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Abstract
We address the problem of motion flow estimation for

a scene with multiple moving objects, observed from a pos-
sibly moving camera. We take as input a (possibly sparse)
noisy velocity field, as obtained from local matching, pro-
duce a set of motion boundaries, and identify pixels with
different velocities in overlapping layers. For a fixed ob-
server, these overlapping layers capture occlusion infor-
mation. For a moving observer, further processing is
required to segment independent objects and infer struc-
ture. Unlike previous approaches, which generate layers
by iteratively fitting data to a set of predefined parameters,
we instead find boundaries first, then infer regions and ad-
dress occlusion overlap relationships. All computational
steps use a common framework oftensorsto represent ve-
locity information, together with saliency (confidence),
and uncertainty. Communication between sites is per-
formed by convolution-like tensorvoting. The scheme is
non-iterative, and the only free parameter is the scale, re-
lated to neighborhood size. We illustrate the approach
with results obtained from synthetic sequences and from
real images. The quantitative results compare favorably
with those of other methods, especially in the presence of
occlusion.

1 Introduction

We seek to determine accurate optical flow from a mo-
tion sequence. Early methods have relied on local, raw es-
timates of the optical flow field to produce a partition of the
image. This leads to severe limitations, as the flow esti-
mates are known to be very poor at boundaries, and cannot
be obtained in uniform areas. In addition, the calculation of
optical flow is a coupled problem. The determination of ac-
curate flow requires prior knowledge of discontinuities at
motion boundaries where smoothness constraints must be
relaxed. But locating discontinuities presupposes knowl-
edge of the flow.

Past methods have investigated the usefulness of
Markov Random Fields (MRF) in treating discontinuities
in the optical flow[12]. Regularization techniques which
preserve discontinuities by weakening the smoothing of ar-
eas which demonstrate strong intensity gradients have also
been used[13]. More recently, significant improvements

have been achieved by casting the problem in terms of lay-
ered descriptions[1][2][3][4]. This novel formalism has
many advantages. It is a natural way to accomodate discon-
tinuities present in the motion field. Also, it allows infor-
mation transfer between spatially separated regions, and
may resolve local uncertainties.

But the actual mapping of pixels to layers is difficult.
Many current methods use common motion to group re-
gions, usually performing a parameterized fit to motion da-
ta[5][6]. Weiss[7] provides a good overview of the
difficulties involved in this estimation process, which
range from inadequate representation of motion as rigid
and non-planar, to the overfitting and instabilities resulting
from higher-order parameterizations.

Weiss performs image segmentation using a variant of
the Expectation-Maximization (EM) algorithm[8], where a
dense smooth flow field is fit to multiple layers. But meth-
ods dependent strictly upon a mathematical fitting can be
limited by a lack of higher-level analysis. It is possible for
unrelated regions to be accidentally merged into a single
layer simply because of similar motion profiles, despite the
presence of conflicting evidence (e.g. occlusion). The
merging of spatially diffuse regions is more appropriately
the domain of  higher-level processing.

Within the same layered description framework, we
present here a completely different approach in which we
first detect boundary elements between smooth velocity
fields. We then locally group these into curves. The veloc-
ity fields near these boundaries are then refined.

The determination of motion boundaries prior to the
refinement and smoothing of the velocity field bordering
these boundaries effectively decouples the problem of de-
termining accurate optical flow. After refining the bound-
aries and the velocity fields near them, occlusion
relationships between regions are determined. Pixels with
different velocities in separate layers are easily identified.

All of the computational steps, from local boundary
detection to velocity refinement, are implemented in a
common framework which involves voting and tensor cal-
culus[15]. This non-linear methodology is non-iterative,
does not depend upon critical thresholds, and is robust in
the presence of local irregularities in the motion field.

Section 2 presents an overview of the methodology, as
well as a flowchart illustrating the algorithm. Section 3
presents the proper background for understanding the ten-*This research is supported by contract DAAB07-97-C-J023, fund-

ed by DARPA, and monitored by U.S. Army, Fort Monmouth, NJ.



sor voting formalism which is used throughout the study.
Section 4 describes the acquisition of the initial velocity in-
put. The next four sections present the details of the steps.
Section 9 shows results of the method on motion sequenc-
es, and Section 10 presents conclusions.

