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Abstract

We are studying how to create believable agents that
perform actions and use natural language in interactive,
animated, real-time worlds. Believable agents are au-
tonomous agents that have specific, rich personalities
like characters in movies and animation. We have ex-
tended Hap, the behavior-based architecture used by the
Oz group to construct non-linguistic believable agents,
to support natural language text generation. These ex-
tensions allow us to tightly integrate text generation with
other aspects of the agent, including action, perception,
inference and emotion. We describe our approach, and
show how it leads to agents with properties we believe
important for believability, such as: using language and
action together to accomplish communication goals; us-
ing perception to help make linguistic choices; varying
generated text according to emotional state; varying gen-
erated text to express the specific personality; and issu-
ing the text in real-time with pauses, restarts and other
breakdownsvisible. Besidesbeing useful in constructing
believable agents, we feel these extensions may interest
researchers seeking to generate language in other action
architectures.

Introduction
We are studying how to create believable agents that perform
actions and use natural language in interactive, animated,
real-time worlds. Such worlds might be built as entertain-
ment or art (Bates 1992; Hayes-Roth et al. 1995), or as
interfaces to databases, libraries, or the Internet.

“Believable” is used here in the sense of believable char-
acters in the arts, meaning that a viewer or user can suspend
their disbelief and feel that the character or agent is real. This
does not mean that the agent must be realistic. In fact, the
best path to believability almost always involves careful, ar-
tistically inspired abstraction, retaining only those aspects of
the agent that are essential to express its personality and its
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role in the work of which it is part. 1

While full realism is rarely appropriate, we have found,
as have others before us, that fine details can have a great
influence on whether a creature seems alive. The use of
the eyes, the timing of pauses in speech, an awareness of
body position and personal space, are each examples of these
important details.

To further bringout some of the requirements on believable
language and action producing agents, let us examine four
seconds from the film Casablanca (casablanca 1942), which
we have transcribed in Figure 1. In this scene, Ugarti (Peter
Lorre), a dealer in the black market, is being arrested for
stealing two letters of transit. Just before the police haul
him away, he seeks help from Rick (Humphrey Bogart), the
seemingly cynical owner of the Café Américain. Speech and
action occur simultaneously, and we have transcribed them
into two columns to show the parallelism.

Speech Action
... Ugarti enters yelling “Rick! Rick! Help me!”, puts his
hands on Rick’s forearms. Rick pushes Ugarti against a
column saying “Don’t be a fool, you can’t get away.”

But Rick, hide me! U’s eyes are wide, focused on R, U has
facial expression of extreme desperation
and fear.

Do U’s eyes and then head turn left to see ap-
proaching police, mouth tight, face tense.

something, Head, eyes back on R, intense gaze,
“something” emphasized.

you Eyesthen head turn a bit left toward police
as they grab him.

must U’s face compresses in pain.
help Shrinks down, looks further away from R.
me Twists to get free.
Rick! Looks back at R, but eyes pressed shut,

looks away as police pull at him.
Do something! U looks toward R as he speaks, then

away in pain as he is dragged from scene
yelling.

Figure 1: Transcript of moment from Casablanca.

In these moments, Ugarti is a very believable and engaging

1There are many discussions of this idea in the arts. Such
a discussion together with a wealth of other material particularly
useful for animation is presented by Thomas and Johnston (Thomas
& Johnston 1981).



character. If we wish to build autonomous agents that can
produce similarly believable behavior, we might identify the
following as a few of the challenges:

� Ingeneral, production(and understanding)of language and
action appear very tightly integrated. We feel this probably
is not the result of distinct sensing, acting, understanding,
and generating modules communicating through narrow
channels.

� Action and language are used together to accomplish com-
munication goals. An example is pleading language with
a wide-eyed facial expression.

� Language generation occurs in parallel with other indepen-
dent goals. Parallel behaviors producingstreams of control
signals to multiple channels (eyes, body, voice) help bring
the character to life. Ugarti is generating language while
watching and struggling with the police.

� Perception and action occur as subgoals of generation. For
instance, as the transcript begins, Ugarti yells “Rick” be-
cause he perceives that Rick is not attending to him. He
acts by putting his hands on Rick’s arms to signify an em-
brace of friends, presumably to increase the persuasiveness
of his words. We believe both of these arise most naturally
as consequences of generation.

� Generation does not reduce the agent’s responsiveness to
events in the world. Ugarti notices and responds to the
police approaching, grabbing him, etc. all while producing
one short sentence.

