RATE-DISTORTION-EFFICIENT VIDEO COMPRESSION USING A 3-D HEAD MODEL

Peter Eisert, Thomas Wiegand and Bernd Girod

Telecommunications Laboratory
University of Erlangen-Nuremberg
Cauerstrasse 7, 91058 Erlangen, Germany
{eisert,wiegand,girod}@nt.e-technik.uni-erlangen.de

ABSTRACT

In this paper we combine model-based video synthesis with block-based motion-compensated prediction (MCP). Two frames are utilized for prediction where one frame is the previous decoded frame and the other frame is provided by a model-based coder. The approach is integrated into an H.263-based video codec. Rate-distortion optimization is employed for the coding control. Hence, the coding efficiency does not decrease below H.263 even if the model-based coder cannot describe the current scene. On the other hand, if the objects in the scene correspond to the model-based coder, significant gains in coding efficiency can be obtained compared to TMN-10, the test model of the H.263 standard. This is verified by experiments with natural head-and-shoulder sequences. Bit-rate savings of about 35% are achieved at equal average PSNR. When encoding at equal bit-rate, significant improvements in terms of subjective quality are visible.

1. INTRODUCTION

In recent years, several video coding standards such as H.261, H.263, MPEG-1, and MPEG-2 have been introduced, which address the compression of generic video data for digital storage and communication services. These schemes utilize the statistics of the video signal without knowledge of the semantic content of the frames and can therefore be used for arbitrary scenes.

In case the semantic information of the scene can be exploited, higher coding efficiency may be achieved by model-based video codecs [1, 2]. For example, 3-D models that describe the shape and texture of the objects in the scene could be used. The 3-D object descriptions are encoded only once. When encoding a video sequence, individual video frames are characterized by 3-D motion and deformation parameters of these objects. In most cases, the parameters can be transmitted at extremely low bit-rates.

Such a 3-D model-based coder is restricted to scenes that can be composed of objects that are known by the decoder. One typical class of scenes are head-and-shoulder sequences which can be frequently found in applications such as video-telephone or video-conferencing systems. For head-and-shoulder scenes, bit-rates of about 1 kbit/s with acceptable quality can be achieved [3]. This has also motivated the recently determined Synthetic and Natural Hybrid Coding (SNHC) part of the MPEG-4 standard [6]. SNHC allows the transmission of a 3-D face model that can be animated to generate different facial expressions.

The combination of traditional hybrid video coding methods with model-based coding has been proposed by Chowdhury et al. in 1994 [5]. In [5] a switched model-based coder is introduced that decides between the encoded output frames from an H.261 block-based and a 3-D model-based coder. The decision which frame to take is based on rate and distortion. However, the mode decision is only done for a complete frame and therefore the information from the 3-D model cannot be exploited if parts of the frame cannot be described by the model-based coder.

An extension to the switched model-based coder is the layered coder published by Musmann in 1995 [6] as well as Kampmann and Ostermann in 1997 [7]. The layered coder chooses the output from up to five different coders. The mode decision between the layers is also done frame-wise or object-wise and no combined encoding is performed.

In this paper we present an extension of an H.263 video coder [8] that utilizes information from a model-based coder. Instead of exclusively predicting the current frame of the video sequence from the previous decoded frame, prediction from the synthetic frame of the model-based coder is additionally allowed. The coder decides which prediction is efficient in terms of rate-distortion performance. Hence, the coding efficiency does not decrease below H.263 in the case the model-based coder cannot describe the current scene. On the other hand, if the objects in the scene are compliant to the 3-D models in the coder, a significant improvement in coding efficiency can be achieved.

This paper is organized as follows. We first describe the architecture of the video coder that combines the traditional hybrid video coding loop with a model-based coder that is able to encode head-and-shoulder scenes at very low bit-rates. The underlying semantic model is presented and the algorithm for the estimation of Facial Animation Parameters (FAPs) is briefly explained. We show how the information from the model-based coder is incorporated into the H.263 video coding scheme and how bit allocation is done in a rate-distortion-efficient way. Experimental results finally demonstrate the improved rate-distortion performance of the proposed scheme compared to TMN-10.
2. VIDEO CODING ARCHITECTURE

Figure 2 shows the proposed architecture of the hybrid model-based video coder. This figure depicts the well-known hybrid video coding loop that is extended by prediction from the current model frame. The model-based coder is running parallel to the hybrid coder, generating synthetic frames that are encoded at extremely low bit-rates. This synthetic approximation of the current frame is used as a second frame for the block-based motion-compensated prediction. For each macroblock the video coder decides which of the two frames is used. The bit-rate reduction for the proposed scheme arises from those parts in the image that are well approximated by the model frame. For these blocks, the transmission of the motion vector and the DCT-coefficients for the residual coding can often be avoided.

The H.263+ syntax is modified in that changes are made to the inter-prediction modes INTER, INTER-4V, and UNCODED in order to enable multi-frame motion-compensated prediction. The INTER and UNCODED modes are assigned one code word representing the picture reference parameter for the entire macroblock. The INTER-4V mode utilizes four picture reference parameters each associated to one of the four 8 x 8 motion vectors.

3. MODEL-BASED CODER

The structure of our model-based coder is depicted in Fig. 1. The encoder analyzes the incoming frames and estimates the 3-D motion and deformation of all objects in the scene. Assuming that head and shoulder of a person are visible and can be described by our model, the estimator yields a useful set of facial expression parameters. In general, only a few parameters have to be encoded and transmitted, leading to very low bit-rates, typically less than 1 kbit/s [3]. At the decoder, the parameters are used to deform our head-and-shoulder model. This way the head-and-shoulder scene is approximated by simply rendering a 3-D model.