2 Our Approach

Figure 1 illustrates the steps of our method. The input
is a field of velocity vectors, derived via a three-frame max-
imum cross-correlation technique. We then generate a
dense tensor velocity field, which encodes not only veloc-
ity, but also estimates of confidence (saliency) and uncer-
tainty. We then extract discontinuities from this field,
which are found as locations of maximal velocity uncer-
tainty using the tensor voting formalism. Interpreting these
uncertain velocity locations as local estimates of bound-
aries of regions, tensor voting is used again to both align
tangents along these boundaries, and to join these tangents
into region boundaries.

Having segmented the motion field, tensor voting is
used again between pixels not separated by boundaries to
accurately estimate the velocities at the borders of these
objects (which are inherently uncertain in the presence of
occlusion).

With coherent velocities at the borders of these ob-
jects, alocal representation of occlusion is found by deter-
mining which region’s velocity field dominates in both
future and past frames. From this analysis, the locations of
pixels with multiple velocities are determined.

3 Tensor Voting and Saliency

We propose to augment the traditional representation
of local information (here, a displacement vector) by two
critical components,saliencywhich expresses the degree
of confidence associated with the measurement, anduncer-
tainty.This compound information can be conveniently ex-
pressed by an ellipsoid (ellipse in 2-D), where theshapeof
the ellipsoid conveys the direction and uncertainty, and its
absolutesize expresses saliency. Mathematically, it is
known as a (second-order, symmetric) tensor[10].

A useful statistical representation of an ellipsoid is as
the covariance matrixS derived from a distribution of
points on its surface.

The eigenvaluesλ1, λ2, λ3 (where ) corre-
spond to each of the principal directionsê1, ê2, ê3 . The
eigenvalues determine the shape of the ellipsoid while the
eigenvectors determine the orientation (Figure 2). Since

the eigenvalues determine the shape and size of the ellip-
soid, they also convey saliency and uncertainty informa-
tion.

A simple rearrangement of (1) yields the follow-
ing:

The first term represents a “stick” component of the
saliency tensorS, with complete dominance by a single
orientation. The second and third terms represent “plate”
and “ball” components. In the plate component, two equal
eigenvalues co-dominate. In the ball component, all eigen-
values are equal; no orientation is favored.

Given a (possibly sparse and noisy) set of velocity
vectors as input, we can generate a dense tensor field by al-
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λ1 0 0

0 λ2 0

0 0 λ3

ê1
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lowing active sites to communicate with their neighbors.
This communication is performed by a convolution-like
operation, and produces a tensor at every location.

It is necessary to provide a voting functionV(S,p)
which provides the value of the tensor field for a saliency
tensorS at a locationp relative to the tensor’s coordinate
system. The strength of the field should decrease with dis-
tance and be orientation-independent.

In addition, the linear nature of the voting field allows
us to exploit the component expansion ofSgiven above to
provide fields for the stick, plate, and ball components.
Some linear combination of these is sufficient to represent
any saliency tensor. Furthermore, the orientation-indepen-
dence of the field allows each of the three fields to be cal-
culated once and stored for all future uses. Application can
then be in the form of a convolution mask properly oriented
to suit the originating saliency tensor’s principal axis.

The functional form of the ball field used in this work
is , where is a scale fac-
tor. This functional form obviously satisfies the symmetry
and decay requirements of the ball field. The stick field
used is the same 2-D extension field of Guy and Medio-
ni[9][14], whose work provides detailed functional forms.

Following tensor voting, the eigenvalues and eigen-
vectors of the saliency tensor at each voted site are deter-
mined. The saliency tensor at the recipient site can then be
divided into the stick, plate, and ball components. Accord-
ingly, the saliency of each of these is (λ1-λ2), (λ2-λ3), and
λ3 respectively. Features corresponding to each of these
components are then located at the local maxima of the
corresponding saliency, and extraction is performed by
non-maximal suppression on the feature saliency map[14].
(For example, local extrema of the plate tensor correspond
to surface discontinuities.)

4 Velocity Field from Three Frames

The raw velocity field which is provided as input
should be as accurate as possible. In recent work[15], a
standard two-frame maximum cross-correlation coefficient
technique was used. While this two-frame technique gives
adequate values for the motion field where velocities vary
slowly, areas in which differently moving objects are si-
multaneously found within the convolution mask are more
troublesome. Even worse are the results in areas of the first
frame which are about to be occluded in the second frame,
since there can be no meaningful correlation detected in
this case. In these areas in particular, it is very difficult to
determine either the correct motion field or the proper
boundaries between objects.