� Pauses, restarts, and other breakdowns are desirable when
they reflect the personality and situation of the agent. In
the fine scale timing of the transcript, the actions of the
police absorb some of Ugarti’s attention and noticeably
vary his rate of speech production.

� Generation is incremental. Word choice and other gener-
ation activities seem to be as influenced by the real-time
flow of events as other action production.

� Language generation, like other action, varies with per-
sonality and emotional state. Ugarti pleading with Rick is
in accord with his personality, and with his emotions upon
being arrested.

� Emotion is produced from the success and failure of com-
munication as well as of other action. For instance, Ugarti
is upset about not escaping the police, but this failure is
partly a consequence of not having enough time to con-
vince Rick to help him. So he is angry and sad about his
inability to achieve a communication goal, as that was his
means to achieve an important parent goal. Anger in re-
sponse to being constantly interrupted is another example
of this phenomenon.

Artists know these principles, often implicitly, and use
them when writing, animating, or acting out scenes. We
must express them more explicitly in our agents, since the
agents must exhibit these qualities on their own as action
proceeds.

In the rest of the paper we describe our approach to these
challenges. We describe how we have extended Hap (Loy-
all & Bates 1993), a behavior-based architecture originally
designed for producing action, to support natural language

text generation; we discuss how we generate text and action
on top of this enhanced architecture; and we analyze our
progress toward responding to the challenges.

In addition to its direct contribution to creating language-
using believable agents, we see two reasons our work might
interest other researchers. First, it is a contribution to ac-
tive language (also called “embodied language and action”)
research2, and might suggest how other action architectures
could be extended to support language generation. Second,
the extensions to Hap to support language generation might
be useful in expressing especially complex action generation
behaviors in behavior-based architectures.

Extending Hap to Support Language
Generation

In this section we describe how we have extended Hap, a
behavior-based architecture designed for nonlinguistic be-
lievable agents, to directly support natural language gener-
ation. Previously, Hap has been used to create a number
of prototype believable agents. These include a simulated
house cat named Lyotard (Bates, Loyall, & Reilly 1992a),
and three real-time, self-animating agents called Woggles in
a work titled “Edge of Intention” (Loyall & Bates 1993).
Edge of Intention was first shown at the AAAI-92 AI-based
Arts Exhibition and then subsequently at SIGGRAPH-93, at
Ars Electronica ’93, and in the Boston Computer Museum.
Informal evidence of people interacting with these agents
(hundreds in the case of the Woggles) suggest that they are
somewhat successful as believable agents with distinct per-
sonalities.

Hap is a behavior-based architecture developed to extend
the ideas of situated activity and reactivity (Agre & Chapman
1990; Brooks 1986) with explicit goals, which we have found
useful for believable agents. Hap is similar to other reactive
architectures (Firby 1989; Georgeff & Lansky 1987; Nilsson
1992; Simmons 1991; Maes 1989; Kaelbling & Rosenschein
1990), and we suspect the approach we present here tosupport
generation could be adapted to many of these architectures.

Hap programs are writtenas collectionsof behaviors. Each
behavior is something like a procedure, in that it is has a
name (called the “goal”), a parameter list, a body, and a
precondition. The body, in the simplest case, is a sequential
or parallel invocation of other goals and primitive actions.
When a goal is invoked, all behaviors named by that goal
are considered for instantiation. Of the behaviors whose
precondition is true, one is chosen and instantiated (with
actual parameters for formals) in the hope of achieving the
invoking goal. Thus, execution of a Hap program results in a
tree of active goals, behaviors, subgoals, sub-behaviors, etc.,
some of which run as parallel threads.

Hap also supports multiple top level goals (i.e., a forest
of active behaviors), backtracking, various annotations to
enhance reactivity in the face of surprises in the world, and
other mechanisms. We have found these mechanisms useful
for action, perception, emotion, and elsewhere in Hap, as
well as for language generation.

2Interest in this area has been growing in recent years as evi-
denced by the AAAI 1994 Spring Symposium on Active Language
and the AAAI 1995 Fall Symposium on Embodied Language and
Action.



In most Hap agents, components on top of Hap are built to
support emotion, social behavior, memory, and other func-
tions. The emotion model itself was developed by Reilly and
Bates (Neil Reilly 1996). By building in Hap, these func-
tions tend to inherit reactivity, parallelism, and other qualities
that we want to permeate our believable agents. For a more
detailed description of Hap and higher functionality built in
Hap please see (Loyall & Bates 1993).

