
Feature-Point Tracking by Optical Flow Discriminates
Subtle Differences in Facial Expression

Jeffrey F. Cohn
Department of Psychology
University of Pittsburgh

4015 O'Hara Street, Pittsburgh PA 15260
jeffcohn@vms.cis.pitt.edu

James J. Lien
Department of Electrical Engineering

University of Pittsburgh
Pittsburgh, PA 15260

jjlien@cs.cmu.edu

 Adena J. Zlochower
Department of Psychology
University of Pittsburgh

4015 O’Hara Street, Pittsburgh, PA 15260
adena@vms.cis.pitt.edu

Takeo Kanade
Departments of Computer Science and

Electrical Engineering, Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213
tk@cs.cmu.edu

Abstract

Current approaches to automated analysis have
focused on a small set of prototypic expressions (e.g., joy
or anger). Prototypic expressions occur infrequently in
everyday life, however, and emotion expression is far
more varied. To capture the full range of emotion
expression, automated discrimination of fine-grained
changes in facial expression is needed. We developed and
implemented an optical-flow based approach (feature
point tracking) that is sensitive to subtle changes in facial
expression. In image sequences from 100 young adults,
action units and action unit combinations in the brow and
mouth regions were selected for analysis if they occurred
a minimum of 25 times in the image database.  Selected
facial features were automatically tracked using a
hierarchical algorithm for estimating optical flow. 
Images sequences were randomly divided into training
and test sets.  Feature point tracking demonstrated high
concurrent validity with human coding using the Facial
Action Coding System (FACS).

1. Introduction

The face is an important source of information about
human behavior. Facial displays express emotion [7],

influence interpersonal behavior [5], reflect brain function
and pathology [15] and reveal changes with development
in children (e.g., [20]). To make use of the information
afforded by facial expression, reliable, valid, and efficient
methods of measurement are critical.

Computer-vision based approaches to facial
expression analysis (e.g., Black and Yacoob [2]; Mase
[14]) discriminate between a small set of emotions. This
focus follows from the work of Darwin [6] and more
recently Ekman [7], who proposed that "basic emotions"
(i.e., joy, surprise, anger, sadness, fear, and disgust) each
have a prototypic facial expression, involving changes in
facial features in multiple regions of the face, which
facilitates analysis. In everyday life, prototypic
expressions may occur relatively infrequently, and
emotion more often is communicated by changes in one or
two discrete features, such as tightening the lips, which
may communicate anger [4]. To capture the subtlety of
human emotion and non-verbal communication,
automated discrimination of fine-grained changes in facial
expression is needed.

The Facial Action Coding System (FACS) [8] is a
human-observer-based system designed to detect subtle
changes in facial features. FACS consists of 44
anatomically based "action units," which individually or in
combinations can represent all visibly discriminable
expressions. Seminal work by Mase [14], Pentland, and



Essa [10] suggested that FACS action units could be
detected from differential patterns of optical flow. Essa
and Pentland [10] found increased flow in muscle regions
associated with action units in the brow and in the mouth
region. The specificity of optical flow to action unit
discrimination, however, was not tested. Discrimination of
facial expression remained at the level of emotion
prototypes rather than the finer level action units. Bartlett
et al. [1] discriminated between action units in the brow
and eye regions. The number of subjects was small (10
each in the training and test samples), and the image data
received extensive manual pre-processing.

Current methods of estimating optical flow may lack
sensitivity to subtle motion, which is needed to
discriminate expressions at this more fine-grained level.
Relatively large feature regions (e.g., mouth or cheeks) are
used, and flow direction is changed to conform to the
plurality of flow [2, 17, 19] or average flow [13, 14]
within the region. Black and colleagues [2, 3] also assign
parameter thresholds to their classification paradigm.
Information about small deviations is lost when the flow
pattern is removed or thresholds are imposed. As a result,
the recognition ability and accuracy of the systems for
subtle feature changes may be reduced.