Making a few reasonable assumptions about the na-
ture of the observed object motion suggests that a cross-
correlation calculation in whichthreeconsecutive frames

are used, leads to more accurate results. It can generally be
assumed at thelocal level that most occlusion events in-
volve only two conflicting motion boundaries. Further as-
suming that the objects in a scene are locally convex and
demonstrate negligible acceleration between frames, one
can conclude that an area at time which is about to be oc-
cluded at time , was probably also visible at time

. In other words, an object which is being occluded in
forward time is likely to be in the process of being uncov-
ered (disoccluded) in reverse time.

Since disoccluding events pose less trouble than oc-
cluding events during determination of the motion field,
this suggests that a more accurate estimate of the local ve-
locity can be attained by choosing the best cross-correla-
tion match in either forward or reverse time, negating the
velocity in the case where the reverse time cross-correla-
tion is larger.

Since the correlation mask has finite extent, there will
still be weaker cross-correlation where an object boundary
crosses the mask. But, most importantly, these areas of
weak cross-correlation are now roughlysymmetricallydis-
tributed around the true motion boundary, rather than being
considerably more extended into the object undergoing oc-
clusion in forward time. This enables the tensor-voting for-
malism to more accurately locate the motion boundary.
The cross-correlation coefficient also offers a measure of
strength to be used in the tensor-voting process.

5 From Velocity Field to Tensor Field

The first step of the process is to convert the input flow
field into a dense tensor field. Figure 3(a) shows a frame
from the “Flower Garden” sequence, and Figure 3(b)
shows the horizontal and vertical components of the input
velocity field. Note that velocities near the motion bound-
aries are incoherent and the boundaries are irregular.

At each point, the displacement vector be-
tween and is the projection onto the plane of
the 3-D vector . Assuming the sampling rate
is constant (and set to 1), this flow can be represented by
two variables. As explained in Section 3, we want to en-
code saliency as the size of the tensor, so we map the ve-
locity vector to , but scaled down to
a unit vector. Note that such a representation does not in-
troduce any motion bias, and that the null flow maps to the
unit vector . Similarly, given a tensor with a
long axis given by , the length rep-
resents the saliency, and the corresponding image velocity
is .

This technique, which represents velocity vectors of
varying lengths as unit vectors in a higher dimensional
space, prevents high velocities from disproportionately in-
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fluencing the tensor-voting process. The weight of the unit
vectors can be modulated by a confidence measure.

5.1 Initial Vote
We now allow all the sites with velocity information to

communicate with each other, and with empty sites. This is
performed as a convolution with a ball field, which is the
simple scaled Gaussian field already described.

Intuitively, each site broadcasts its current motion to
its neighbors, but allows deviations from it.The result is a
true tensor field, encoding velocity information, saliency,
and uncertainty. Adjacent sites with similar motion in-
crease saliency, whereas adjacent sites with different mo-
tions increase uncertainty.

6 Segmentation of the Motion Field

6.1 General Description
Assuming that the interiors of moving regions exhibit

smoothly varying velocity field values, boundaries be-
tween moving objects can be detected by extracting curves
of relative maxima in theuncertaintyof the velocity. These
areas of maximal uncertainty result from the fact that
boundaries between neighboring regions with different ve-
locities are influenced by both of these regions during vot-
ing.

6.2 Regions of Maximally Uncertain Velocity
Following our first vote, and diagonalization of its co-

variance matrix, each tensor is then characterized by a
principal axis (representing an encoded velocity), and
eigenvalues , , and , where . We use as
a measure of velocity uncertainty the quantity ,
which will approach unity as uncertainty increases. (See
Figure 4a.)

This uncertainty measure varies smoothly across the
image. Relative maxima in the uncertainty will occur along
“ridges” which represent boundaries between regions of
differing velocity. These locations are found by a modified
version of the Marching Square algorithm[9][11].

6.3 Determination of Component Boundaries
These boundary curves of maximally uncertain veloc-

ity lie between regions of differing velocities. These curves
are later used to determine which pairs of pixels may com-
municate during a velocity refinement procedure. It is
therefore advantageous to complete these boundaries to the

greatest extent possible by finding the most likely curves
passing through these regions.

