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Abstract

This paper describes a novel system for 3D head track-
ing under partial occlusion from 2D monocular image se-
quences. In this system, The Extended Superquadric (ESQ)
is used to generate a geometric 3D face model in order to
reduce the shape ambiguity. Optical flow is then employed
with this model to estimate the 3D rigid motion. To deal
with occlusion, a new motion segmentation algorithm using
motion residual error analysis is developed. The occluded
areas are successfully detected and discarded as noise by
the system. Also, accumulation error is heavily reduced by
a new post-regularization process based on edge flow. This
makes the system more stable over long occlusion image se-
quences. To show the accuracy, the system is applied on
a synthetic occlusion sequence and comparisons with the
ground truth are reported. To show the robustness, exper-
iments on long occlusion image sequences, including syn-
thetic and real ones, are reported.

1. Introduction

The estimation of 3D head rigid motion is crucial in
many face related applications such as expression analysis,
lip motion analysis, face recognition,etc. With appropri-
ate head rigid motion compensation, face non-rigid motion
analysis and recognition are more accurate and stable. 3D
Head position also reflects human attention, thus providing
important cues for natural user interfaces in interactive en-
vironments. Furthermore, head tracking is useful for deter-
mining model-based facial image coding parameters (e.g.,
MPEG4 FAPs), which are very important in low-bandwidth
teleconferencing. Numerous applications call for an unre-
stricted and robust head tracking system from 2D monocu-
lar image sequences.

1.1. Previous Work

In recent years considerable progress has been made on
the problem of head/face tracking from 2D monocular im-
age sequences. Some systems extract the 2D position of the
head [9, 11], while others retrieve the 3D motion parameters

[6, 8, 5, 3, 1, 4, 7, 6, 2, 10]. In this paper we concentrate on
3D head tracking.

Li et al. [8] used an affine model to describe both rigid
and non-rigid facial motion. Their approach was character-
ized by a render-feedback loop connecting computer vision
and computer graphics. The recovered affine parameters
were used in model-based facial image coding. Azarbeya-
jani et al. [1] and Jebaraet al. [5] determined 3D head posi-
tion through salient facial feature tracking. The feature tra-
jectories were processed by Extended Kalman Filter (EKF)
to recover the 3D structure, camera geometry and facial
pose. The recovered 3D structure was further constrained
by parameterized models (eigen-heads). However, their
methods experienced difficulties when the tracked points
were not visible over the entire image sequence. Blacket
al. [3] developed a more stable methodology which tracked
rigid head motion by using a planar model to interpret opti-
cal flow. But the use of a planar model limited the amount of
motion that can be tracked by their system. To extract rel-
atively large 3D motions over extended image sequences,
Basuet al. [2] used a full 3D rigid model (ellipsoid) to reg-
ularize the optical flow. More recently, DeCarloet al. [4]
designed a more sophisticated deformable model and inte-
grated it with optical flow for both motion and shape esti-
mation. Tao [10] proposed a special face model (PBVD) to
track the head motion. Casciaet al. [6, 7] modeled head as
a texture mapped cylinder and formulated the head tacking
problem as image registration in the texture map. Cascia’s
system also dealt with varying illumination by using a set
of trained illumination templates.

Some of the above systems achieve very good results.
Some are also surprisingly efficient. However, few studies
have been done to robustly track the head under partial oc-
clusion. Furthermore, since many head tracking systems are
based on the minimization of the sum of squared differences
(SSD), the accumulation error can be serious for long image
sequences with large motion and occlusion.

1.2. Our Contributions

The method we propose here relates to the work of [2],
where optical flow is employed to constrain a rigid 3D



surface model by minimizing motion residual error. Our
method extends this framework to include the following
novel features:

1. The system is built to robustly track the head under
partial occlusion. Occluded areas are detected by a new
motion segmentation algorithm which is integrated within
the head motion estimation algorithm;

2. A new post-regularization method based on edge flow
is designed to reduce the accumulation error;

3. A novel geometric face model is developed based on
the extended superquadric (ESQ). It reduces the shape am-
biguity while keeping all the advantages (e.g. close-form
formula representation) of simple geometric models.

