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Abstract

Automated recognition of facial expression is an
important addition to computer vision research because
of its relevance to the study of psychological phenomena
and the development of human-computer interaction
(HCI).  We developed a computer vision system that
automatically recognizes individual action units or action
unit combinations in the upper face using Hidden Markov
Models (HMMs). Our approach to facial expression
recognition is based on the Facial Action Coding System
(FACS), which separates expressions into upper and
lower face action. In this paper, we use three approaches
to extract facial expression information:  (1) facial
feature point tracking, (2) dense flow tracking with
principal component analysis (PCA), and (3) high
gradient component detection (i.e., furrow detection). The
recognition results of the upper face expressions using
feature point tracking, dense flow tracking, and high
gradient component detection are 85%, 93%, and 85%,
respectively.

1. Introduction

Facial expression provides sensitive cues about
emotion and plays a major role in human interaction and
non-verbal communication. The ability to recognize and

understand facial expression automatically may facilitate
communication.

Automated recognition of individual motion
sequences is a challenging task.  Currently, most facial
expression recognition systems use either complicated
three-dimensional wireframe face models to recognize and
synthesize facial expressions [6, 17] or consider only
averaged local motion.  Using vision techniques, however,
it is difficult to design a motion-based three-dimensional
face model that accurately represents facial geometric
properties.  Also, the initial adjustment between the three-
dimensional wireframe and the surface images is manual,
which affects the accuracy of the recognition results.  This
type of recognition system becomes even more impractical
and complicated when working with high-resolution
images, large databases, or faces with complex geometric
motion properties.

Other systems use averaged optical flow within local
regions (e.g., forehead, eyes, nose, mouth, cheek, and
chin) for recognition.  In an individual region, the flow
direction is changed to conform to the flow plurality of the
region [3, 15, 20] or averaged over an entire region [11,
12].  Black and colleagues [3, 4] also assign parameter
thresholds to their classification paradigm.  These
methods are relatively insensitive to subtle motion because
information about small deviations is lost when their flow
pattern is removed or thresholds are imposed.  As a result,



the recognition ability and accuracy of the systems may be
reduced.

Current recognition systems [3, 15, 20] analyze six
prototypic expressions (joy, fear, anger, disgust, sadness
and surprise) and classify them into emotion categories,
rather than facial action.  In reality, humans are capable
of producing thousands of expressions varying in
complexity and meaning that are not fully captured with a
limited number of expressions and emotion categories.
Our goal is to develop a system that robustly recognizes
both subtle feature motion and complex facial expressions
[8].

2. System Structure

Our system uses three approaches to recognize facial
action (Figure 1).  Two of the approaches use optical flow
to track facial motion. The use of optical flow is optimized
for our purposes because facial skin and features naturally
have great deal of texture. Two optical flow approaches
are used to extract expression information:  (1) facial
feature point tracking, which is sensitive to subtle feature
motion, and  (2) dense flow tracking, which includes more
facial motion information.  In the latter approach, we use
principal component analysis (PCA) to process the dense
flows.  Facial motion produces transient wrinkles and
furrows perpendicular to the motion direction of the
activated muscle. The facial motion associated with the
furrows produces gray-value changes in the face image. 
The information obtained from the gray-value changes
using (3) high gradient component detection is also used
to recognize expression.

The expressions are recognized in the context of the
entire image sequence since analysis of a dynamic image
produces more accurate and robust recognition of facial
expression than that of a single static image [2]. Hidden
Markov Models (HMMs) [16] are used for facial
expression recognition because they perform well in the
spatio-temporal domain and are analogous to human
performance (e.g., for speech [16] and gesture recognition
[21]).

We use the Facial Action Coding System (FACS) [5]
to identify facial action. FACS is an anatomically based
coding system that enables discrimination between closely
related expressions.  FACS divides the face into upper and
lower face action and further subdivides motion into
action units (AUs).  AUs are defined as visibly
discriminable muscle movements that combine to produce
expressions. 

Our current approach recognizes upper face
expressions in the forehead and brow regions.  Table 1
describes the action units associated with three brow
movements.

Table 1.  Description of action units in the
brow region.

Action Unit Description

AU 4 Brows are lowered and
drawn together

AU 1+4 Inner parts of the brows
are raised and drawn
medially

AU 1+2 Entire brow is raised

2.1 Normalization

Though all subjects are viewed frontally in our
current research, some out-of-plane head motion occurs
with the non-rigid face motion (facial expressions). 
Additionally, face size varies among individuals. To
eliminate the rigid head motion from facial expressions,
an affine transformation, which includes translation,
scaling and rotation factors, is adequate to normalize the
face position and maintain face magnification invariance.
The images are normalized prior to processing to ensure
that flows of each frame have exact geometric
correspondence.  Face position and size are kept constant
across subjects so that these variables do not interfere with
expression recognition.

