
1

FEATURE POINT BASED MESH DEFORMATION
APPLIED TO MPEG-4 FACIAL ANIMATION

Sumedha Kshirsagar, Stephane Garchery, Nadia Magnenat-Thalmann
MIRALab, CUI, University of Geneva

Key words: mesh deformation, real-time facial animation, performance driven animation,
optical tracking

Abstract: Robustness and speed are primary considerations when developing
deformation methodologies for animatable mesh objects. The goal of this
paper is to present such a robust and fast geometric mesh deformation
algorithm. The algorithm is feature points based i.e. it can be applied to enable
the animation of various mesh objects defined by the placement of their
feature points. As a specific application, we describe the use of the algorithm
for MPEG-4 facial mesh deformation and animation. The MPEG-4 face object
is characterized by the Face Definition Parameters (FDP), which are defined
by the locations of the key feature points on the face. The MPEG-4 compatible
facial animation system developed using this algorithm can be effectively used
for real time applications. We extract MPEG-4 Facial Animation Parameters
(FAP) using an optical tracking system and apply the results to several
synthetic facial mesh objects to assess the results of the deformation algorithm.

1. INTRODUCTION

In this paper, we present a robust, fast, and simple geometric mesh
deformation algorithm. A geometric mesh can be characterized by the
locations of key feature points. Further, the animation of the mesh can be
defined by the displacements of these feature points. The algorithm
described here can be applied for animation of such meshes. As a specific
application, we describe the use of the algorithm for MPEG-4 facial mesh,
which is characterized by the Face Definition Parameters (FDP). We
examine the results of the mesh deformation applied to facial animation by

2 Sumedha Kshirsagar, Stephane Garchery, Nadia M.-Thalmann

using the Facial Animation Parameters (FAP) obtained from an optical
tracking system used for facial feature capture.

There are a variety of ways possible to represent animatable objects
geometrically. The choice depends on the considerations such as precise
shape, effective animation and efficient rendering. Barr introduced
geometric modeling deformations using abstract data manipulation operators
creating a useful sculpting metaphor [1]. Bearle applied surface patch
descriptions to model smooth character form [2]. Free Form Deformation
(FFD) and its variants have been used extensively for a variety of modeling
and animation applications [3][4][9][13]. They involve the definition and
deformation of a lattice of control points. An object embedded within the
lattice is then deformed by defining a mapping from the lattice to the object.

FFDs allow volume deformation using control points while keeping the
surface continuity. They provide the sculptural flexibility of deformations.
FFDs have been successfully used for synthetic objects like face [6] and
hand deformation [11]. FFDs have some limitations though. The locations of
the control points are not very well controllable with respect to the actual
mesh object. Also, the discontinuities or holes in the mesh are difficult to
handle as a general case. Recently, Singh et. al.[15], proposed a new
approach of using wire curves to define an object and for shaping its
deformation. They illustrated the applications of animating figures with
flexible articulations, modeling wrinkled surfaces and stitching geometry
together.

In order to define shape and animation of a geometric mesh object, we
concentrate on the use of feature points. We assume that the shape of the
object is defined by the locations of the predefined feature points on the
surface of the mesh. Further, the deformation of the mesh can be completely
defined by the movements of these feature points (alternatively referred as
control points) from their neutral positions either in absolute or in
normalized units. This method of definition and animation provides a
concise and efficient way of representing an object. Since the control points
lie on the geometric surface, their locations are predictable, unlike in FFD.

2. GEOMETRIC MESH DEFINITION AND
DEFORMATION

In this section, we describe in detail the feature point based mesh
deformation algorithm. The algorithm is usable on any generic surface mesh.
To begin with, the feature points or the control points with movement
constraint are defined for a given mesh. A constraint in a direction indicates
the behaviour of the control point in that direction. For example, if a control

Feature Point Based Deformation for MPEG-4 Facial Animation 3

point is constrained along the x axis, but not along the y and z axes, means
that it still acts as an ordinary vertex of the mesh along the y and z axes. Its
movement along these axes will be controlled by the other control points in
the vicinity.

