
ts of

n-

, and

In
hes be-
stem

ue
ions.
ed
clas-

20-
Expl ic i t Namespaces

Franz Achermann, Oscar Nierstrasz

Software Composition Group, University of Berne1

Abstract. A namespace is a mapping from labels to values. Most programming
languages support different forms of namespaces, such as records, dictionaries,
objects, environments, packages and even keyword-based parameters. Typically
only a few of these notions are first-class, leading to arbitrary restrictions and lim-
ited abstraction power in the host language. Piccola is a small language that uni-
fies various notions of namespaces as first-classforms, or extensible, immutable
records. By making namespaces explicit, Piccola is easily able to express various
abstractions that would normally require more heavyweight techniques, such as
language extensions or meta-programming.

1 Introduction

Virtually all programming languages support various notions of namespaces, or se
bindings of labels to values. These include:

• Interface. Objects have a set of named methods.
• Scopes. Identifiers are bound in the enclosing static or dynamic scope.
• Package. A package provides a set of named services or components.
• Keyword-based parameters. Arguments to services are bound by keywords i

stead of position.
Typically, however, these notions are supported in different ways by a language
each carries its own restrictions. This leads to a number of problems likeinflexible
namespaces, frozen scoping rules, andlimited abstraction.

Inflexible Namespaces. An inflexible namespace can lead to name clashes.
open systems where components may be added or replaced at runtime, name clas
tween components from different applications, domains, or vendors can cause sy
failures. The following lists symptoms that are due to inflexible namespaces:

• Flat namespaces. In older versions of Smalltalk, all classes must have uniq
names. To avoid name clashes, developers must follow naming convent
Smalltalk Agent was one of the first Smalltalk implementations that provid
namespaces. Now, most Smalltalk systems support namespaces. Similarly,

1. Authors’ address: Institut für Informatik (IAM), Universität Bern, Neubrückstrasse 10,
CH-3012 Berne, Switzerland.Tel: +41 (31) 631.4618.Fax: +41 (31) 631.3965.
E-mail: {acherman, oscar}@iam.unibe.ch. WWW:http://www.iam.unibe.ch/~scg.

This work has been funded by the Swiss National Science Foundation under Project No.
53711.98, “A framework approach to composing heterogeneous applications”.

© Springer-Verlaghttp://www.springer.de/comp/lncs/index.html

http://www.iam.unibe.ch/~scg
mailto:acherman@iam.unibe.ch,oscar@iam.unibe.ch
http://www.springer.de/comp/lncs/index.html

s as an

ses.
use

ternet

lo-
ugh
ures.
nts.
)

le or
on-
the

in-
s of
me

rs
cks
f a

amic
ic

rogram
ages

ctions
lized
tion.

me
b-

able

run
ob-

eth-

ibu-
ject,
ilar
ote

not
ng
sic C++ has one static namespace. Standard C++ [6] introduces namespace
additional language feature.

• Fixed namespaces. In Java, each package has its own namespace for clas
Packages are nested, but inflexible. Two frameworks which — by chance —
the same package names, cannot be merged. The “solution” is to propose (in
wide) unique package naming conventions.

• Restricted Scoping. Python [14] has only three kinds of namespaces: one for g
bal objects, one for class scope, and one for local block invocations. Altho
functions are first class values in Python, nested functions do not have clos
However, closures can be simulated by specifying values as default argume

• Static Services. Normally the run time environment (or the operating system
provides some static services. These services include printing to the conso
accessing the local disk. These services normally operate within an implicit c
text. For example, the context defines where standard output should go (to
console or to a file), or the GUI context contains the look and feel of the user
terface. It is in general not possible to adjust this context only for certain part
an application. For instance, a developer might wish to redirect output of so
threads to the console, while other threads may output to the null device.

Frozen Scoping Rules. Most modern languages use static scoping. Identifie
are visible within the block where they are declared and may also be visible in blo
that are statically (i.e. textually) nested within that block. Identifiers in the scope o
module or package can be exported to be used in other modules.

In contrast to these statically scoped languages there exist languages with dyn
scoping, like Postscript. Identifiers are looked up following the call stack. Dynam
scoped language are often considered less safe to use and require more care to p
in. However, there are also abstractions implemented in dynamically scoped langu
that are hard or clumsy to implement in statically scoped languages. Such abstra
include properties that do not align with the functional structure and cannot be loca
in modular units. Examples include failure handling, synchronization and coordina

Limited abstraction. The fact that namespaces are not available at runti
limits arbitrarily the expressive power of abstractions. A typical symptom of limited a
straction is programmers having to write a lot of boilerplate code. Examples of desir
abstractions include:

• A generic synchronization wrapper that wraps all the methods of an object to
in mutually exclusive mode. The inability to abstract over all methods of an
ject (in Java, for example) forces us to define a subclass that overrides each m
od to include the same synchronization code.

• An abstraction to generate proxies. A common use of proxies is to make distr
tion transparent. The proxy has the same interface as the original server ob
but delegates all calls to the server object over the network. The proxy has sim
code for all methods: it transfers arguments over the network, invokes the rem
service, and waits for the result. For instance in Java RMI, the toolrmic automat-
ically creates RMI proxies for remote objects out of their object code. But it is
possible to program the functionality of this tool directly in Java, without readi

We il-
t two
of ex-
ould
xten-
 work.

