
on finding an appropriate automatic weighting scheme so as
to guarantee good performance in a wide range of acoustic
SNRs. Compared to isolated word recognition, the problem
of continuous speech recognition is more tricky. Waiting until
the end of the spoken utterance before combining the streams,
as in the LI integration model, introduces an undesirable time
delay. As the best hypothesis using the acoustic information is
not necessarily the same as the best hypothesis using the visual
information, it also requires to generate N-best hypothesis
lists for the two streams. Identical hypotheses must indeed be
matched to combine the scores from the two streams.

B. Multistream Model

The multistream approach, proposed in this work, does not
require the use of such an N-best scheme. As we will show,
it is an interesting candidate for multimodal continuous speech
recognition as it allows for the following:

1) synchronous multimodal continuous speech recognition;
2) asynchrony of the visual and acoustic streams with the

possibility to define phonological resynchronization
points;

3) specific audio and video word or sub-word models; and
4) asynchrony patterns modeling.
1) Model for Decoupled Dynamics:The multistream ap-

proach [29] used in this work is a principled way for merging
different sources of information using cooperative HMMs (see
[30]). If the streams are supposed to be entirely synchronous
and represented by HMMs with the same topologies, they may
be accommodated simply. However, it is often the case that the
streams are not synchronous, that they do not even have the same
frame rate and it might be necessary to define models that do
not have the same topology. The multistream approach allows
to deal with this. In this framework, the input streams are pro-

cessed independently of each other (using HMMs) up to cer-
tain anchor-points where they have to synchronize and combine
their partial segment-based likelihoods. While the phonological
level of score combination has to be defineda priori, the op-
timal temporal anchor-points are obtained automatically during
recognition.

This structure is meant for processes that evolve indepen-
dently, i.e., streams that have somewhat decoupled dynamics.
With the early integration approach (see Section III-A), several
feature vectors are combined into a single feature vector.
If the generating processes are only loosely coupled, as it
could be assumed for articulatory movements, lip movements
and vocal folds movements, this increases the variance of
the statistical models, hence reducing the performance of a
recognition system. With the LI strategy however, different
statistical models are defined for the different feature vectors.
Moreover, modality reliability can easily be introduced in
this LI approach. Multistream uses the same assumptions but
additionally introduces stream synchronization at relevant
phonological transitions points, between phonemes, syllable or
words for instance.

An observation sequence, representing the utterance to be
recognized, is assumed to be composed ofinput streams
(possibly with different frame rates). A hypothesized model
associated with is built by concatenating sub-unit models

associated with the phonological level at
which we want to perform the synchronization of the input
streams (e.g., phonemes, syllables, words. To allow the
processing of each of the input streams independently of each
other up to the pre-defined sub-unit boundaries, each sub-unit
model is composed of parallel HMMs (possibly with
different topologies). These HMMs are forced to combine their
respective segmental scores3 at the synchronization points. The
resulting model is illustrated in Fig. 2.4 In this model, we note
that:

1) the parallel HMMs associated with each of the input
streams do not necessarily have the same topology; and

2) the synchronization anchor-point in Fig. 2) is not a
regular HMM state but combines the scores accumulated
over the same temporal segment for all the streams.

3From now on, we will simply refer to likelihoods or probabilities as “scores.”
4Different frameworks for more general networks have also been proposed in

[31] and [32].
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Fig. 3. HMM topology for composite model built from the multistream model
presented in Fig. 4.

Fig. 4. Multistream model for audio-visual speech recognition with optional
begin and end silence states (MODEL 2). These silence states are standard HMM
states.

2) Composite Model Formulation:Recognition using
the Viterbi approximation [30] appears to be a continuous
speech decoding problem where all of the concurrent word
segmentations, as well as all of the HMM state segmentations,
must be hypothesized. However, as combination of the scores
concerns sub-unit paths that must begin at the same time due
to the synchrony constraints, and as the best sub-unit state
paths are not the same for all of the streams (even if the model
topologies are the same), it is necessary to keep track of the
dynamic programming paths for all of the sub-unit starting
points. Hence, an approach such as the asynchronous two-level
dynamic programming [33], or a synchronous formulation of
it, is required.