3.1. Head Model

For the description of the shape and color of head and shoulder, we use a generic model with fixed topology similar to the well-known Candid model [9]. In contrast to the Candid model, the object's surface is modeled with triangular B-splines [10] in order to reduce the number of degrees of freedom. This simplifies the modeling and estimation of facial expressions. For rendering purposes, the B-spline surface is finally approximated by a triangular mesh that is shown in Fig. 3. To initially adapt the generic model to the person we use a 3-D laser scan that provides us with information about the shape and color.

1 The UNCODED mode is an INTER mode for which the COD bit indicates copying the macroblock from the previous frame without residual coding [8].
4. RATE-CONSTRAINED CODER CONTROL

The problem of optimum bit allocation to the motion vectors and the residual coding in any hybrid video coder is a non-separable problem requiring a high amount of computation. To circumvent this joint optimization, we split the problem into two parts: motion estimation and mode decision.

The H.263-based multi-frame predictor conducts rate-constrained block-based motion estimation using both reference frames producing a motion-compensated frame. The motion estimation minimizes a Lagrangian cost function that is given by

$$J_{\text{motion}} = D_{\text{PPD}}(v) + \lambda_{\text{motion}} R(v), \quad (1)$$

where the distortion D_{PPD} is measured as the sum of the absolute differences (SAD) and the rate term R is associated to the motion vector v.

Given the motion vectors, rate-distortion optimal macroblock modes are chosen. Rate-constrained mode decision minimizes

$$J_{\text{mode}} = D_{\text{REC}} + \lambda_{\text{mode}} R_{\text{TOTAL}} \quad (2)$$

for each macroblock [13]. Here, the distortion after reconstruction D_{REC} measured as the sum of the squared differences (SSD) is weighted against bit-rate using a Lagrange multiplier λ_{mode}. The rate term is given by the total bit-rate R_{TOTAL} that is needed to transmit a particular macroblock mode, including the rates for the macroblock header, motion and texture coding.

The Lagrange multiplier for the mode decision is chosen following [14] as

$$\lambda_{\text{mode}} = 0.85 Q^2. \quad (3)$$

For the Lagrange multiplier used in the motion estimation, we make an adjustment to the relationship to allow use of the SAD measure. Experimentally, we have found that an effective such method is to measure distortion during motion estimation using SAD rather than the SSD and to simply adjust the Lagrange multiplier for the lack of the squaring operation in the error computation, as given by

$\lambda_{\text{mode}} = \lambda_{\text{motion}}^{1/2}.$

5. EXPERIMENTAL RESULTS

Experiments are conducted on the self-recorded natural CIF sequence Peter and the standard video test sequence Akigo. Both sequences consist of 200 frames and are encoded at 8.33 Hz and 10 Hz, respectively. Rate-distortion curves are measured by varying the DCT quantizer parameter over values 10, 15, 20, 25, and 31. Bit-streams are generated that are decodable producing the same PSNR values at the encoder. The data for the first INTRA frame and the initial 3-D model are excluded from the results thus simulating steady-state behavior. For the transmission of the face model description that is not changed during the sequence, the position of 316 control points and a texture map of size 450 x 512 pixels have to be encoded.

We first show rate-distortion curves for the proposed coder in comparison to the H.263 test model, TMN-10. The following abbreviations are used for the two cases:
- TMN-10: The result produced by the H.263 test model, TMN-10, using Annexes D, F, I, J, and T.
- MAC: Model-aided coder: H.263 extended by model-based prediction.

Figures 4 and 5 show the results obtained for the two sequences Peter and Akiyo. Bit-rate savings of about 35% at equal average PSNR are achieved at the low bit-rate end.

![Graph](image1.png)

Figure 4: Rate-distortion plot for the sequence Peter.

![Graph](image2.png)

Figure 5: Rate-distortion plot for the sequence Akiyo.

Figure 6 shows frame 120 of the test sequence Peter where the upper picture is decoded and reconstructed from the TMN-10 decoder, while the lower one comes from the model-aided coder. Both frames are transmitted at the same bit-rate. The model-aided coder yields a PSNR improvement of about 3.5 dB.

In Figure 7 similar results for the sequence Akiyo are shown. The upper image corresponds to frame 150 that is decoded and reconstructed from the TMN-10 decoder, while the lower one is generated from the model-aided coder.

![Image](image3.png)

Figure 6: Frame 120 of the Peter sequence coded at the same bit-rate using the TMN-10 and the MAC, upper image: TMN-10 (33.88 dB PSNR, 1680 bits), lower image: MAC (37.34 dB PSNR, 1682 bits).

Again, both frames are transmitted at the same bit-rate. The model-aided coder yields a PSNR improvement of more than 2 dB.

Finally, let us take a closer look at the robustness of the proposed video codec. Figure 8 shows the model-based prediction of frame 18. As can be seen in the enlargement of the image region around the mouth, a model failure occurs that causes the black bar inside the mouth. Background and parts of the hair are also missing in the model frame. However, the rate-constrained coder control handles model failures robustly as illustrated by the selection mask in Fig. 8. In this figure all macroblocks are shown that are predicted from the model frame, while the macroblocks predicted from the reconstructed frame are grey.

6. CONCLUSIONS

The combination of model-based video coding with block-based motion-compensated prediction yields a superior video coding scheme for head-and-shoulder sequences. Bit-rate savings of about 35% are achieved at equal average PSNR. When encoding at equal average bit-rate, significant improvements in terms of subjective quality are visible. In
our scheme, two frames are utilized for prediction where one frame is the previous decoded one and the other frame is provided by a model-based coder. This yields increased robustness to estimation errors in the model-based coder, since rate-distortion optimization is employed.

7. REFERENCES