The positions of all tracking points or image pixels in
each frame are normalized by mapping them to a standard
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two-dimensional face model based on three facial feature
points: the medial canthus of both eyes and the uppermost
point on the philtrum (Figure 2).

2.2 Facial Feature Point Tracking

Facial expressions are recognized based on selected
facial feature points that represent underlying muscle
activation. The movement of facial feature points is
tracked across an image sequence using Lucas-Kanade’s
optical flow algorithm, which has previously been shown
to have high tracking accuracy [10, 14].

A computer mouse is used to manually mark 8 facial
feature points around the contours of both brows in the
first frame of each image sequence (see Figure 3).  Each
point is the center of a 13x13-flow window (image size:
417 x 385; row x column pixels) that includes the
horizontal and vertical flows.  Because of large facial
feature motion displacement (e.g., brows raised suddenly),
we use the pyramidal (5-level) optical flow approach. 
This approach deals well with large feature point
movement (100-pixel displacement between two frames)
and is sensitive to subtle facial motion (sub-pixel
displacement), such as eyelid movement.  The facial
feature points are tracked automatically in the remaining
frames of the image sequence (Figure 4).

In our current research, we recognize upper face
expressions based on the displacement of 6 feature points
at the upper boundaries of both brows. The displacement
of each feature point is calculated by subtracting its
normalized position in the first frame from its current
normalized position.  Since each frame has 6 feature
points located at both upper brows, the resulting 6-
dimensional horizontal displacement vector by 6-
dimensional vertical displacement vector is concatenated
to produce a 12-dimensional displacement vector.

2.3. Dense Flow Tracking and Principal
Component Analysis

Though the feature point tracking approach is
sensitive to subtle feature motion and tracks large
displacement well, information from areas not selected
(e.g., the forehead, cheek and chin regions) is lost. To
include more detailed and robust motion information from
larger regions of the face, we use Wu's dense flow
algorithm [19] to track each pixel of the entire face image
(Figure 5).

Because we have a large image database in which
consecutive frames of the sequences are strongly
correlated, the high dimensional pixel-wise flows of each
frame need to be compressed to their low-dimensional
representations without losing the significant
characteristics and inter-frame correlations. Principal
component analysis (PCA) has excellent properties for our
purposes, including image data compression and
maintenance of a strong correlation between two
consecutive motion frames.  Since our goal is to recognize
expression rather than identifying individuals or objects
[1, 7, 13, 18], we analyze facial motion using optical flow
-not the gray value- to ignore differences across individual
subjects.

Before using PCA, we need to ensure that the pixel-
wise flows of each frame have relative geometric
correspondence.  We use affine transformation and
automatically map the images to the 2-dimensional face
model.  Using PCA and focusing on the (110 x 240
pixels) upper face region, 10 "eigenflows" are created (10
eigenflows from the horizontal- and 10 eigenflows from
the vertical direction flows).  These eigenflows are defined
as the most prominent eigenvectors corresponding to the
10 largest eigenvalues of the 832 x 832-covariance matrix
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constructed by 832 flow-based training frames from the 44
training image sequences (see Figure 6).

Each flow-based frame of the expression sequences is
projected onto the flow-based eigenspace by taking its
inner product with each element of the eigenflow set,
which produces a 10-dimensional weighted vector (Figure
7).  The 10-dimensional horizontal-flow weighted vector
and the 10-dimensional vertical-flow weighted vector are
concatenated to form a 20-dimensional weighted vector
that corresponds to each flow-based frame.  In this case,
the compression rate is about 83:1.

2.4. High Gradient Component Detection

Facial motion produces transient wrinkles and
furrows perpendicular to the motion direction of the

activated muscle. The facial motion associated with the
furrows produces gray-value changes in the face image.
High gradient components (i.e., furrows) of the face image
are extracted by using line or edge detectors.  Figure 8
shows an example of the high gradient component
detection.  A gray value of 0 corresponds to black and 255
to white.

After normalization of each 417x385-pixel image, a
5x5 Gaussian filter is used to smooth the image. 3x5 line
detectors are used to detect the horizontal lines (high
gradient components in the vertical direction) in the
forehead region (Figure 8).