First, we assign a tangent to the pixels in these maxi-
mally uncertain regions. The 2-D extension field[9][14] is
ideally suited for this purpose. At each pixel judged to be
maximally uncertain, other such pixels vote for prospective
tangents. These tangents are derived from unit vectors par-
allel to segments joining the voting pixel to the recipient
pixel. Voting is restricted to maximally uncertain pixels,
resulting in a sparse 2-D tensor field. The principal axis of
the pixel’s diagonalized covariance matrix determines the
resultant tangent direction. The strength of the tangent vote
is taken to be the magnitude of the stick component of the
2-D tensor, .

The result of this 2-D convolution-like operation is a
dense 2-D field of 2-D tensors (ellipses) where the shape
represents uncertainty and the size saliency. We extract
curves from the dense field as maxima of the stick compo-
nent, once again using a modified Marching Square proce-
dure.

These edges represent the boundaries of the desired
regions. The velocity field is therefore segmented into re-
gions of  coherent velocity. (See Figure 4b.)

7 Region Refinement

7.1 General Description
With the initial segmented description now complete,

we go from a pixel-level representation to a region-level
representation. Alocal determination of occlusion be-
tween regions will be made based upon velocities present
near region boundaries. In the presence of an occlusion
event, however, these velocities are the most uncertain. A
more elaborate local analysis is therefore necessary.

7.2 Region-Level Velocity Refinement
Near the boundary between two regions moving dif-

ferently, the velocity information is necessarily inaccurate
and corrupted, as it is estimated from a mixture of veloci-
ties. Furthermore, occlusion of a region by another in time
also alters the true velocity in the occluded area. Now that
we have boundaries between regions, we can overcome

Figure 3  Flower Garden Sequence
(a) A Frame (b) Input X- and Y-velocities
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these problems by another round of tensor voting, with
some slight changes.

In this round, voting is only permitted between pixels
which can be connected with a straight line which does not
cross a region boundary. And the strength of a pixel’s ve-
locity vote is proportional to , where and
are the eigenvalues resulting from the diagonalization of
that pixel’s covariance matrix during first stage voting.

The quantity is a measure of the certainty of
that pixel’s velocity. The more certain velocities of the re-
gion supplant the less certain ones near the region bound-
aries. This has the effect of refining the velocity field
within each region, and compensating for a lack of reliable
velocity information near region boundaries.

It should be noted that the refined velocities near re-
gion boundaries are stilllocally influenced, and are not av-
eraged over the entire region. This allows for accurate
representation of objects which exhibit variations in veloc-
ity, such as rotating or slowly deforming objects.

Results of the velocity refinement as applied to the
Flower Garden sequence are shown in Figures 5(a) and
5(b), the horizontal and vertical components, respectively,
of the refined velocity field.

At this level of processing, we have provided a higher
level of description for the image which preserves discon-
tinuities in the motion field at region boundaries, but still
permits further refinement within individual regions.

In this way, we have effectively circumnavigated the
coupled nature of the problem of solving for the optical
flow. Restricting the tensor voting to occur on only one side
of a region boundary allows refinement of the velocity field
subject to the boundary conditions imposed by the pres-
ence of discontinuities at the region borders.

Despite the presence of smoothly coherent velocity
fields within these regions, no attempt is made at this point
to partition the set of regions into meaningful objects. This
process requires determination of other higher-level rela-
tionships between regions. By postponing the merging of
regions until further information (e.g. occlusion, or even
higher-level semantic relationships) is computed, the
methodology avoids the pitfalls of relying on a low-level
mathematical fit for determining when regions can be
merged.

8 Handling Occlusion

8.1 General Description
At this point, the motion field has been refined and the

uncertain velocities near the component boundaries have
been replaced by more accurate estimates. Using the re-
fined velocity field at time , and assuming the absense of
any occluding components, the velocity field at time

can be predicted. Region pixels simply trans-
late in time to their new positions.

But in the presence of occlusion, the velocity field at
time will depend upon which regions at time occlude
others. When pixels from two regions at time are pre-
dicted to project into the same location at time , the oc-
cluding region will determine the velocity at the new
location. Therefore, to the extent that two “conflicting”
pixels in separate regions differ in their velocities, the
refined velocity field at time can be used to determine
occlusion orderings between the regions at time . It
should be noted that the availability and reliability of such
time-projected conflict information depends heavily upon
the accuracy of the velocity refinement process previously
described.