Given a geometric mesh with control point locations, we need to compute
the regions influenced by each of the control points. In order to get realistic
looking deformation and animation, it is necessary that the mesh has a good
definition of the feature points; i.e. the control point locations should be
defined considering the animation properties and real-life topology of the
object under consideration. Each vertex of the mesh should be controlled by
not only the nearest feature point, but other feature points in the vicinity, in
order to avoid patchy animation. The number of feature points influencing a
vertex and the factor by which each feature point influences the movement
of this vertex is decided by the following:

• The distances between the feature points i.e. if the feature points
are spread densely or sparsely on the mesh

• The distances between the ordinary (non-feature point) vertices
of the mesh and the nearest feature point

• The relative spread of the feature points around a given vertex

The algorithm is divided into two steps. In the Initialization step, the

above mentioned information is extracted and the coefficients or weights for
each of the vertices corresponding to the nearest feature points are
calculated. The distance between two points is computed as the sum of the
edge lengths encountered while traversing from one point to the other. We
call this surface distance. This surface distance measure is useful to handle
holes and discontinuities in the mesh, e.g. mouth and eye openings in the
facial mesh models. The Deformation step actually takes place during the
real-time animation for each frame.

2.1 Initialization

The initialization can further be divided into two substeps.

2.1.1 Computing Feature Point Distribution

In this step, the information about all the neighbouring feature points for
each of the feature point is extracted. The mesh is traversed starting from
each feature point, advancing only one step in all the possible directions at a
time, thus growing a mesh region for each feature point, called feature point
region. Neighbouring feature points are those feature points that have a
common feature point region boundary. As a result, for each feature point

4 Sumedha Kshirsagar, Stephane Garchery, Nadia M.-Thalmann

defined on the mesh surface, we get a list of the neighbouring feature points
with surface distances between them. This information is further used in the
next step.

2.1.2 Computing Weights

The goal of this step is to extract possible overlapping influence regions
for each feature point and to compute the corresponding weight for
deformation for all the vertices in this influence region. Consider a general
surface mesh as shown in Figure 1. During the process of mesh traversal
starting from the feature points, assume that the vertex P is approached from
a feature point FP1. FP1 is added to the list of the influencing feature points
of P.

Figure 1. Computing weights for animation

From the information extracted in the previous step of mesh traversal,
FP2, and FP3 are the neighbouring feature points of FP1. FP2 and FP3 are
chosen such that the angles θ2 and θ3 are the smallest of all the angles θi for
neighbouring feature points FPi of FP1. Also,

2
,

2 32
πθπθ << (1)

The surface distances of the vertex from these feature points are
respectively d1P, d12 and d13 as shown in the figure. While computing the
weight of FP1 at P, we consider the effect of the presence of the other
neighbouring feature points namely FP2 and FP3 at P. For this, we compute
the following weighted sum d:

Feature Point Based Deformation for MPEG-4 Facial Animation 5

32

313212

coscos
coscos
θθ

θθ
+
+= dd

d (2)

Thus, d is the weighted sum of the distances d12 and d13. The feature point
in a smaller angular distance from the FP1 is assigned a higher value of
weight. If there is only one neighbouring feature point of FP1 such that
θ2<π/2, then d is simply computed as d12/cosθ2.

We compute the weight assigned to the point P for the deformation due
to movement of FP1 as:





 





 −=

d
d

W P
P

1
,1 1

2
sin

π (3)

or more generally












 −=

d
d

W iP
Pi 1

2
sin,

π (4)

Thus, point P has a weight for displacement that is inversely proportional
to its distance from the nearest feature point FP1. This determines the local
influence of the feature point on the vertices of the mesh. At the same time,
nearer the other feature points (FP2 and FP3 in this case) to FP1, less is this
weight according to the equation 2 and 3. This determines the global
influence of a feature point on the surrounding region, in the presence of
other feature points in the vicinity.