We developed and implemented an optical-flow-
based approach that overcomes these difficulties. Closely
spaced facial feature points within 13x13 pixel windows
are tracked by optical flow. Feature points are selected
based on two criteria. They are in regions of moderate to
high texture and represent underlying muscle activation of
closely related actions. The sensitivity and specificity of
feature point tracking was evaluating by comparing system
performance with that of human FACS coders.
     
2. Methods

2.1 Image acquisition

Facial behavior was recorded in 100 adults (65%
male and 15% African American or Asian, ages 18 to 35
years). Subjects were situated 90 degrees from the image
plane of a camera and performed a series of facial
expressions that included single action units (e.g., AU 12,
or smile) and combinations of action units (e.g., AU 1+2,
or brow raise). Each expression sequence began from a
neutral face. Six of the expressions were based on
descriptions of prototypic emotions. Action units were
coded by a certified FACS coder. Inter-observer reliability
was quantified with coefficient kappa [21], which corrects
for chance agreement. Mean κ was 0.86. 

Table 1.  FACS action units (AU).

Action Unit Description

Brows

AU 1+2
Inner and outer portions of the brows
are raised

AU 1+4
Medial portion of the eyebrows is
raised and pulled together

AU 4
Brows are lowered and drawn
together

Eyes

AU 5
Upper eyelids are raised, which
produces a widening of the eyes

AU 6
The lower-eye  and infra-orbital
furrows are raised and deepened and
the eye opening is narrowed

AU 7
Lower eyelids are tightened, which
narrows the eye opening

Mouth

AU 27
Mouth is stretched open and
mandible extended

AU 26
Lips are relaxed and parted; mandible
lowered

AU 25
Lips are relaxed and parted; mandible
not lowered

AU 12
Lip corners are pulled up and
backward

AU 12+25 AU 12 with mouth opening

AU 20+25
Lips are parted, pulled back laterally,
and may be slightly raised or pulled
down.

AU 15+17

Lip corners are pulled down and
stretched laterally (AU 15), and chin
boss is raised, which pushes up the
lower lip (AU 17).

AU 17+23+24
AU 17 and the lips are tightened,
narrowed, and pressed together (AU
23+24)

AU 9+17±25
The infra-orbital triangle and center
of the upper lip are pulled upwards
(AU 9) with AU 17. In 25% of cases,
AU 9+17 occurred with AU 25.

Action units in the brow and mouth regions were
selected for analysis if they occurred a minimum of 25
times. When an action unit occurred in combination with
other action units that may modify its appearance, the
combination rather than the single action unit was the unit
of analysis. The action units and action unit combinations



within each facial region that met this criterion are shown
in Table 1. The action units we analyzed represent key
components of emotion and related paralinguistic
displays. In each region, the actions chosen included
similar appearance changes (e.g., brow narrowing due to
AU 1+4 versus AU 4 and mouth widening due to AU 12
versus AU 20.).

2.2 Image alignment

Image sequences (from neutral to peak expression)
were digitized into 640 by 490 pixel arrays (mean
duration ~ 20 frames at 30 frames per second). Because
subjects produced little out of-of-plane motion, an affine
transformation was adequate to normalize face position
and maintain face magnification invariance. The position
of all feature points was normalized by automatically
mapping them to a standard face model based on three
facial feature points: the medial canthus of both eyes and
the uppermost point of the philtrum (Figure 1).

Figure 1.  Standard face model.

2.3 Facial feature point tracking

In the first digitized frame, key feature points were
manually marked with a computer-mouse around facial
landmarks (Figure 2).

Each point is the center of a 13x13-flow window that
includes horizontal and vertical flows. A hierarchical
optical flow method [12] is used to automatically track
feature points in the image sequence. The displacement of

each feature point is calculated by subtracting its
normalized position in the first frame from its current
normalized position. The resulting flow vectors (6
horizontal and vertical dimensions in the brow region, 8
horizontal and vertical dimensions in the eye region, 6
horizontal and vertical dimensions in the nose region, and
10 horizontal and vertical dimensions in the mouth region)
are concatenated to produce a 12 dimensional
displacement vector in the brow region, a 16-dimensional
displacement vector in the eye region, a 12 dimensional
displacement vector in the nose region, and a 20
dimensional vector in the mouth region (Figure 3).