Alternatively, we can define composite HMMs [34] where
each state is built by merging a-tuple of states from the
stream HMMs. The topology of this composite model is de-
fined so as to represent all the possible state paths given the
initial HMM topologies. The local scores associated with the
composite states are computed as a combination of the local
stream scores (see Section III-B4). This model allows to imple-
ment independent search within sub-units as well as intra-units
synchrony constraints. Fig. 3 shows the composite model ob-
tained from the multistream topology in Fig. 4. This strategy
was used in this study.

3) Psychoacoustic Motivations for Multistream:The
human integration mechanism seems to be robust to small
temporal asynchronies between information streams. In [35],
a speech signal is partitioned into 19 quarter-octave frequency
bands. These frequency channels are then randomly shifted
in time according to a uniform distribution ranging from 0 to

a maximum delay . Speech intelligibility experiments
show that the word accuracy declines progressively as
increases. However, it is still above 75% for a strong 140 ms
asynchrony condition, although the mean duration of the
phonetic segments is 72 ms. It is expected that standard
phone-based HMM systems would fail in such conditions.

In the audio-visual field, experiments in [36] introduced sys-
tematic asynchronies between the audio and video information
sources. These intelligibility experiments, based on /ba/, /da/,/i/
and /u/ stimuli, indicated that the integration process is relatively
robust for asynchronies up to 200 ms. Results by Smeele [37]
showed that audio-visual intelligibility of CVC stimuli does not
degrade for asynchronies of up to 80 ms. The multistream ap-
proach proposed here might also provide a robust framework
with respect to such asynchronies.

4) Stream Combination:Similar to the LI scheme, the
multistream approach requires a formulation to combine the
information of the two streams. In our case, this is done at
each anchor-point. Combination of the independent likelihoods
is done by multiplying the segment likelihoods from the two
streams, thus assuming conditional independence of the visual
and acoustic streams. This was done according to

(7)

The weighting factor represents the reliability
of the two modalities. It generally depends on the performance
obtained by each modality and on the presence of acoustic or
visual noise. Here, we estimate the optimal weighting factor on
the development set which is subject to the same noise as the
test set. The method used for final experiments however was to
automatically estimate the acoustic SNR from the test data and
to adjust the weighting factor accordingly. It can be observed
empirically that the optimal weight is related almost linearly to
the SNR ratio. For our best system (see Section IV), the corre-
lation coefficient between the SNR and the optimal weight is
0.99, and the weight can be estimated using the following em-
pirical linear regression SNR(dB) + 0.512, that is
valid from 5 dB to clean speech. With clean speech (SNR30
dB), the weighting factor ( 0.78) strongly favors the acoustic
information. As the acoustic SNR decreases however, the visual
information can become almost as important as the acoustic in-
formation ( = 0.56 when SNR = 5 dB).

5) Multistream Training: Given a combination weight, the
multistream system parameters can be estimated using tradi-
tional (Viterbi-based) maximum likelihood techniques [30] ap-
plied to HMM systems, or to HMM systems using artificial
neural networks (ANNs) as HMM state probability estimators
[38], as was done in this work.

As was shown in [39], maximum-likelihood estimation of the
combination weight fails. Indeed, maximizing the likelihood
with respect to the weighting factor yields to the selection
of the modality with the highest likelihood (hence or

). The authors also show that additional constraints on the
weight can yield to a satisfactory solution. Alternatively, gen-
eralized probabilitic descent (GPD) training using a minimum-
classification-error criterion can also be used. In this work, we
estimate the stream combination weight using a true word-level
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classification-error criterion, based on development data. This
estimation step is performed at each iteration of the Viterbi-
based maximum-likelihood estimation algorithm.