It is possible that a vertex is approached by more than one feature point,
during the process of mesh traversal. We compute the weight for this feature
point following the same procedure, as long as the angular distance criterion
(1) is satisfied, and the surface distance diP<d, d as defined in equation 2.
This second criterion ensures that the feature points FPj whose nearest
neighbours are nearer to the vertex P than FPj are not considered while
computing the deformation for vertex P. Thus, for the example taken here,
weights will be computed for vertex P for the feature points FP1 as well as
FP2 and FP3, provided d2P and d3P are less than d. As a result, we have for
each vertex of the mesh, a list of control points influencing it and an
associated weight.

We tested the algorithm on simple meshes with different values of limits
in equation 1, and different weighting functions in equation 2 and 3. The
ones giving the most satisfactory results were chosen. In equation 3, we
chose sine function as it is continuous at the minimum and maximum limits.

6 Sumedha Kshirsagar, Stephane Garchery, Nadia M.-Thalmann

2.2 Deformation

Once the weights for the vertices have been computed, the mesh is ready
for real-time animation. Note that Initialization step is computationally
intensive, but carried out only once. The weights computed, take into
consideration the distance of a vertex from the feature point and relative
spread of the feature points around the vertex. Now, from the displacements
of the feature points for animation, we calculate the actual displacement of
all the vertices of the mesh. Here, we have to consider the effects caused
when two or more feature points move at the same time, influencing the
same vertex. We calculate the weighted sum of all the displacements caused
at the point P due to all the neighbouring feature points. Let FPi, i=1,2,… ,N
be the control points influencing vertex P of the mesh. Then

1. Di = the displacement specified for the control point FPi
2. Wi,P = the weight as calculated in the Initialization for vertex P

associated with the control points
3. di,P = the corresponding distance between P and FPi.

The following equation gives the resultant displacement DP caused at the
vertex P

∑

∑

=

==
N

i Pi

Pi

N

i Pi

iPi

P

d
W
d

DW

D

0
2
,

,

0
2
,

,

 (5)

This operation is performed for every frame during the computation of
the animation of the mesh.

3. ADAPTATION FOR MPEG-4 FACIAL MESH

Various muscle based models have been effectively developed for facial
animation [13][16][17]. The Facial Action Coding System (Friesen, 1978)
defines high level parameters for facial animation, on which several other
systems are based. We use MPEG-4 facial animation standard, which
defines the face object by locations of specific feature points on the facial
mesh. Lavagetto et al have described an MPEG-4 compatible facial
animation engine using a similar mesh deformation technique [7]. However,
the important difference is that the wireframe semantics (the locations and
the region influenced by all the feature points) have to be specified a priori
in their method. MPEG-4 Facial Animation

Feature Point Based Deformation for MPEG-4 Facial Animation 7

Figure 2. MPEG-4 Facial feature points

The ISO/IEC JTC1/SC29/WG11 (Moving Pictures Expert Group -
MPEG) has formulated the new MPEG-4 standard. An efficient coding
method has been devised within the framework of the standard for graphics
models and their animation parameters specific to the model type. For face
models, the Face Definition Parameters (FDPs) are defined by the locations
of the feature points (e.g. mouth corners, eye corners, eyebrow ends etc.) and
are used to customize a given face model to a particular face. The Facial
Animation Parameters (FAPs) represent a complete set of basic facial
actions and allow the representation of most natural facial expressions. All
parameters involving motion are expressed in terms of the Facial Animation
Parameter Units (FAPU). These correspond to fractions of distances between
key facial features (e.g. the distance between the eyes). Figure 2 shows the
locations of the feature points as defined by the MPEG-4 standard.

3.1 Mesh Deformation using MPEG-4 Feature Points

Figure 3. Morphing using deformation

8 Sumedha Kshirsagar, Stephane Garchery, Nadia M.-Thalmann

Given a facial mesh, we can define the locations of the MPEG-4 feature
points as per the specification, as shown in Figure 2. Also, for each feature
point, we have to define the constraints as defined by the mesh deformation
algorithm. Once we define this information, the facial mesh is ready to
accept any FAPs and animate the face.