We will explain the extensions we have developed using a
minimum of Hap-specific terminology. We hope thereby to
help suggest how other behavior-based action architectures
might be extended to support the production of language.

We chose to base our language approach on the Glinda gen-
erator developed by Kantrowitz and Bates (Kantrowitz 1990;
Kantrowitz & Bates 1992) for three reasons. First, Glinda is
an integrated generator (Kantrowitz & Bates 1992), with the
same generation engine used for both text planning and real-
ization, and we saw similarities between the Hap execution
engine and Glinda’s generation engine that suggested that
a fundamental merging might be possible. Second, Glinda
outputs text incrementally, which we believe important for
real-time believable agents. And third, Kantrowitz’s research
is concerned with exploring pragmatic variation for natural
referring expressions. In the future we may want to incorpo-
rate this work to allow our agents to generate more natural
text.

There are two main challenges to expressing text genera-
tion in an action architecture such as Hap. The first challenge
is solely a knowledge representation issue. Glinda’s gener-
ation goals are significantly more structured than those nor-
mally handled by Hap. In order to pursue generation in this
action architecture we had to extend it to handle the central
properties of Glinda’s structured goals. The second challenge
is how to allow the encoding of the grammar. Glinda includes
four different types of processing knowledge as rules that fire
in stages. In an action architecture such as Hap we must ex-
press this knowledge in terms of goals and behaviors in some
way that does not make encoding this knowledge onerous.
In addition, we must do this encoding without compromis-
ing properties of Hap that are important for believability, for
example Hap’s reactivity, and real-time properties (Loyall &
Bates 1993).

The basic approach we are taking to generation is hierar-
chical decomposition: given a structured concept to be gener-
ated, break it into subconcepts to be generated and issue each
of those in turn as subgoals of a sequential behavior. This
is the same basic approach Hap uses for action generation3,
and that many natural language generation systems including
Glinda use.

We extended Hap to support the same data structures for
concepts that Glinda uses, allowing the use of normal Hap
goals and sequential behaviors for this hierarchical expan-
sion. Multiple, competing, behaviors with appropriate pre-
conditions encode the linguistic knowledge to decompose
and order concepts appropriately.

These behaviors operate at multiple levels in the genera-
tion process. At the text planning level, they select which
concepts to convey and in what order to present them. At

3With other embellishments such as parallelism, situated varia-
tion, and reactive annotations.

group: (receiver (type ^relation)
(time ^present)
(agent (type ^agent) (value ^bear))
(predicate (type ^action)

(value ^play)))
features: ((case ^objective) (hearer ^bear))

Figure 2: Example Concept to Generate

the realization level they follow appropriate precedence re-
lations, and at the word level they order morphemes.

The data structures used by most generators including
Glinda are far more structured than those Hap had typically
handled. Hap goals are a flat list of a name and zero or more
values. In contrast, a concept to be generated in Glinda is
expressed as a structured group and set of features. Groups
and features are expressively the same as frames or associa-
tion lists. A feature is a name/value pair, and a group is a role
followed by an unordered collection of groups or features.
An example group and set of features is shown in Figure 2.
This concept represents a play relation with the agent Bear as
the actor. Its role is the receiver of the action in an enclosing
relation. When generated, it produces the dependent clause
“that you play” or “to play” depending on the verb of the
enclosing relation. Pronominalization or elision of the agent
occurs in this case because the agent of the relation is the
same as the one being spoken to (as indicated by the hearer
feature).

To effectively support groups and features for this process-
ing, we had to extend Hap to support four key properties of
the representation:

1. Groups and features need to be easy to create, and must
provide easy access to component subgroups and features.
In this NLG model, nearly all accesses to the group are to
its immediate subparts, but see item 3 below.

2. The group and features set are independently specified
when invoking a generation goal, but features in the fea-
ture set are treated as if they are included in the group.
Any references to features must look in both the group and
features set. This property allows the subgoaling process
of generation to choose to generate a subcomponent of the
current group and pass separately any modifying informa-
tion through features. With the features in both the group
and features set treated identically, modifying features can
be embedded in the group or subgroups if they are impor-
tant to the meaning and known ahead of time, or they can
be included easily in the feature set that is created in the
process of generation.

3. The only nested portion of a group that is accessed is its
projector. Conceptually, the projector is the core concept
of the group, and along with the type and role of the group,
it is central in choosing how the group is generated. It
is found by a recursive traversal of the group, choosing
the most central subgroup or feature at each level. When
a feature is chosen, the value is returned as the projector
of the group. The role of the most central component for
each group type is specified in advance. For example, the
most central component of a group of type relation is the
subgroup with role “predicate”, and the most central com-
ponent of a group of type word is the “root” component.