In this paper, we first introduce the ESQ face model in
Section 2.1. After briefly discussing the rigid motion formu-
lation in Section 2.2, we then describe our integrated motion
estimation and occlusion detection algorithm in Section 2.3.
To cope with the error accumulation, we introduce a post-
regularization strategy using edge flow in Section 2.4. In
Section 3, we present our experiments on both synthetic and
real sequences to show that our system is not sensitive to
occlusion and works robustly over long image sequences.
Finally, the conclusions and future plans are discussed in
Section 4.

2. Framework

Our system formulates head tracking as a model-based
least squares problem (similar to [2]). Extended algorithms
are developed to detect occlusion and reduce the accumula-
tion error. The flow diagram of our system is illustrated in
Figure 1. Each component of our system is discussed in the
rest of this Section.
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Figure 1. Flow diagram of the system

2.1. ESQ Face Model

There are many ways of modeling a face. In head track-
ing system, simple geometric models are preferred since
we only care about rigid motion. Ellipsoid [2] and cylin-
der [6, 7] models have been successfully applied in several
systems. However, those models can not achieve good ap-
proximation to face shape. Since the shape ambiguity is one
of the reasons for the motion ambiguity, it is desirable for
a face model to achieve better approximation while keeping

the advantages of the simple geometric models. This is our
motivation to choose the ESQ to model a face.

Superquadrics can model a diverse set of objects because
of their compact representation and robust methods for re-
covering 3D models. However, their intrinsical symmetry
fails in modeling many real-world objects including human
faces. Zhouet al. [13] extended superquadrics with expo-
nent functions, thus improving their ability to model more
complex objects including the face. Essentially, the ex-
tended superquadric (ESQ) provides us an economic way
to reduce the shape ambiguity while keeping all the advan-
tages of simple geometric models.

An extended superquadric can be defined as a set of
pointsX= [x; y; z]T satisfying:

X =

2
4 a1sign(c�sc�s)jc�s j

f2(�p)jc�s j
f1(�p)

a2sign(s�s)js�s j
f1(�p)

a3sign(s�sc�s)js�s j
f2(�p)jc�s j

f1(�p)

3
5 (1)

where cos(�s); sin(�s), etc. have been abbreviated as
c�s ; s�s , etc.. The exponentsf1(�p); f2(�p) are functions
of �p and�p. �p , �p represent the latitude and longitude
angles respectively in the spherical coordinate system, and
�s, �s represent the superquadric angles. Thus we have:

�p = arctan(
x

y
)

�p = arctan(
z

x
) (2)

From Eq. 1 and 2, a parameterized ESQ surface
X(�p; �p) can be easily computed from the latitude and lon-
gitude angles. This representation greatly increases the con-
trollability of the face model and makes some implementa-
tion tasks such as sampling very easy.

In our system, the ESQ face model (as shown in Fig. 2)
is constructed by semi-automatically fitting an ESQ to a set
of real face range data. More details on ESQ fitting can be
found in [13]. As initialization, this model is scaled and
warped on the face image in the first frame of the image
sequence. Assuming that the first frame is a frontal view,
we can do the initialization automatically by using a feature
extraction algorithm (e.g.[2]).