To be sure the high gradient components are
produced by transient skin or feature deformations – and
not a permanent characteristic of the individual's face –
the gradient intensity of each detected high gradient
component in the current frame is compared to
corresponding points within a 3x3 region of the first
frame. If the absolute value of the difference in gradient
intensity between these points is higher than the threshold
value (10 in our case), it is considered a valid high
gradient component produced by facial expression.  All
other high gradient components are ignored.  In the
former case, the high gradient component (pixel) is
assigned a value of 1.  In the latter case, the pixels are
assigned a value of 0.

The forehead region of the normalized face image is
divided into 13 blocks (Figure 9). The mean value of each
block is calculated by dividing the number of pixels
having a value of 1 by the total number of pixels in the
block.  The variance of each block is calculated as well.
For upper face expression recognition, 13 mean values
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and 13 variance values are concatenated to form a 26-
dimensional mean and variance vector for each frame.

2.5. Recognition Using Hidden Markov Models

After separately vector quantizing [9] the 12-
dimensional training displacement vectors from feature
point tracking; the 20-dimensional training weighted
vectors from the PCA, and the 26-dimensional training
mean and variance vectors from the high gradient
component detection, the corresponding facial expression
HMM sets representing the upper face expressions are
trained.  Because the HMM set represents the most likely
individual AU or AU combination, it can be employed to
evaluate the test-input sequence. The test-input sequence
is evaluated by selecting the maximum output probability
value from the HMM set.

3. Experimental Results

Frontal views of all subjects are videotaped under
constant illumination using fixed light sources, and none
of the subjects wear eyeglasses.  These constraints are
imposed to minimize optical flow degradation. Previously
untrained subjects are video recorded performing a series
of expressions, and the image sequences are coded by
certified FACS coders. Facial expressions are analyzed in
digitized image sequences of arbitrary length (expression
sequences from neutral to peak vary from 9 to 44 frames).

60 subjects, both male and female, from the larger
database were used in this study.  The study includes more
than 260 image sequences and 5000 images.  Subjects
ranged in age (18-35) and ethnicity (Caucasian, African-
American, and Asian/Indian).

The average recognition rate of upper face expression
using feature point tracking was 85% (Table 2).  The
average recognition rate using dense flow tracking was
93% (Table 3), and the average recognition rate using
high gradient component detection was 85% (Table 4).

Table 2.  Recognition results of feature point
tracking.

Human Feature Point Tracking

AU 4 AU 1+4 AU 1+2

AU 4 22 3 0

AU 1+4 4 19 2

AU 1+2 0 2 23

Table 3.  Recognition results of dense
flow tracking.

Human Dense Flow Tracking

AU 4 AU 1+4 AU 1+2

AU 4 23 2 0

AU 1+4 3 22 0

AU 1+2 0 0 25

Table 4.  Recognition results of high gradient
component detection.

Human High Gradient Component Detection

26 4 0 0

5 43 2 0

0 1 24 5

0 0 7 43

4. Conclusions and Future Work

We have developed a computer vision system that
automatically recognizes a number of upper face
expressions.  To increase system robustness, we use three
approaches to extract facial motion: feature point
tracking, dense flow tracking with PCA, and high
gradient component detection.  The pyramidal optical
flow method for feature point tracking is an easy, fast and
accurate way to track facial motion.  It tracks large
displacement well and is sensitive to subtle feature
motion. 

Because motion information in unselected regions
(e.g., forehead, cheek, and chin) is lost, we use dense flow

Figure 9. Quantization of high
gradient components.



to track motion across the entire face. PCA is used to
compress the high-dimensional pixel-wise flows to low-
dimensional weighted vectors. Unlike feature point
tracking, dense flow tracking with PCA introduces motion
insensitivity and increases processing time.  Additionally,
because every pixel is analyzed in dense flow tracking,
occlusion (e.g., appearance of tongue or teeth when the
mouth opens) or discontinuities between the face contour
and background may affect the tracking and recognition
results. Because of the individual problems of each of the
approaches, use of feature point tracking, dense flow
tracking, and high gradient component detection with
HMMs in combination may produce a more robust and
accurate recognition system.

Though all three approaches using HMMs resulted in
some recognition error, the pattern of the errors is
encouraging.   That is, the error results were classified
into the expression most similar to the target (i.e., AU 4
was confused with AU 1+4 but not AU 1+2).

In future work, more detailed and complex action
units will be recognized.  Our goal is to increase the
processing speed of the dense flow approach, estimate
expression intensity based on dense flow and PCA
approach, and separate rigid and non-rigid motion more
robustly. Our recognition system can be applied to lip-
reading, the combination of facial expression recognition
and speech recognition, development of tele- or video-
conferencing, human-computer interaction (HCI), and
psychological research (i.e., to code facial behavior).