4. The final property of the representation is a global abstrac-
tion hierarchy for matching symbols within a group. It is
often useful to write general rules that apply to all groups
with a projector that is a verb, for example, with more
specialized rules applying to groups with a projector that
is an auxiliary verb or a specific verb. With an abstraction
hierarchy applying to all of these matches, these general
and more specific rules can be easily written.

In our implementation, we supported these properties by
adding first-class environments to our action architecture to
support easy creation of groups, features and sets of features
as well as the uniform access to elements of a group and set of
features (properties (1) and (2)). We support property (3) and
(4) by extending the matching language that all Hap agents
use for preconditions and reactive annotations. We have
found that these extensions allow us to manipulate these data
structures effectively for performing generation.

With these data structures supported, we can turn our atten-
tion to the second challenge of allowing the encoding of the
four types of generation process knowledge without compro-
mising Hap’s properties. As described above, the first type
of knowledge, the hierarchical expansion that is the core of
the generation process, can be naturally expressed as normal
Hap goals and sequential behaviors.

The eventual result of this expansion is a sequence of
stringsover time. Local modifications are often necessary be-
tween pairs of these strings, for example to introduce spaces
between words and longer spaces after sentences, introduce
no spaces between roots of words and their prefixes or suf-
fixes, and perform character deletions, additions and substi-
tution (such as “i” for “y” in “happiness”).

Combination rules perform these functions in Glinda. A
buffer is used to hold the most recent string generated and
all applicable combination rules fire whenever a new string
is generated. The (possibly modified) buffered string is then
printed, and the new (possibly modified) string is placed in
the buffer.

We support this knowledge in Hap with a special
generate_string behavior that is invoked only when a
string is being generated. This behavior keeps the buffered
string and new string in dynamically scoped local variables,
creates a combine goal with annotations that force all ap-
plicable behaviors to run (these are Hap’s (persistent
when_succeeds) and ignore_failure annotations), and
then prints the possiblychanged oldstringand buffers the new
string. Rules for these local modifications between strings
can then be written as normal Hap behaviors that match the
buffered string and new string variables using preconditions
and modify them through side-effects as desired.

A number of effects in generation require communica-
tion between generation subgoals, for example subject-verb
agreement and the propagation of verb tenses. In Glinda this
knowledge is encoded in a third category of rules called flow
rules. All rules of this type are evaluated before a generation
goal is pursued. In our approach to text generation in Hap
we chose not to manage information flow using rules for two
reasons. First, Hap already has mechanisms for information
flow using normal parameter passing and value returns. And
second, using rules for information flow introduces potential
responsiveness problems for the agent. If used excessively

(parallel_behavior generate (group features)
(precondition $$type is a ˆlocation and

$$hearer is looking at me and
$$location is visible)

(context_condition $$hearer is looking at me until
subgoal 2 is done)

(subgoal generate pronominal reference to $$location)
(subgoal glance $$location))

Figure 3: Example of a language generating behavior.

the time required to evaluate these rules might compromise
responsiveness of Hap agents by introducingarbitrary delays
between goal expansions.

For these reasons, we facilitate such information flow
through two mechanisms. The first is normal parameter
passing and value returns from subgoals. The second mech-
anism uses dynamically-scoped variables and side-effects.
We should point out that dynamic variables are not needed
to encode the information flow necessary for generation;
this information flow can be expressed using Hap’s normal
lexically-scoped parameter passing and value returns. Nev-
ertheless, we have found that dynamic scoping can provide
certain advantages when carefully used. One can create dy-
namic variables in a common parent and allow both commu-
nicating goals to write and read from these variables. This
eliminates the need for intermediate goals to explicitly pass
along values. Dynamic scoping can also be used to allow be-
haviors running in parallel to communicate through locally
shared variables.

Both of these mechanisms have the advantage over rules
for information flow in that minimal processing is necessary
at runtime to execute them. Thus far they have been expres-
sive enough to encode the information flow necessary for
generation.

The final type of processing needed for generation is in-
ference. Glinda allows these inferences to be encoded as a
fourth type of rule. All rules of this type are evaluated after
flow rules and before a generation goal is pursued. Infer-
ence in Hap is done using normal Hap goals and behaviors.
Appropriate inference goals can be included in generation
behaviors wherever they are needed.