It is important to note that the multistream parameter opti-
mization procedure used here is different than the optimiza-
tion of two single-stream systems independently, as proposed
in [39]. The multistream model topologies, particularly the syn-
chronization anchor-points, introduce additional constraints in
the forced alignment of the training data. These constraints can
be important to “correct” the alignments of the visual stream.
We observed in this study that, without such constraints, the
alignments fail for a significant amount of the training: HMM
states of particular words were sometimes shown to be aligned
on signal portions pertaining to other words. In some cases,
single HMM states were also shown to overlap several adjacent
words.

The transition probabilities of a multistream model can be dif-
ferent over the two modalities, and this is reflected on the transi-
tion probabilities of the composite model used during decoding.
These transition probabilities are estimated jointly with the pa-
rameters representing the emission probabilities, using the stan-
dard maximum likelihood approach. Transition probabilities are
often omitted when modeling speech processes, the observation
likelihood being dominated by the emission probabilities. The
fact is that the standard geometric duration model is not accurate
and also that the transition probabilities do not help in the case
of matched train/test conditions. Using accurate duration mod-
eling techniques, it has been shown that transition probabilities
can improve performance in the case of noisy speech [40]. As
explained in the next section, transition probabilities were used
here for the modeling of duration and asynchrony patterns.

6) Synchrony/Asynchrony Modeling:Whereas HMMs are
mainly used to model a single or several dependent processes,
multistream models can be used for processes that evolve
independently within predefined anchor-points (transitions
between lexical sub-units) where the processes are assumed to
resynchronize. However, the definition of these anchor-points
is not obvious as the multiple stream dynamics is not known a
priori. Moreover, it is very likely that many problems will be
characterized by vector streams coming from processes that are
neither dependent, nor completely decoupled, leading to tight
or loose synchrony, probably depending on the model states. Fi-
nally, some processes could also lead to synchrony/asynchrony
patterns, one of the streams being in advance, or systematically
delayed, with respect to the other streams. Such asynchrony
phenomena could be learned to improve the modeling accuracy.

Two approaches have been investigated here. The first one
consist of static state pruning. This was done by pruning the
multidimensional models by removing the least frequently vis-
ited states (based on the prior probabilities of these states).

The second approach for stream synchrony/asynchrony
learning consists of modeling the asynchrony patterns resulting
from the multistream processes. This was done by explicit
modeling of the state durations and transition probabilities
of the multidimensional models. Indeed, in the composite
HMM, the off-diagonal state (Fig. 3) durations correspond to
the stream asynchrony delay and the transition probabilities to
these states represent their associated probabilities.

Fig. 5. Example of HMM topology for duration modeling. The emission
probability model is common across the different states. The duration is
encoded within the transition probabilities.

Explicit modeling of the synchronous and asynchronous state
durations was used here to take advantage of the particular struc-
ture of state transitions. Viterbi decoding allows to use a partic-
ular HMM topology for duration modeling. We implement du-
ration modeling by a chain of identical HMM states and a set of
transition probabilities as shown in Fig. 5. The topology is char-
acterized by a maximum length after which the duration model
simply becomes exponentially decaying, due to the loop on the
last state. Each of the states of the multidimensional model is re-
placed by a similar topology and the transition probabilities are
updated using a counting procedure on a forced Viterbi align-
ment of the training data. Other duration modeling techniques
could also be used [40].

In the presence of noise, the prior information represented
by the duration models might be of significant importance. It
should be noted however that this model can only be applied at
the expense of an important increase of the computational re-
quirements. For a model of duration, each transition of the
one state model is replaced by transitions toward the fol-
lowing HMM models.