2.2. Rigid Motion Formulation

The rigid head motion in each framet from frame0 is
represented as a vectormt with 6 elements:

mt = [rx; ry ; rz; tx; ty; tz] (3)

whererx, ry, rz respectively represent the rotations about
the x, y, andz axes of the local coordinate frame of the
ESQ face model. Accordingly,tx; ty; tz represent the trans-
lations of the model. The4 � 4 homogeneous transform
matrixMt is defined as:

Mt = TRxRyRz (4)



(a)    Shaded face ESQ model (b)    Mesh face ESQ model

Figure 2. ESQ face model

whereRx, Ry, Rz are rotation matrices corresponding to
rx, ry, rz. T is the translation matrix. In framet, the face
model can be computed as:

X(�p; �p; t) =MtX(�p; �p; 0) (5)

Though we are using 3D face model, the image sequence
is in 2D. So we must project the parameterized ESQ face
surface onto the image plane. The projection matrixP can
be represented as follows:

P =

2
4 1 0 0 0

0 1 0 0
0 0 1

f
1

3
5 (6)

wheref is the focal length of the camera which has been
given. Thus in framet, a model point’s projective location
(Ix; Iy) on the image plane can be obtained by computing:

[x0; y0; w0]T = PMtX(�p; �p; 0) (7)

where(Ix; Iy) = (x0=w0; y0=w0).
Now we can easily compute the model displacement

DM= [Um; VM ] on the image plane between framest and
t+ 1:

[U 0

M ; V 0

M ;W 0

M ]T = P(Mt+1 �Mt)X(�p; �p; 0) (8)

whereDM= [U 0

M=W 0

M ; V 0

M=W 0

M ].
Since we only have 2D information, only the points

which are visible in both framest andt+ 1 are responsible
for the rigid motion estimation. Given the camera position
and point normalN, we can estimate whether a pointX is
self-occluded or not by computing the following dot prod-
uct:

v = (X�C) �N (9)

whereC is the camera position vector. Note that we can
assume majority of a face is convex, therefore ifv � 0, the
point is self-occluded, otherwise not.

2.3. Rigid Motion Estimation Under Partial
Occlusion

Head tracking is normally formulated as a model-based
SSD problem. So is our system. Optical flow at image
points which correspond to the visible part of the face model
is used to guide the model motion estimation. Obviously if
the occluded points are projected to the image plane, their
optical flow can not reflect the correct 3D motion. Self-
occluded points can be found by Eq. 9. However, in real
video stream, there are many occasions where human heads
are occluded by other objects. To be unrestricted and sta-
ble, a head tracking system should be able to locate those
occlusion areas and discard them as noise. Our algorithm
integrates head motion estimation and occlusion detection
through motion residual error analysis.

In our system, it is assumed that the occluded areas are
not too large (generally less than50%). This is to ensure we
have fairly enough information for correct 3D rigid motion
estimation. Theoretically speaking, since no model can per-
fectly describe every detail of the face, there anyway exists
motion ambiguities due to shape ambiguities. However, if
the occlusion areas are not too large, we can still get fairly
stable results.

Given the 3D motion vectormt of framet and the optical
flow between framest andt+1, we must measure how good
a candidate motion vectormt+1 is for framet+1. We define
this measurement on a set of visible (neither self-occluded
nor occluded by other objects) points_V in both framest
andt + 1. _V is a subset of a sample points setQ on the
ESQ face model.

If the optical flow field is represented byDO= [UO; VO ],
the Error-of-Fit (EOF) function is then defined as follows:

dx = jsDM �DO j
2

ex =

�
dx if dx < dt;
dt if dx � dt;

EOF ( _V;mt;mt+1;DO) =
1
N

P
x2 _V ex (10)

wheres is a scaling factor between object coordinates and
screen coordinates.N is the number of points in set_V. dt
is the error threshold which is used to prevent outliers in the
optical flow field from overwhelming the whole algorithm.