Example of a Language Generating Behavior
With the extensions described, one can express a tradi-

tional grammar in Hap directly. Generation then automati-
cally inherits properties from Hap we believe important for
believable agents. In addition, this combined architecture
allows the agent builder to express additional knowledge in
the grammar such as: how sensing affects make linguis-
tic choices, how emotions influence generation, or how the
production of language should react to changes in the world.
Later sections illustrate and describe these implications of the
integration in more detail. Figure 3 shows in simplified form
how one such language generation behavior is expressed.
This behavior encodes one possible way to reference a lo-
cation: by simultaneously gesturing and using a pronoun
reference. Other methods to generate references to loca-
tions (when this behavior doesn’t apply or is undesirable)
are encoded in separate behaviors. The precondition states
the conditions under which it is applicable: the group being



Figure 4: Woggles that “speak” text bubbles.

generated must be of type location4, the agent being spoken
to must be looking at the speaker, and the location must be
visible. The last two of these conditions are sensor queries
that actively sense the world at the time the precondition is
evaluated.5 Action and language are mixed in this behavior
simply by including both goals as subgoals of the behavior.
These goals are pursued concurrently because the behavior
type is parallel rather than sequential. To react to changes
that might occur while this behavior is executing, appropriate
annotations can be added. In this case it is important that the
hearer doesn’t look away before the gesture is performed.
This is captured by adding a context condition with this in-
formation to the behavior. This condition causes sensing to
be performed while this behavior is active. If the condition
becomes false, this behavior is aborted, and another (perhaps
referring to the location by name) will be chosen.

Example of Processing
We have tested this approach to language by implementing
the extensions to Hap and building behaviors for a particular
agent that incorporates language generation as part of its
normal activity. The agent we have extended is Shrimp, one
of the characters from the Woggles (Loyall & Bates 1993).
A snapshot of this interaction can be seen in Figure 4. As
suggested by this figure, the generated text appears, as it
is generated in real-time, in a text bubble that is positioned
above the woggle that is generating it. The other woggle
can be either another autonomous agent from the world or
the user woggle, which is controlled by a human using the
mouse and keyboard. In either case, it can interact in real-
time using physical motion, including motion of the eyes, as
well as language (interpreted by keyword matching limited
now to various versions of “yes” and “no”).

To illustrate how our approach responds to the challenges
for believabilityposed in the introduction, let us now consider
a detailed example of an interaction with this agent.

4Because we support groups using first-class environments, fea-
ture values are accessed just as normal Hap values; this is noted
syntactically by prefixing the name with “$$”. The complete fea-
ture (name and value) is accessedby prefixing the name with “$$&”.
Subgroups are accessed using the same notation.

5Primitive sensors can be embedded directly in match expres-
sions, as in this precondition. More complex sensing is performed
by sensing behaviors written in Hap which can be included as sub-
goals of the behavior.

As the example begins, Shrimp has approached Bear who
is lookingaway. Shrimp is sad, but wants to play a game with
Bear at a nearby hill. He decides to invite Bear to play, by
invoking a generate goal for the group and accompanying
feature set:

(sentence
((type ^sentence) (hearer $$who)
(relation

((agent $$who) (predicate ^desire)
(object ((type relation)

(agent $$who)
(predicate ^play)
(location $$where)
(object ^follow_the_leader)))))))

((voice ^interrogative-yn))

As we will explain, this goal generates “Bear, you wouldn’t
want [pause] uh [pause] to play over there, would you?”,
while causing parallel action, sensing, etc.

The generate goal invokes a sequential behavior to per-
form the following subgoals:

(generate (punctuation ^beginning_of_sentence))
(generate $$&hearer)
(generate $$&relation)
(generate (punctuation ^end_of_sentence))

The first subgoal, when expanded, places a special symbol
in the output buffer to mark the beginning of the sentence.
This symbol cannot occur elsewhere in generation, and aids
the capitalization and spacing combination rules.