Figure 3 show a sequence in which the subject’s
expression changes from neutral (AU 0) to brow raise, eye
widening, and mouth stretched wide open (AU
1+2+5+27), which is characteristic of surprise. The
feature points are precisely tacked across the image
sequence. Lines trailing from the feature points represent
change in the location of feature points due to expression.
The length of the lines corresponds to strength of action
unit intensity. As the action units become more extreme,
feature point displacement as indicated by line length
becomes greater.

2.4 Action unit discrimination

The database consisted of 504 image sequences
containing 872 action units or action unit combinations
from 100 subjects. Separate discriminant function
analyses (DFA) were conducted within each facial region.
Predictors were feature point displacement between the
initial and peak frames in the image sequence. A priori
probabilities of actions units were assumed to be equal.
Because the primary goal was classification and not
evaluating the relative importance of individual feature
point displacements, direct entry of predictors was used.
Separate group variance-covariance matrices were used
for classification or recognition. Data were randomly
divided into training and cross-validation or test sets.
Classification accuracy was quantified with kappa (κ)
coefficients, which correct for chance agreement.

Figure 2.  Feature point marking.

Figure 3.  Feature point displacement.

Medial Canthus

Philtrum



Classification accuracy did not vary with subjects' race or
gender.

With three action units or action unit combinations in
the brow region (AU 1+2, AU 1+4, and AU 4), there were
two possible discriminant functions. Wilk’s lambda and
both discriminant functions were highly significant (λ =
.06, p < .001, canonical correlations = .94 and .69, p <
.001). In the test set (Table 2), 92% were correctly
classified (κ= 0.86); accuracy ranged from 86% for AU
1+4 to 91% and 95% for AU 4 and AU 1+2, respectively.

Table 2.  Proportion agreement in the brow
region.

Human Coding Feature Point Tracking

 N  AU 1+2 AU 1+4 AU 4

AU 1+2 43 .95 .02 .02

AU 1+4 22 .05 .86 .09

AU 4 65 .02 .08 .91

κ = .86

With three action units in the eye region (AU 5, AU
6, and AU 7), there were two possible discriminant
functions.  Wilk’s Lambda and both functions were highly
significant (λ = 0.07, p < .001; canonical correlations =
.92 and .74, p < .001). In the test set (Table 3), 88% were
correctly classified (κ = 0.81).  Disagreements that
occurred were between AU 6 and AU 7.

Table 3.  Proportion agreement in the eye
region.

Human Coding Feature Point Tracking

N AU 5 AU 6 AU 7

AU 5 33 .97 .00 .03

AU 6 36 .06 .81 .14

AU 7 20 .00 .15 .85

κ = .81

Nine action units were analyzed in the nose and
mouth regions. Wilk’s Lambda, with five significant
discriminant functions, was 0.0003 (canonical correlations
= .95, .93, .89, .79, and .66, p < .001). In the test set 83%
were correctly classified (κ = 0.81). With the exception of
AU 26, accuracy for action units ranged from 78% to
100% (Table 4).

3. Discussion

Previous studies have used optical flow to recognize
facial expression [10, 18]. Sample sizes in these studies
have been small, and with the exception of Bartlett  et al.
[1], this work has focused on the recognition of molar
expressions, such as positive or negative emotion or
emotion prototypes (e.g., joy, surprise, fear). We
developed and implemented an optical flow based
approach that is sensitive to subtle motion in facial
displays. Feature point tracking was tested in images
sequences from 100 subjects and achieved a level of
precision that was as high as or higher than that of
previous studies and comparable to that of human coders.