The question is how to determine the points in_V under
occlusion. If the non-self-occluded subsets ofQ in frames
t andt + 1 are represented byVt andVt+1 respectively,
we can initially let _V = Vt

T
Vt+1, then minimize Eq. 10

to find an optimalm�

t+1. We believe the motion residual
errors for points in the occluded areas are bigger due to the
following two reasons: 1. The unoccluded areas are larger,
thus contributing more to the minimization. 2. The motion
field on occluding objects can not be well regularized be-
cause the occluding objects are normally not of the same
shape as the face model. Based on these observations, our
integrated motion estimation and occlusion detection algo-
rithm can be described as follows:



1. Sample a set of pointsQ on the parameterized surface
X(�p; �p) and compute their normals;

2. ComputeVt andVt+1 fromQ according to Eq. 9;
3. Construct a flag vectorFt = [f0; f1; : : : ; fN ] corre-

sponding to the points in setVt

T
Vt+1. fx = 1 means

pointx is not occluded whilefx = 0 means occluded. Ini-
tially, setF0= [1; 1; : : : ; 1];

4. Compute_V by discarding those points whose corre-
spondingfx is 0 fromVt

T
Vt+1. Then solve:

m�

t+1 = arg(min(EOF ( _V;mt;mt+1;DO))) (11)

5. Compute the motion residual errorex at each pointx
in setVt

T
Vt+1 usingm�

t+1;
6. Re-set flag vectorF by:

fx =

�
0 if ex > �dt;
1 otherwise;

(12)

where� is initially set as0:9 in our experiments. To prevent
the discarding of unoccluded areas, it is adjusted adaptively.

7. If flag vectorFt is not changed, or maximum iteration
number has been exceeded, end the algorithm. Otherwise
go to 4.

In our system, we usemt+1=mt as initial guess.
Levenberg-Marquardt algorithm is used to solve Eq. 11.
During minimization, penalties are also added on very large
motion candidates. In our experiments, the above algorithm
normally converges in 3 to 4 iterations. Note that, if the
2D motion of the occluding object is very similar to that of
the occluded areas, our algorithm may not find the occluded
areas. However, in this case the occluded areas do not do
much harm to motion estimation. The results of our occlu-
sion detection algorithm are illustrated in Figure 4 and 5.

2.4. Post-Regularization

Inaccurate optical flow estimation and lack of 3D infor-
mation cause accumulation error in head tracking systems
that are based on SSD minimization. Large motion and oc-
clusion make the problem even worse. One possible solu-
tion is to use both image field and motion field information
(i.e. edge force and optical flow force) simultaneously to
constrain a deformable face model [4]. Our algorithm uses
edge information differently.

The idea is to use edge flow as a post-regularization
heuristic. After we getm�

t+1 from the integrated algorithm
introduced in Section 2.3, edge flow is used to refinemt+1

in a small neighborhood aroundm�

t+1 until the optimal mo-
tion vector is found. We believe the quality of our edge flow
(computed by the following algorithm) is generally more re-
liable than optical flow because edge flow strictly captures
the motion of the salient features (i.e. edge points) while
optical flow smoothes out some useful information. An ev-
idence of the effectiveness of the edge information can be
found in [12] where edge matching alone is used to extract
the camera motion. We compute edge flow based on this

matching technique. The post-regularization algorithm can
be described as follows:

1. Detect edge points in the interested area (face area) in
framest andt+1 (in framet, the interested area is the face
model’s projective area, while in framet + 1 the interested
area should be large enough to cover the face area in frame
t and the possible large motion.);

2. Detect edge features in framet. We refer to an8� 8
block as a ”edge feature” if it contains more than8 edge
points. To avoid aperture ambiguity, blocks with strictly
vertical and horizontal edges are discarded;

3. Detect the perfect matches of the framet features in
framet + 1. Two edges are said to be perfectly matched
if they are identical in the binary edge domain. This can
be done very strictly by increasing the size of the observing
domain. For those features where we could not find the
perfect matches we simply discard them. Finally we find a
set of edge featuresP in framet. Each pointEt in setP
has a perfectly matched pointEt+1 in framet+ 1;

4. Compute the edge flowDE=[UE ; VE ] at pointEt as
follows:

DE = Et+1 �Et (13)

5. Refine the motion vectorm�

t+1 with edge flow. Before
refinement, the ”outliers” must be first removed. The mo-
tion residual error at each edge point inP can be computed
by:

e0x = jsDM �DE j
2 (14)