IV. SPEECHRECOGNITION EXPERIMENTS

The M2VTS audio-visual database [41] was used for all ex-
periments. It contains 185 recordings of 37 subjects (12 females
and 25 males). Each recording contains the acoustic and the
video signal of the continuously pronounced French digits from
zero to nine. Five recordings have been taken of each speaker,
at one week intervals to account for minor face changes like
beards. The video sequences consist of 286360 pixel color
images with a 25 Hz frame rate and the audio track was recorded
at a 48 kHz sampling frequency and 16 bit PCM coding. The
database contains a total of over 27 000 color images which
were converted to grey-level images for the experiments re-
ported here.

Although the M2VTS database is one of the largest databases
of its type, it is still relatively small compared to reference audio
databases used in the field of speech recognition. To increase
the significance level of our experiments, we used a jack-knife
approach. Five different cuts of the database were used. Each
cut consisted of:

1) three pronunciations from the 37 speakers as training set;
2) one pronunciation from the 37 speakers as development

set; and
3) one pronunciation from the 37 speakers as test set.

The development set was used to optimize the audio-visual
weighting exponent. This procedure allowed to use the whole
database as test set (185 utterances) by performing independent
experiments for each of the five cuts. The task could be
qualified as multispeaker continuous digits speech recognition.
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We note here that the digit sequence to be recognized is always
the same (digits from “0” to “9”). This somewhat simplifies
the task of the speech recognition system which always “sees”
the pronounced words in the same context. Moreover, during
recognition, only the hypothesis with the correct number of
digits (ten digits) were considered. This choice was made to
avoid the need to optimize word entrance penalties.

Although highly constrained, this task remains a true contin-
uous speech recognition task. Such constrained problems are
often used to evaluate features and acoustic models whereas
large vocabulary tasks are mainly used to evaluate language
models.

A. Acoustic Speech Recognition

The audio stream was first downsampled to 8 kHz. We used
PLP parameters [42] computed every 10 ms on 30 ms sample
frames. The complete feature vectors consisted of 25 parame-
ters: 12 PLP coefficients, the first temporal derivatives [43] of
these coefficients (12 PLP) and the energy.

We used left-right digit HMM models with between three
and nine independent states, depending on the digit mean
duration. This yielded a total of 52 states, including a standard
HMM state representing the silence. The digit sequences were
first segmented into digits using standard Viterbi alignment
with a HMM-based recognizer trained on the SWISS-FRENCH

POLYPHONEdatabase [44] of 5000 speakers. Each M2VTS digit
was then linearly segmented according to the number of states
of the corresponding HMM model. This initial segmentation
was used to train the HMM-state statistical models using an
artificial neural network as HMM state probability estimator
[38]. We used a feed-forward Multilayer Perceptron (MLP)
trained with speech features at its input to generate HMM
state posterior probabilities. Nine adjacent frames of acoustic
features were used at the input of the MLP. This allows to model
local time correlation and was shown to improve classification
performance [38]. Back-propagation was used to adapt the
MLP weights using a gradient descent algorithm. A neural
network with 150 hidden units was used. Increasing the number
of hidden neurons did not yield any performance improvement.

System training and tests were then performed according to
the database partitioning described earlier. Results are sum-
marized in Tables I and II for speech corrupted by stationary
Gaussian white noise with different SNRs.5 Comparing Table I
with Table II, we can observe that the recognition performance
is severely affected by additive noise, even at such moderate
noise levels.

B. Visual Speech Recognition

The most dominant 12 shape features and 12 intensity fea-
tures, described earlier, were used for the recognizer. These fea-
tures were complemented by 24 temporal derivatives. We used
the same HMM topologies and the same initial segmentation as
for the previously described acoustic-based recognition system.
In this case, the MLP had 70 hidden units.

The mean error rate for the five database cuts defined earlier
was 40.3%. Since the visual signal only provides partial infor-

5In these experiments, the SNR was computed at the sentence level without
removing the silence portions of the utterances.