Accuracy in the test sets was 92% in the brow region,
88% in the eye region, and 83% in the nose and mouth
regions. The one previous study to demonstrate accuracy
for discrete facial actions [1] used extensive pre-
processing of image sequences and was limited to upper
face action units in 10 subjects. In the present study, pre-
processing was limited to manual marking with a pointing
device in the initial digitized image, facial behavior
included action units in both the upper and lower face, and
the large number of subjects, which included African-
Americans and Asians in addition to Caucasians, provided
a sufficient test of how well the initial training analyses
generalized to new image sequences. Feature point
tracking demonstrated moderate to high concurrent
validity with human FACS coding.

The level of inter-method agreement for action units
was comparable to that achieved in tests of inter-observer
agreement in FACS. Moreover, the inter-method
disagreements that did occur were generally ones that are
common in human coders, such as the distinction between
AU 1+4 and AU 4 and AU 6 and AU 7. These findings
suggest that the two methods are at least equivalent for the
type of image sequences and action units analyzed here. In
future work, feature point tracking will be tested in longer
image sequences and ones involving spontaneous displays
of emotion.

One reason for the lack of 100% agreement at the
level of action units is the inherent subjectivity of human
FACS coding, which attenuates the reliability of human
FACS codes. Two other possible reasons were the
restricted number of optical flow feature windows and the
reliance on a single computer vision method. We have not
yet implemented optical flow estimation in many feature
windows, including the forehead, glabella, infra-orbital
furrow, cheeks, the area above the lips, and the chin boss.
Preliminary findings [11] suggest that algorithms for
dense flow [18] optimize recognition accuracy in these
regions.



Many action units involve changes in transient
features, such as lines or furrows, that may occur or vary
across an image sequence. “Crows-feet” wrinkles, for
instance, form at the eye corners from contraction of the
orbicularis oculi in AU 6, and recognition of AU 5 is
assisted by identifying increases in the sclera above the
eyeball. These features are represented by intensity
gradients in the image sequence and are quantified by the
computer vision method of edge detection. For some
action units, the use of edge detectors should prove
essential. To discriminate between AU 25 and AU 26,
FACS specifies a requisite distance between upper and
lower teeth, which is readily detected by edge detectors
but not by optical flow. By increasing the number of
search regions and supplementing optical flow estimation
with edge detection, further improvement in facial feature
analysis can be achieved.

In human communication, the timing of a display is
an important aspect of its meaning. For example, the
duration of a smile distinguishes between felt and false
positive emotion.  Smiles that last too long may
communicate aggression. To evaluate the validity of
feature point tracking in the spatio-temporal domain, we
have begun using Hidden Markov Models (HMM) [16]
which are widely used in speech and gesture recognition.
Preliminary results based on 36 test sequences in the brow
region and 60 test sequences in the mouth region are
consistent with those of the DFA.

In summary, feature point tracking was sensitive to
subtle changes in facial features and discriminated facial
expression at the fine-grained level of individual action
units. The focus of current work is to incorporate
convergent methods of quantifying facial expression,
increase the number of action units and action unit
combinations that can be recognized, and increase the
generalizability of the system to a wide range of image
orientations
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Table 4.  Proportion agreement in the nose and mouth regions.

Human Feature Point Tracking

N 27 26 25 12 12+25 20+25 15+17
17+23+

24
9+17

27 29 .83 .10 .03 .00 .00 .03 .00 .00 .00
26 24 .25 .54 .21 .00 .00 .00 .00 .00 .00
25 22 .00 .05 .86 .00 .00 .00 .09 .00 .00
12 18 .00 .00 .00 .78 .22 .00 .00 .00 .00
12+25 35 .00 .00 .03 .00 .86 .11 .00 .00 .00
20+25 31 .00 .00 .00 .00 .16 .81 .03 .00 .00
15+17 36 .00 .00 .00 .00 .00 .00 .94 .06 .00
17+23+24 12 .00 .00 .00 .00 .00 .00 .08 .92 .00
9+17 17 .00 .00 .00 .00 .00 .00 .00 .00 1.00
κ = .81