If the error is bigger than a threshold, we consider it as
outlier and remove it fromP. This is because we believe
that we have found a reasonably good solution before post-
regularization. It is not possible to get very big error on any
edge point unless the edge flow is wrong. The EOF function
can be defined as:

EOF 0(P;mt;mt+1;DO) =
1

N 0

X
x2P

e0x (15)

Usingm�

t+1 as the initial guess, the post-regularization
process tries to find an optimal solutionm��

t+1 in a small
neighborhood aroundm�

t+1 to minimizeEOF 0:

m��

t+1 = arg(min(EOF 0(P;mt;mt+1;DO))) (16)

Our experiments have shown that the above algorithm
heavily reduces the accumulation error. The tracking re-
sults of our system without/with post-regularization are il-
lustrated in Figure 3.

3. Experiments

Our system has been tested on extensive occlusion im-
age sequences. To show the accuracy, a synthetic occlusion
image sequence with ground truth is used. To show the ro-
bustness, some real occlusion image sequences are tested.



(a) Without post−regularization (b) With post−regularization
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Figure 3. Tracking results without/with post-
regularization

For ground truth validation, we generated a synthetic im-
age sequence (Figure 4) by using a set of known motion vec-
tors to animate real face range data. The occluding object, a
sphere undergoing asine-like motion, is added to the scene.
The image resolution is460� 450. The largest motion be-
tween 2 adjacent frames is about 15 pixels. The occlusion
detection and tracking results in some key frames are shown
in Figure 4. The black dots in the tracked frames indicate
the nose position of the ESQ face model. The graphs in
Figure 4 show the comparisons between the6 estimated pa-
rameters and the ground truth. Through the graphs we can
see that our system tracked the motion accurately during
occlusion. We have found that the estimation of the trans-
lation alongz axis has bigger error, which is due to lack of
3D information. One possible solution is to formulate thez
scaling factor of ESQ face model into the motion estimation
framework. This makes the system more stable.

Figure 5 shows the experimental results on some real im-
age sequences. (a), (b) are image sequences acquired from a
Sony camera at 30 FPS. The image resolution is320� 240.
The largest motion between 2 adjacent frames is about 12
pixels. The figure shows the occlusion detection results and
the tracking results. We can clearly see that our system cap-
tures the 3D head motion robustly and correctly.

4. Conclusions and Future Plans

In this paper, we have presented a system which can
robustly track occluded heads from 2D monocular image
sequences. We have designed a face model with close-
form formula based on ESQ and then used it in our sys-
tem. We have also demonstrated a method which can suc-
cessfully detect the occluded areas on the face. In our
system, 3D motion estimation and motion segmentation
are integrated. Furthermore, we have developed a post-
regularization method which heavily reduces the accumu-
lation error incurred by motion ambiguities and occlusion.
The experiments in Section 3 clearly show that our system
is robust and accurate. Additionally, it is possible to apply
our occlusion detection and post-regularization algorithms

to other tracking systems. As we can see from our experi-
ments, one potential advantage of the ESQ model is that we
can also track the nose position in each frame accurately,
thus effectively constraining facial non-rigid analysis. This
is extremely useful when we perform facial motion tracking
to extract the FAPs from a video sequence in image encod-
ing.

Our future plans include: 1. Improving the efficiency of
our system - our implementation is not real time (mainly
because of optical flow computation). We are currently
working on more efficient motion estimation and numeri-
cal minimization algorithms. 2. Reducing the translation
error alongz axis by formulating thez scaling factor into
the motion estimation framework.
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Figure 4. Experimental results on the synthetic image sequence. The �rst row includes some key frames
of the original synthetic sequence. The second row indicates the occlusion detection results. The third
row shows the tracking results (black dots indicate the nose position in each frame). The graphs show
the ground truth validation.



(a) Tracking results of a 226 frame sequence

(b) Tracking results of a 199 frame sequence

Figure 5. Experimental results on 2 real image sequences. Black dots indicate the nose position in each
frame.