TABLE I
WORD ERROR RATE OF PLP-BASED

ACOUSTIC-, VISUAL-, AND ACOUSTIC-VISUAL-BASED (MODEL 1) SPEECH

RECOGNITIONSYSTEMS ONCLEAN SPEECH. STANDARD DEVIATIONS ACROSS

THE FIVE DATABASE CUTS ARE IN BRACKETS

TABLE II
WORD ERROR RATE FOR DIGIT STRING RECOGNITION WITH

NUMBER OF DIGITS KNOWN A PRIORI, USING SEVERAL KINDS OF

ACOUSTIC-VISUAL-BASED SPEECHRECOGNITION SYSTEMS. THESERESULTS

REPRESENT THEMEAN WORD ERRORRATE ACROSSFIVE NOISECONDITIONS:
CLEAN SIGNAL, 20 dB, 15 dB, 10 dB,AND 5 dB SNR. THE NOISE WAS A

STATIONARY GAUSSIAN WHITE NOISE. FOR EACH CONDITION, THE

COMBINATION WEIGHT WAS OPTIMIZED ON A DEVELOPMENTSET SUBJECT TO

THE SAME NOISE AS THETEST SET. STANDARD DEVIATIONS ACROSS THE

FIVE DATABASE CUTS ARE IN BRACKETS

mation, the error rate for the video-based system was consid-
erably higher than for the audio-based system. This is mainly
due to the high visual similarity of certain digits like “quatre,”
“cinq,” “six,” and “sept.”

C. Audio-Visual Speech Recognition

Audio-visual speech recognition was experimentally inves-
tigated. Fig. 6 illustrates the audio-visual system architecture.
Three kinds of model topologies were compared. These were
based on the HMM word topologies already used in the pre-
vious sections. The differences between the models laid notably
in the possible asynchrony of the visual stream with respect to
the acoustic stream.

The first model (MODEL 0) was based on early integration.
Acoustic and visual features were used as input to a single MLP
with 150 hidden units.

The second model (MODEL 1) corresponds to a multistream
model with combination at the state level and allows to use
fusion criteria that can weight differently the two streams ac-
cording to their respective reliability. However, it did not allow
for any asynchrony between the two streams.

The third model (MODEL 2) was a multistream model with
combination of the streams at the word level (Fig. 4). This model
thus allows the dynamic programming paths to be independent
from the beginning up to the end of the words. In this work, the
asynchrony was constrained to a difference of one state between
the two modalities. In the example of Fig. 3, the following states
are not allowed: , , , , , and .

This model also allows the transition from silence to speech
and from speech to silence to occur at different time instants
for the two streams.6 Lip movement can occur before and after
sound production and conversely. Fig. 7 shows in parallel a

6The “visual silence” state is a standard HMM state.
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Fig. 6. Audio-visual ASR system architecture.

Fig. 7. Auditory spectrogram (evolution of the critical band energies) and evolution of the first visual shape parameter for one portion (“0” to “8”) of an M2VTS
utterance.

speech spectrogram as well as the evolution of the first visual
shape parameter, mainly representing the changes in the posi-
tion of the lower lip contour [17]. From this figure, as well as
from studying the asynchrony of the streams using asynchrony
lag histograms (see next section and Fig. 8), it can clearly be
seen that the two signals are partially in synchrony and partially
asynchronous. Ideally, we would like to have a model which
forces the streams to be synchronous where synchrony occurs
and asynchronous where the signals are typically in asynchrony.
This will be studied in the next section.

We used the same parameterization schemes as in the two
previous sections. However, as the visual frame rate (25 Hz) is
a quarter of the acoustic frame rate, visual vectors were copied
(by copying frames), so that both modalities are synchronously
available.

Results are summarized in Tables I and II (PLP column). The
optimal weighting factor was estimated on the development set
which is subject to the same noise as the test set. In the case
of clean speech, using visual information, in addition to the
acoustics, does not yield significant performance improvement
at .05. In the case of speech corrupted with noise, significant
performance improvement can be obtained by using the visual
stream as an additional information source. The slight improve-
ment of MODEL 2 (compared to MODEL 1) is not significant.7

Finally, the early integration approach yields inferior results.
The gain of combination weight adaptation seems to surpass the
possible loss due to the independence assumption.