The generation of the hearer feature has a number of behav-
iors from which to choose. If the generation of the example
sentence is part of a larger on-going conversation between
Bear and Shrimp, then a behavior would fire that would
result in the empty string being generated for the hearer fea-
ture. Since that is not the case, a behavior is chosen to
decide how best to get Bear’s attention. This is accom-
plished by sensing the world, for instance by making the first
subgoal of this behavior be a sensing behavior to determine
where Bear is and where he is looking. Since he is nearby
but not looking at Shrimp, the behavior chooses to generate
from the group (name (object $$hearer)) followed by
(generate (punctuation ^end_of_pref)), and issue
the action to look at Bear in parallel. The first results in
“Bear” being generated. When this happens the combine
goal is posted with the buffer contents (beginningof sentence
symbol)and the newly generated string “Bear”. The combine
goal persists until no behaviors apply for it. In this case there
is only one behavior that applies. It removes the beginning
of sentence symbol and capitalizes the first character of the
newly generated string, a no-op in this case because “Bear” is
already capitalized. The (punctuation ^end_of_pref)
group results in a comma being generated. No combination
behaviors fire for these two, so at this point “Bear” is printed,
“,” is in the buffer, and Shrimp is looking at Bear.

If Bear had been across the room, this generation behavior
wouldhave resulted in Shrimp lookingat Bear and generating
“Hey Bear!”. Alternatively if Bear had noticed Shrimp’s
approach and was watching Shrimp attentively, a behavior
would have been chosen to generate the empty string. Thus,
sensing is being used to affect generation on a fine time scale.

The next goal to be executed
is (generate $$&relation). The mood is specified as



interrogative-yn, but there are still several ways to or-
der the subgroups to be generated as a sentence. Because
Shrimp is currently feeling very sad (see emotion discussion
below), a negative phrasing of the question is chosen. This
results in the following sequence of subgoals:

(generate $$&actor)
(bind_return_values_to (modal)

(generate $$&predicate ((negated t))))
(generate $$&object)
(generate_string ",")
(generate $$&modal)
(generate $$&actor).

Because the actor is also the hearer, the first subgoal
is generated as “you”. The hearer’s identity is stored in a
dynamically scoped variable in a parent behavior, and this is
accessed and tested in the behavior for generating the actor.

The second subgoal is an example of explicit feature pass-
ing by returning which modal is used in the generation of
the predicate. This information is used to generate the modal
later in the sentence. This allows the same behavior to be
used for “You don’t ..., do you?” as for “You wouldn’t ...,
would you?”. (The sentence “Wolf isn’t ..., is he?” uses the
same rule. The particulars of generating the actor subgroup
changes.) In this case, the subgoal produces “wouldn’t want”
as output.

At this point, Shrimp notices that the aggressive creature,
Wolf, is coming toward him at high speed. He notices it via
the firingof a higher level sensing goal. This knowledge gives
Shrimp a good bit to think about, and the resulting processing
elsewhere slows the Hap thread that is running this generation
task. He becomes afraid. He actively looks to decide if he
should run or get out of the way. Observers can notice
that something is going on because Shrimp stops generating
words. In addition, part of the behavior to communicate is
a parallel goal that watches for pauses in output and inserts
stuttering “uh”s at intervals during these pauses. This goal
is only active when a communication goal is active. As
Shrimp’s pause becomes longer, this goal is triggered, and
Shrimp says “uh”. Shrimp continues to watch Wolf, and
decides to move slightly to let him pass more easily. As Wolf
goes by, Shrimp continues to generate, producing “to play”.

Shrimp now generates the relation’s location subgroup.
There are several potential behaviors. Since Bear is looking
at him and a formal feature is not present, a behavior is cho-
sen to gesture and concurrently generate a pronoun referring
to the location. So, Shrimp says “over there” as he glances
toward the mountain.

Finally, the trace ends as the last three subgoals generate
“, would you?”.

To summarize the behavior that is observed in this exam-
ple, Shrimp has just come over to Bear who has not noticed
him. Shrimp starts looking at Bear at the same time he says
“Bear, ”. He goes on to say “you wouldn’t want” one word at
a time, when he pauses and looks over at Wolf racing toward
him. He looks around, says “uh”, moves slightly to get out
of Wolf’s way and continues to say “to play a game”. As
he says the next two words “over there” he glances toward
the mountain. Looking at Bear again, he concludes with “,
would you?”.

Discussion of Results
The above trace suggests how our system responds to the
challenges raised in the introduction. Let us consider our
attempt to meet them in more detail.

Incremental language generation is a property of Glinda
that we have maintained in our approach. Pauses, restarts and
other breakdowns due to the difficulty of the generation task
itself are visible in Glinda and in our system. However, with
the generation process expressed as Hap goals and behaviors
in an agent with other goals and behaviors, pauses or other
breakdowns due to other aspects of the agent can arise and be
visible. These include pauses caused by the agent attending
to goals activated by events in the external world (e.g. Wolf’s
approach in the example) as well as goals triggered by inter-
nal events. For example, generation could infer a piece of
information, which when placed in memory awakens an oth-
erwise independent goal. This goal might then perform more
inference, generate emotions, generate action or language,
etc. This might be similar to the types of pauses people make
when realizing something while talking. The pause caused
by this thinking would be visible in the timing of text output.
Any actions or language produced by this digression would
cause the mental digression to be even more visible.