Unfortunately, such predictive capability does not ex-
ist with boundaries whichuncoverregions. The portion of
a region occluded at time cannot predict a velocity at
time since velocities in the occluded region are not
available. Since resolution of this velocity conflict at time

is necessary to determine the nature of the occlusion, no
occlusion ordering information can be gained in this case.
(See Figure 6.)

But occlusion classifications are invariant to time-re-
versal, and an uncovering event in forward time becomes
an occlusion event in reverse time. Therefore, detection of
occlusion in both forward and reverse time flow detects all
occlusion events.

8.2 Criteria for Classification of Occlusion
We detect occlusionlocally as follows. Afirst pixel is

propagated from the previous (future) frame forward
(backward) using the refined velocity field in that frame.
This newsecondpixel in the present frame is then propa-
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Figure 5  Refined Velocity Field
(a) Refined X-velocities (b) Refined Y-velocities
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gated back, using its refined velocity, to the previous (fu-
ture) frame to arrive at athird pixel.

If the secondpixel in the present frame hasnot just oc-
cluded a pixel from another layer in either forward or re-
verse time, thefirst pixel will be the same as thethird pixel
in both cases (or at least they will not be separated by a mo-
tion boundary). Otherwise, in either forward or reverse
time, thefirst pixel will be separated from thethird pixel by
a motion boundary. This allows us to locate pixels in the
present frame which have dual values. The two velocities
are easily determined, as is the order of the occlusion based
on the refined velocity of thesecond pixel.

Figure 7 shows which pixels in the central frame of the
Flower Garden sequence are dual valued. Clearly, this pro-
cedure depends heavily on having accurate (or at least con-
sistent) placement of motion boundaries. Using the partial

order of occlusion derivable from this data, a separation
into layers can be effected. Propagating background pixel
velocities from several frames allows reconstruction of the
background image, shown in Figure 8. Figure 9 shows a

segmentation of a random dot motion sequence into over-
lapping layers. The accuracy of the segmentation is resis-
tant to gradual distortions of the component objects.

9 Additional Results

In addition to the previously shown results from the
analysis of the Flower Garden sequence, we also present
results from the analysis of five other three-frame sequenc-
es.

First, in order to demonstrate an ability to accurately
obtain optical flow in regions undergoing some distortion,
Figure 10 shows the results obtained from analysis of a
synthetic sequence in which a disk composed of random
dots undergoes expansion in front of a similarly-textured
background. The disk border moves radially at 5 pixels/
frame.

Figure 10(a) shows the second-frame disk in a three-
frame sequence after final segmentation. Figure 10(b)
shows the error in the refined velocity field, where dark-
ness grows linearly with error.

Here, the error measure used is the “angular” error
measure used by Barron, Fleet, and Beauchemin[16]. A
velocity is represented as the 3-D unit vector

in space-time coordinates. A 2-D velocity is then com-
pletely characterized by the orientation of this unit vector.
The error measure used is where
is the correct velocity and  is the estimated  velocity.

The average error found for the expanding disk is
for full 100% field coverage. Figures 10(c)

and 10(d) show the refined horizontal and vertical compo-
nents of the motion field, respectively.

The velocities near the boundaries of the disk have
been faithfully reproduced by the refinement voting. Dis-
tortion resulting from dissimilar rates of expansion have
little effect on the refined velocity field. The method has no
bias towardconstant velocity motion in the image plane.

Figure 11 shows a similar analysis for a disk rotating
counter-clockwise at approximately per frame. In this
case, the measured “angular” error is for full
100% field coverage. The area near the center of rotation
provides a weak correlation since its motion cannot be ap-
proximated linearly. Some error is also incurred by virtue

Figure 7  Dual-velocity Pixels

Figure 8  Flower Garden Layers

Figure 9  Random Dot Motion Sequence
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of the fact that rotation necessarily includes acceleration
between frames. But, in particular, boundaries are very ac-
curately found.

Figure 12 shows three frames from a sequence in
which a block mounted on a post is allowed to translate and
rotate in front of a speckled background. The analysis is
performed on the central frame. Figure 13(a) shows the
horizontal component of the initial noisy velocity field.
Figure 13(b) shows the scaled horizontal component of the
motion field after the refinement voting procedure. The lo-
cal nature of the tensor voting procedure easily accomo-
dates variations in velocity along the border of the block
resulting from its rotation.The accuracy of the edge place-
ments and refined velocity field makes possible a realistic
representation of occlusion in the scene..