7This is in contradiction with results in [23] which were in favor of a resyn-
chronization level allowing asynchrony although it was limited to the phoneme
level (phone models being composed of three different states).
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Fig. 8. Transition lags (lips on acoustics) probability distribution. The upper
figure is for the first state of the word “trois” and the lower figure is for the third
state (out of seven) of “quatre.”

D. Learning the Asynchrony Between the Streams

The asynchrony learning approaches proposed in
Section III-B6 were then applied. A forced Viterbi align-
ment of the training data was obtained using MODEL 2.
Composite model state priors were computed using this
alignment and the states with small prior probability were
removed from the model (synchronized states were always kept
however). We call this approachstatic pruning. The number of
remaining states is optimized to get the best word recognition
performance on the cross-validation set. Interestingly, the best
models contained 25 off-diagonal states (asynchronized states)
in addition to the 52 synchronized states. Speech recognition
results on the test set are finally obtained using these sim-
plified composite models. As can be seen in Table II (PLP
column), they performed significantly better8 (16.1% word
error rate) than both state-resynchronization models (18.8%)
and word-resynchronization model (17.9%).

As proposed in Section III-B6,duration modelsbased on the
composite models have also been developed. In this case, the
states of the multidimensional composite model (Fig. 3) are re-
placed by particular HMM topologies (Fig. 5) which aim is to
model the composite state durations. The length of these HMMs
was set to 20 states, hence allowing an accurate duration mod-
eling up to 20 frames. A self-loop on the last state allows longer
durations with an exponentially decaying probability.

Transition delays were measured for theM2VTSdatabase on
a forced Viterbi alignment of the training data. MODEL 2 was
used to obtain the alignment. Then, histograms of the transi-
tion delays were drawn. Observation of these histograms shows
us that some are relatively narrow while other are very wide.
Moreover, the transition delay mean is not always close to zero.
Further observation even shows that some histograms are sig-
nificantly shifted toward the positive values, indicating a pat-

8according to a bilateral hypothesis test withp < .05 and knowing that the
test set contains5� 1850 words because five noise conditions have been used.

tern where the visual transition is generally delayed compared
to the acoustic transition, some other are shifted toward the neg-
ative values (see Fig. 8). These observations tend to indicate that
the transition delays are not only the product of alignment noise
(as was hypothesized in [45] for streams based on different fre-
quency bands) but also reflect some structure of the audio-visual
asynchrony patterns that could be useful for speech recognition.
The analysis of the transition delay distributions, which is how-
ever out of the scope of this paper, might also provide some
insight into the speech production mechanism.

With this approach, the duration models, which were intro-
duced to model the asynchrony patterns, are also modeling the
state durations. Comparing it with a standard HMM model
without duration modeling is unfair. The same kind of duration
modeling was thus used in additional experiments with the
purely synchronized (standard HMM) topologies. It was also
applied to the best statically pruned composite models obtained
with the previously described procedure. We observed that
duration modeling significantly improves the noise robustness
of all kinds of models (see Table II, PLP column).

For the systems without duration modeling, MODEL 2 simpli-
fied using static pruning performs significantly better than the
other models. This suggest that allowing stream asynchronies,
with asynchrony patterns learned in the form of multidimen-
sional topologies can yield improved noise robustness. For the
systems using duration modeling however, the results are not
significantly different across the models.