Hap’s pursuit of multiple goals concurrently preserves the
overall responsiveness of the agent while it generates lan-
guage. As just mentioned, with generation expressed in Hap,
generation can be interrupted at any point while the agent
pursues other goals. These interruptions are managed by the
relative priorities of the goals of the agent. Of course, it is
possible to write computations, in language or elsewhere, that
undermines this responsiveness, for example writing a high-
priority infinite loop. The speed of the generation process
itself is a product of how the grammar is written, for exam-
ple how much inference is included. This speed should be
appropriate to the personality being built; a thoughtful char-
acter might have more pauses in his speech than an impulsive
character.

In our architecture, sensing can be used for any linguistic
decisions desired by the character builder. This allows these
grammars to be situated in the sense described by Agre and
Chapman (Agre & Chapman 1990) in that they interpreted in
the context of the current situation. The amount that partic-
ular behaviors take advantage of being situated is dependent
in part on the amount of sensing they include. We are at-
tempting to take advantage of behaviors being situated by
constructing our generation behaviors (that is, our grammar)
to include sensing. This sensing can be external as when
Shrimp looks at Bear to decide how to refer to a location and
whether to introduce his question with Bear’s name, or the
sensing can be internal as when Shrimp’s emotional state is
sensed to choose a negative phrasing of the question.

Just as we can use sensing within generation, action sub-
goals can be included in generation behaviors. Others have
looked at this in the context of effective communication (Ap-
pelt 1985). In believable agents, the focus needs to be not
just effective communication but also the expression of per-
sonality. Some characters include action with their language
more than others. And for some whether to include guestures
or not is a matter of their mood: when happy they guesture,
when angry they move very little. Hap was created for such



personality-based variation, and it is one of our goals when
exploring the inclusion of action with language.

Reactivity is possible during generation just as it is in
other Hap behaviors. Annotations can be associated with
behaviors and goals to recognize when the situation changes
enough that the behavior should change. For example, in
the example Shrimp chose the negative phrasing because he
was sad. If he becomes slightly happy while talking, this
phrasing is no longer appropriate. This can be recognized
by a context condition for this behavior that recognizes when
he becomes happy. With this condition, if Shrimp becomes
happy while the behavior is active, it would be aborted and
another (more appropriate one) could be chosen for the goal.
This would result in language such as: “Bear, you wouldn’t
want ... hey, let’s play!” Other reactive annotations can
recognize the spontaneous achievement of goals (such as
Bear interrupting Shrimp to say “sure”). A success test that
recognizes this allows Shrimp to stop talking and the two of
them to start playing immediately. Either type of annotation
can be included at any level of the grammar.

Hap maintains multiple active goals and pursues them con-
currently. This is done by using the processing power avail-
able, when a behavior is paused, to pursue other goals. For
example, once a woggle jumps, it does not have to consider
that goal until its body is almost ready to land. Likewise, after
asking a question, an enclosing behavior need not be attended
to until a response is heard or too much time elapses. During
these pauses, Hap attends to other (perhaps unrelated) active
goals. If these goals issue actions, the actions will occur in
parallel with other executing actions. The actions (and goals
they are in service to) must not use the same resources that
other executing goals are using. The primitive action to print
text in a voice bubble executes in time proportional to the
length of the string.6 Since generation goals are normal Hap
goals, this same mechanism allows other unrelated goals to
be pursued in parallel. The saying of “uh” while moving
aside in the example is an instance of two unrelated goals
issuing actions that are executed in parallel.

This same mechanism is used to simultaneously generate
action and language to accomplish a communication goal.
For example, gesturing toward the mountain and saying “over
there” in the trace was accomplished by a parallel behavior
with two subgoals: an action goal to perform the gesture and
a generation goal to realize the text. One of these subgoals
was chosen arbitrarily to be pursued. When the action was
initiated and that goal was suspended waiting for the action
to (nearly) complete, the other goal was pursued, issuing the
parallel action.