Acknowledgement

This research was supported by NIMH grant R01
MH51435.  We would also like to thank Adena Zlochower
for reviewing the manuscript.

References
[1]  M.S. Bartlett, P.A. Viola, T.J. Sejnowski, B.A. Golomb, J.

Larsen, J.C. Hager and P. Ekman, "Classifying Facial
Action," Advances in Neural Information Processing
Systems 8, MIT Press, Cambridge, MA, 1996.

[2]   J.N. Bassili, “Emotion Recognition:  The Role of Facial
Movement and the Relative Importance of Upper and
Lower Areas of the Face,” Journal of Personality and Social
Psychology, Vol. 37, pp. 2049-2059, 1979.

[3]   M.J. Black and Y. Yacoob, "Recognizing Facial
Expressions under Rigid and Non-Rigid Facial Motions,"
International Workshop on Automatic Face and Gesture
Recognition, Zurich, pp. 12-17, 1995.

[4] M.J. Black, Y. Yacoob, A.D. Jepson, and D.J. Fleet,
"Learning Parameterized Models of Image Motion,"
Computer Vision and Pattern Recognition, 1997.

[5]  P. Ekman and W.V. Friesen, "The Facial Action Coding
System," Consulting Psychologists Press, Inc., San
Francisco, CA, 1978.

[6]   I.A. Essa, "Analysis, Interpretation and Synthesis of Facial
Expressions," Perceptual Computing Technical Report 303,
MIT Media Laboratory, February 1995.

[7]   M. Kirby and L. Sirovich, "Application of the Karhuneh-
Loeve Procedure for the Characterization of Human Faces,"
IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 12, No. 1, January 1990.

[8]  J.J. Lien, T. Kanade, A.J. Zlochower, J.F. Cohn, and C.C.
Li, "Automatically Recognizing Facial Expressions in the
Spatia-Temporal Domain," Perceptual User Interface
Workshop, pp. 94-97, Banff, Alberta, Canada, 1997.

[9]   Y. Linde, A. Buzo, and R. Gray, "An Algorithm for Vector
Quantizer Design," IEEE Trans. on Communications, Vol.
COM-28, NO. 1, January 1980.

[10] B.D. Lucas and T. Kanade, "An Iterative Image
Registration Technique with an Application to Stereo
Vision," Proceedings of the 7th International Joint
Conference on Artificial Intelligence, 1981.

[11] K. Mase and A. Pentland, "Automatic Lipreading by
Optical-Flow Analysis," Systems and Computers in Japan,
Vol. 22, No. 6, 1991.

[12] K. Mase, "Recognition of Facial Expression from Optical
Flow," IEICE Transactions, Vol. E74, pp. 3474-3483, 1991.

[13] H. Murase and S.K. Nayar, "Visual Learning and
Recognition of 3-D Objects from Appearance,"
International Journal of Computer Vision, 14, pp. 5-24,
1995.

[14] C.J. Poelman, "The Paraperspective and Projective
Factorization Methods for Recovering Shape and Motion,"
Technical Report CMU-CS-95-173, Carnegie Mellon
University, Pittsburgh, PA, July 1995.

[15] M. Rosenblum, Y. Yacoob and L.S. Davis, "Human
Emotion Recognition from Motion Using a Radial Basis
Function Network Architecture," Proceedings of the
Workshop on Motion of Non-rigid and Articulated Objects,
Austin, TX, November 1994.

[16] L.R. Rabiner, "An Introduction to Hidden Markov Models,"
IEEE ASSP Magazine, pp. 4-16, January 1986.

[17] D. Terzopoulos and K. Waters, "Analysis of Facial Images
Using Physical and Anatomical Models," IEEE
International Conference on Computer Vision, pp. 727-732,
December 1990.

[18] M. Turk and A. Pentland, "Eigenfaces for Recognition,"
Journal of Cognitive Neuroscience, Vol. 3, No. 1, pp. 71-
86, 1991.

[19] Y.T. Wu, T. Kanade, J. F. Cohn, and C.C. Li, “Optical
Flow Estimation Using Wavelet Motion Model,” ICCV,
1998.

[20] J. Yacoob and L. Davis, "Computing Spatio-Temporal
Representations of Human Faces," In Proc. Computer
Vision and Pattern Recognition, CVPR-94, pp. 70-75,
Seattle, WA, June 1994.

[21] J. Yang, "Hidden Markov Model for Human Performance
Modeling," Ph.D. Dissertation, University of Akron,
August 1994.