We also use the same deformation algorithm to deform the facial mesh in
order to obtain a new face from a generic mesh. Figure 3 shows the results in
two different views. The face on the left side is a generic facial mesh. The
face in the middle is acquired using two orthogonal photographs of a person
using the technique described in [8]. In this method, the locations of the
feature points are extracted from the images and Rational Free Form
Deformation (RFFD) is used to deform the generic face. Appropriate texture
mapping is done to add realism. We apply the deformation algorithm
explained in the previous section to the same generic face using these
MPEG-4 feature points to obtain the face on the right. Thus the deformation
algorithm applied for 3D morphing of generic head using MPEG-4 feature
points generates satisfactory result.

4. OPTICAL TRACKING FOR ANIMATION

Figure 4. Placement of markers for selected MPEG-4 feature points

Facial feature tracking efforts have ranged from an ordinary video

camera with coloured markers to retro-reflective markers and multiple
cameras to extract directly the 3D position of the markers. We use one such
commercially available system (VICON 8) to track the facial expressions
and retarget the tracked features to our facial animation engine to examine
the results of the deformation algorithm. We use a subset of MPEG-4 feature
points corresponding to the FAP values to track the face and extract the
FAPs frame by the frame. The next subsection in brief explains the
algorithm for extracting the global head rotation and the calculation of the
FAP values with the underlying assumptions. For the capture, we used 6
cameras and 27 markers corresponding to the MPEG-4 feature point

Feature Point Based Deformation for MPEG-4 Facial Animation 9

locations. 3 additional markers are used for tracking the global orientation of
the head. Figure 4 shows the placement of the feature points on the actor's
face. We get the 3D trajectories for each of the marker points as the output
of the tracking system.

4.1 Extracting Global Head Movements

We use 3 markers attached to the head to capture the rigid head
movements (the global rotation and translation of the head). We use the
improved translation invariant method [10]. Let (pi, pi’) be the positions of
the points on the surface of the rigid body, observed at two different time
instants. For a rigid body motion, the pair of points (pi, pi’) obeys the
following general displacement relationship:

tRpp ii +=' Ni ,,2,1 L= (6)

R is a 3X3 matrix specifying the rotation angle of the rigid body about an
axis arbitrarily oriented in the three dimensional space, whereas t represents
a translation vector specifying arbitrary shift after rotation. Three non-
collinear point correspondences are necessary and sufficient to determine R
and t uniquely. With three point correspondences, we get nine non-linear
equations while there are six unknown motion parameters. Because the 3D
points obtained from the motion capture system are accurate, linear
algorithm is sufficient for this application, instead of iterative algorithms
based on least square procedure. If two points on the rigid body, pi and pi+1,
undergoing the same transformation, move to pi’ and pi+1' respectively, then

tRpp ii +=' (7)

tRpp ii += ++ 11' (8)

Subtraction eliminates translation t; using the rigidity constraints yields:

ii

ii

ii

ii

pp
pp

R
pp
pp

−
−=

−
−

+

+

+

+

1

1

1

1

''
'' (9)

The above equation is defined as:

ii mRm)) =' (10)

10 Sumedha Kshirsagar, Stephane Garchery, Nadia M.-Thalmann

If the rigid body undergoes a pure translation, these parameters do not
change, which means the translation is invariant. After rearranging these
three equations, we can solve a 3X3 linear system to get R and afterwards
obtain t by substitution in equation 6. In order to find a unique solution, the
3X3 matrix of unit m) vectors must be of full rank, meaning that the three
m) vectors must be non-coplanar. As a result, four point correspondences are
needed. To overcome this problem of supplying the linear method with an
extra point correspondence, a “pseudo-correspondence” can be constructed
due to the property of rigidity. We find a third m) vector orthogonal to the
two obtained from three points attached to the head. Thus, the system has
lower dimension, requiring only three non-collinear rigid points. Once we
extract the global head movements, the motion trajectories of all the feature
point markers are compensated for the global movements, and the absolute
local displacements and subsequently the MPEG-4 FAPs are calculated.