Figure 13(c) shows the resulting boundaries derived
from the uncertainty map, superimposed on the original
image. The boundaries accurately reflect the true motion
boundary of the block, except at the top of the block where

a lack of texture in a portion of the background has caused
this portion to be merged with the block. Figure 13(d)
shows the occlusion analysis applied to the rotating block
sequence. The dual-velocity pixels are accurately placed
due to the precision of edge determination and velocity re-
finement.

An analysis of three frames of the Yosemite sequence
(without sky) is shown in Figure 14. Figure 14(a) shows
the central frame of the three-frame subsequence used.
Figure 14(b) shows the “angular” error map. The average
error obtained is for 100% field coverage, and

for 34% field coverage. Figures 14(c) and
14(d) show the refined horizontal and vertical components
of the velocity field, respectively.

The Yosemite sequence calculation was performed
with only three frames of the sequence, but it could have
been performed with onlytwosince there is no appreciable
occlusion present. Since the strength of this methodology
is its ability to treat sequences presenting a substantial de-
gree of occlusion, performance on this sequence does not
completely convey the power of the technique.

Table 1 presents an error analysis for the sequences
studied which have available ground truth data. It reports
“angular” error for specific levels of coverage of the mo-
tion field. These results compare very favorably with those
in the current literature[16].

As another example, the SRI Tree sequence is ana-
lyzed. Figure 15 shows the three frames used in the analy-
sis. Figure 16(a) shows the horizontal component of the
noisy input velocity field, while Figure 16(b) presents the
same component after refinement. . With the exception of
the admittedly more difficult lower half of the foreground
tree, the boundaries and velocities derived in the upper half

Figure 11  Rotational Analysis
(a) (c)(b) (d)

Figure 12   Rotating Block Sequence

Figure 13  Rotating Block Analysis

(a) Input X-velocities

(c) Boundaries

(b) Refined X-velocities

(d) Dual-velocity Pixels

Table 1

Sequence Error (degrees) Density
Expanding Disk 4.05 +/- 5.85 100%

Expanding Disk 2.32 +/- 0.87 70%

Expanding Disk 1.54 +/- 0.48 32%

Rotating Disk 8.80 +/- 13.8 100%

Rotating Disk 4.45 +/- 2.18 66%

Rotating Disk 2.81 +/- 1.35 37%

Yosemite 8.83 +/- 10.6 100%

Yosemite 3.71 +/- 2.07 61%

Yosemite 2.12 +/- 0.92 34%
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Figure 14  Yosemite Analysis
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are fairly accurate. Incorporation of monocular data in the
analysis would obviously improve the results.

10 Conclusions and Future Work

We have presented some preliminary results of a novel
methodology to address the issues of accurate optical flow
computation using motion informationonly. It explicitly
addresses the classical limitation that velocity information
is necessarily inaccurate around motion boundaries, and
that pixels may have multiple velocities.

Most importantly, it effectively demonstrates an abili-
ty to simultaneously determine motion boundaries and ac-
curate optical flow without resorting to iterative global
optimization techniques. This ability can be viewed as an
important foundation upon which higher levels of image
sequence processing can be based.

While these preliminary results are very encouraging,
there is considerable room for improvement. For example,
the stability of the method can be greatly improved by in-
corporating the coherence which exists between frames.
All results presented here are obtained with onlythree
frames.

In addition, the localization of motion boundaries can
be made more accurate by the inclusion of monocular in-
formation (e.g. edges). This is particularly true for motion
boundaries between occluding/occluded pairs in which the
only difference between velocities on both sides of the
boundary is an out-of-plane projection (e.g. boundaries of
non-translating rotating objects).

Also, additional investigation is needed to determine
how to combine information acquired at the local level
(motion boundaries, occlusion evidence, and, eventually,
edges) into a complete partitioning of the image into indi-

vidual regions with coherent velocity. This will likely re-
quire merging of information sources with very different
characteristics.

Further study must also be undertaken to determine
criteria for grouping partitioned regions with similar mo-
tion profiles into the same layer. This process, which is
usually performed in other techniques as the result of a
mathematical fit at the pixel level, is more properly per-
formed at a higher level of processing where characteris-
tics of macroscopic entities (e.g regions, etc.) can influence
the outcome. These are the topics of our ongoing research.
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