E. Noise Robust Features

To allow a fair comparison with noise robust acoustic
methods, this set of experiments was repeated using noise
robust J-RASTA-PLP [46] features for the audio stream. Com-
paring the results in Table II shows the improved robustness
of this kind of features over the PLP parameters. Moreover,
using both information sources also results in an important
leap forward in terms of robustness. Using decoding schemes
allowing for stream asynchronies, even when using asynchrony
modeling techniques, did not yield any performance gain
(the results are not significantly different across the models).
Results concerning asynchrony modeling are thus mitigated.
Let us, however, emphasize here a single striking results from
these experiments. At 15 dB SNR, PLP features lead to 56.3%
error rate, J-RASTA-PLP features lead to 7.2% error rate, and
using lip features in addition lead to 2.5% error rate (see Fig. 9).

Finally, speech was corrupted by a highly nonstationary noise
from theMadras[47] database (moving cars recorded along a
motorway). This noise was used because it is more realistic and
more difficult to estimate than stationary white noise. The noise
level was estimated using the automatic method described in
[48]. The technique was shown to yield a 7.6 dBmean square
error on this kind of noise. Linear regression was used to dy-
namically adjust the stream combination weight, according to
the estimated SNR and to the optimal weights resulting from
the previous experiments on stationary white noise. Results are
presented in Table III. Here again, the main conclusion of these
results is the important gain resulting from audio-visual integra-
tion.
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Fig. 9. Word error rate for digit string recognition with number of digits known
a priori, under various acoustic SNRs. The noise was a stationary Gaussian
white noise. The upper most line is for the PLP audio system. The dotted line is
for the J-RASTA-PLP audio system. The dashed line is for the early integration
system using J-RASTA-PLP and visual features and the last continuous line is
for our best audio-visual system using J-RASTA-PLP and visual features. Error
bars indicate�1 standard deviation across the five database cuts.

TABLE III
WORD ERROR RATE OF ACOUSTIC (A), VISUAL (V), AND SEVERAL

KINDS OF ACOUSTIC-VISUAL-BASED SPEECHRECOGNITION SYSTEMS

ON SPEECHCORRUPTED BY A HIGHLY NON-STATIONARY CAR NOISE

FROM THE MADRASDATABASE (10 dB MEAN SNR). “M0,” “M1,” AND

“M2,” R ESPECTIVELY, REPRESENTMODEL0, MODEL1, AND MODEL2.
J-RASTA-PLPIS USED FOR THEAUDIO STREAM

V. CONCLUSIONS

We have described a complete audio-visual speech recogni-
tion system that was tested on a multispeaker continuous digit
recognition task for different acoustic noise levels and noise
sources.

We have described an approach based on appearance-based
models for robust lip tracking and feature extraction. This
method allows robust lip tracking for a broad range of subjects
and without the need of lipstick or other visual aids. Visual
speech information is compactly represented in the form of
shape and intensity parameters. Visual speech recognition
experiments have demonstrated that this technique leads to
robust multispeaker continuous speech recognition.

We have presented a framework for the fusion of acoustic
and visual information in an audio-visual speech recognition
system based on the multistream approach. This provides a way
of merging different sources of information using cooperative
HMMs. Several significant advances have been achieved
using this approach. Firstly, the method enables synchronous
audio-visual decoding of continuous speech. Additionally,
modality reliability can easily be introduced in the form of
adaptive stream weights. It was shown that the gain of weight
adaptation for speech recognition in noise is important and
surpasses the possible loss due to the independence assumption

of our fusion formalism. Finally, the approach allows to
model the asynchrony between the two streams. In the case of
audio-visual modeling, observations of HMM state alignment
for audio and video streams tend to indicate that the transition
delays are not only the product of alignment noise but also
reflect some structure of the audio-visual asynchrony patterns
that could be useful for speech recognition. Experimental
results are however mitigated. Stream asynchrony modeling
yield significant improvement in terms of noise robustness
for ASR system using standard acoustic features whereas no
improvement was observed for a system using noise robust
features.

Comparisons with acoustic-only recognition systems show
that the audio-visual system significantly reduces the error rate
in the presence of noise, even in the case where noise robust
acoustic features are used. The benefit of asynchrony modeling
remains less conclusive and will be subject to further investiga-
tions.
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