Integrating emotion with language generation is accom-
plished in the same way emotion is integrated with action
(Bates, Loyall, & Reilly 1992b). The emotional state of
the agent is available to all behaviors and can be used to
include emotion-based variation. One example of this is
illustrated in the example when Shrimp chooses a nega-
tive phrasing of his question over the more straightforward
phrasing. How to introduce meaningful emotion-based vari-
ation in language in general is of course a difficult prob-
lem, and we are drawing on existing work in emotional and

6This is to model the fact that speaking and typing both take
time to execute, even after what is to be typed or said is known.

socially-based language variation, for example (Hovy 1988;
Walker, Cahn, & Whittaker 1996), where possible, in pursu-
ing it. The fact that the generation process is embedded in an
actual agent with emotions gives us a rich base on which to
explore this issue.

As with other goals, success and failure of generate
goals can cause emotion. This happens automatically if a
character builder marks goals that are emotionally important.
Success or failure of these goals produces joy or distress.
Anger or gratitude arise if the cause of success or failure can
be inferred. This is often done by inference goals that are
written and issued in parallel with the generate goal. For
further description of the emotion model and its use in these
agents see (Neil Reilly 1996; Bates, Loyall, & Reilly 1992b).

Related Work
Chapman’s thesis work on Sonja (Chapman 1990) and Firby
and Martin’s work integrating RAP with DMAP (Martin &
Firby 1991) have similarities with our work. Both systems
tightly integrate language understanding with action genera-
tion and make use of the situated nature of the tasks. They
do little or no generation, however, and do not address some
of our goals, such as creating believable agents, displaying
the internal state of the agent through pauses, emotion and
personality based variations, etc.

Rich and colleagues (Rich et al. 1994) seem to share our
goal of building engaging, believable agents, and they have
integrated a remarkably wide range of capabilities in their
system, including language understanding, speech synthesis
and recognition, low-level motor control, and simple cogni-
tion and emotion. Their broad integration takes a traditional
approach in that there are distinct components for each of the
capabilities and they communicate through relatively narrow
channels. This is a natural consequence of building upon
existing, independently developed components. However,
our impression from using their system is that the resulting
agents generally lack an appearance of awareness that we
feel is crucial for our goals of believability.

Recent work in speech synthesis and gesture by Cassell and
colleagues (Cassell et al. 1994) and speech synthesis and fa-
cial animation by Nagao and Takeuchi (Nagao & Takeuchi
1994) are relevant to our goals. This work offers insight
into fine-grained timing and interaction of action and speech.
However, like Rich, they tend to take a less integrated ap-
proach than the one presented in this paper, with some of the
same limitations for believability.

Similarly, the continuing work of Webber and Badler and
colleagues (Badler et al. 1995) on human simulation and
language use are relevant to our long-term goals of creat-
ing believable agents that use language and act in real-time
worlds. And more recently they have been interested in
personality in their agents, especially with work in social be-
haviors like hide and seek. However, like Chapman, Firby
and Martin, they do little or no generation, and like Rich,
Cassell and Nagao they take a less integrated approach than
we think necessary for believability.

Rubinoff and Lehman, in NL-Soar (Rubinoff & Lehman
1994), share our goal of real-time, responsive language gen-
eration mixed with action. They take a modular approach
to integration, like the systems above, but through learn-



ing NL-Soar gradually becomes tightly integrated. This lets
them develop language somewhat independently of the rest
of their agent, yet still get integration such as language us-
ing the agent’s sensing and inference abilities to accomplish
its goals. Because their task domains involve communica-
tion by radio, they have not pursued coordinated action and
language to accomplish a single communication goal. Also,
their agents as yet have no emotion model, so they have not
explored this aspect of integration. Finally, the ultimate goal
of NL-Soar is cognitive plausibility rather then believability.
Nonetheless, of the efforts reported here, we see this work as
most closely related to our own.

Conclusion
We have described an approach to creating believable agents
that act and generate natural language text in a real-time
simulated world. This includes a description of extensions to
Hap, our behavior-based action architecture, to better support
natural language generation, and a description of how the
resulting system is used to generate action and language. We
believe these extensions may be useful to others developing
similar believable agents, and to researchers interested in
extending action architectures with language capabilities.

This approach addresses many of the challenges we see for
believable agents that both act and generate natural language
in real-time worlds. We have described these challenges and
how our approach addresses them including: using language
and action together to accomplish communication goals; us-
ing perception to help make linguistic choices; varying gen-
erated text according to emotional state; varying generated
text to express the specific personality; producing emotions
as the result of the success, failure and other processing of
language generation; and issuing the text in real-time with
pauses, restarts and other breakdowns visible.
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