5. CONCLUSION AND FUTURE WORK

Figure 5. Facial Expressions extracted by Optical Tracking Applied to MPEG-4 Faces

Figure 5 shows the frames of animation depicting different facial

expressions on the real face and three different synthetic faces. With the
mesh deformation algorithm described here, we obtain a frame rate of 29
frames per second for an MPEG-4 compatible facial mesh with 1257 vertices
on a 600 MHz Pentium III PC, with Matrix G400 graphics card using Open
GL Optimizer for rendering. Thus, the algorithm is well suited for real time
MPEG-4 compatible facial animation. We have assessed the deformation
algorithm for realism by extracting the facial features from optical tracking
and retargeting them to the synthetic face.

Feature Point Based Deformation for MPEG-4 Facial Animation 11

6. ACKNOWLEDGEMENTS

This work is supported by the EU ACTS SONG project. Special thanks
are due to Dr. Tom Molet for his help with optical tracking system and to
Chris Joslin for proof reading this paper.

REFERENCES

[1] A. Barr, "Global and Local Deformations of Solid Primitives", Computer Graphics, Vol.
18, No. 3, July 1984.
[2] V. Bearle, "A Case Study of Flexible Figure Animation", 3-D Character Animation by
computer Course Notes, Siggraph'87.
[3] Y-K. Chang and A. Rockwood. "A generalizad de casteljau approach to 3d free-form
deformation" Computer Graphics Proceedings of SIGGRAPH'94, pages 257--260
[4] C. Sabine. "Extended Free-Form Deformation: A Sculpting Tool for 3D Geometric
modeling" Proceedings of SIGGRAPH '90, In Computer Graphics, 24, 4, pages 187--196,
August 1990.
[5] E. Friesen WV (1978), Facial Action Coding System: A Technique for the Measurement
of Facial Movement. Palo Alto, California: Consulting Psychologists Press.
[6] P. Kalra, A. Mangili, N. Magnenat-Thalmann, D. Thalmann, "Simulation of Facial
Muscle Actions Based on Rational Free Form Deformations", Proc. Eurographics '92,
Cambridge, pp. 59-69.
[7] F. Lavagetto, R. Pockaj, "The Facial Animation Engine: towards a high-level interface
for the design of MPEG-4 compliant animated faces" IEEE Trans. on Circuits and Systems
for video Technology, Vol. 9, no.2, March 1999.
[8] W. Lee, N. Magnenat-Thalmann, "Fast Head Modeling for Animation", Journal of Image
and Vision Computing, Volume 18, Number 4, pp.355-364, Elsevier, 1 March, 2000.
[9] R. MacCracken and K. Joy, Free-form deformation with Lattices of arbitrary topology.
Computer Graphics (Proc. of SIGGRAPH'96), pp. 181188, 1996.
[10] W. Martin and J. Aggarwal, "Motion Understanding Robot and Human Vision", Kluwer
Academic Publishers, 1988.
[11] L. Moccozet, N. Magnenat-Thalmann, "Dirichlet Free-Form Deformations and their
Application to Hand Simulation", Proc. Computer Animation `97, IEEE Computer Society,
1997, pp. 93-102.
[12] Specification of MPEG-4 standard, Moving Picture Experts Group,
http://www.cselt.it/mpeg/
[13] F. Parke, "Parameterized Models for Facial Animation", IEEE Computer Graphics and
Applications, Vol.2, Nuo. 9, pp 61-68, November 1982
[14] T. Sederberg and S. Parry, "Free Form Deformations of Solid Geometric Models",
Computer Graphics, Vol. 20, No. 4, 1986.
[15] K. Singh, E. Fiume, "Wires: A Geometric Deformation Technique", Proc.
SIGGRAPH'98, pp 405-414, 1998.
[16] D. Terzopoulos, K. Waters, "Physically Based Facial Modelling, Analysis and
Animation", Journal of visualization and Computer Animation, Vo. 1, No. 2, pp 73-90, 1990.
[17] K. Waters, "A Muscle Model for Animation Three Dimensional Facial Expression",
Computer Graphics, Vol. 21, No. 4, pp 17-24, July 1987.