, it is
n in a
e con-
tions

n are
no-

trac-
eme-
epts.

-
mic

m-
es or

-
strac-

im-

g or
by a
ets
and writing Java bytecode. The reflection support injava.lang.reflect only
allows one to inspect code, but not to change it.

We address these problems by unifying namespaces asforms. In section 2 we briefly
present Piccola, a small language that introduces explicit namespaces as forms.
lustrate how forms overcome the problems we have listed. In section 3 we presen
applications of dynamic namespaces that demonstrate how the uniform treatment
plicit namespaces allows simple abstractions to be implemented in Piccola that w
require more heavyweight approaches such as metaprogramming or compiler e
sions in other languages. Finally, the last two sections present related and future

2 Piccola

Piccola is designed to be a general purpose “composition language” [1][2]. That is
designed as a language for composing software components which may be writte
separate implementation language. Piccola’s job is to express how components ar
figured, and to provide the connectors, coordination abstractions and glue abstrac
needed to configure components. As such, the problems listed in the introductio
especially important for Piccola. We tackle these problems by unifying all related
tions of namespaces asforms (immutable, extensible records):

Everything is a form: Namespaces, contexts, interfaces, parameters, abs
tions, scripts and objects are all modelled as forms. This unification leads to an extr
ly simple language, and allows us to abstract uniformly over all these related conc

Static and dynamic namespaces: Both client and server contexts are ex
plicitly named, giving abstractions a fine degree of control over both static and dyna
scoping.

Explicit namespaces: Namespaces can be explicitly manipulated and co
posed, making it quite a simple matter to combine, rename and compose packag
modules.

Keyword-based parameters: Abstractions are monadic, always taking a sin
gle form as a parameter, and returning a form (which possibly encapsulates an ab
tion). First class arguments extend the expressiveness of abstractions.

2.1 Separation of Concerns
Structurein Piccola is modelled byforms. Stateis modelled bychannels, which are
used to store forms.Behaviouris modelled byagents, which communicate by sending
and receiving forms through shared channels.Abstraction is provided byservices,
which are implemented by agents and channels.

Forms. Forms are finite mappings from labels (identifiers) to values. Forms are
mutable. The primitive operators on forms areextension, projection, anditerationover
the labels of a form. Form extension concatenates a form with either a single bindin
another form, yielding a new form as a result. Projection looks up a value bound
label in a form. Iteration over a form returns the set of defined labels in a form. (S
are objects, which are encoded as forms.)

-
nd sep-
tands
ions.

erv-

-
s,

es.

ate
ppear
ns of

epli-
as its

caller
de-

ces-
lso

ifier
A form in Piccola is defined by ascript, which is a sequence of bindings and form
expressions. Form-expressions are structured using parentheses or indentation, a
arated using commas or newlines, in the style of Python. The comma or newline s
for the extension operator. Bindings declare either nested forms or service definit
The empty form is written as() . For example:

aForm =
aSubForm = () # a nested form
aService(X): X # service definition
r(count = 3) # form expression

The formaForm contains the labelsaSubForm , aService , and all the labels that are
returned by invoking the servicer . If r() returns a form with labelaSubForm or
aService , these bindings will hide the bindings that precede the invocation. The s
ice r is invoked with the argument formcount = 3 .

Channels. State is represented bychannels. Channels have the semantics of loca
tions in the asynchronousπ-calculus [16]. Using channels, we can model blackboard
locks, reference cells etc. The semantics of Piccola is given in terms of theπL-calculus
[13], a variant of theπ-calculus in which agents communicate forms instead of tupl

Agents. Agentsimplement the behaviour of a Piccola program. Agents communic
along channels and exchange forms. Unlike forms, agents and channels do not a
in the syntax of Piccola, but they can be directly instantiated, if necessary, by mea
the predefined servicesrun andnewChannel .

Services. A service represents a function or procedure. It is represented by a r
cated agent that reads from a channel (the service location) and evaluates a form
result. The service-protocol specifies how the result channel gets passed from the
to the callee [15][21]. Piccola has only four keywords, two of which are needed to
fine services. The value returned by a service may be denoted byreturn . A recursive-
ly-defined service must be declared withdef , which constructs a fixpoint.

2.2 Static and Dynamic Namespaces
Piccola is statically scoped, and the static context of an agent is always explicitly ac
sible as a form calledroot . The dynamic namespace of a calling agent, however, is a
available to the service invoked as a form calleddynamic . (root anddynamic are the
other two keywords of Piccola.)

Labels used in a script are normally looked up in theroot form, and bindings will
extend theroot form. For example, this binding defines a servicenewDocument :

newDocument(X): wrap(newBasicDocument(X))

Agents evaluating form expressions textually below this binding have the ident
newDocument in theirroot form. More explicitly, we could also extend theroot form
to include the definition of the servicenewDocument :

(1) root =
(2) root
(3) newDocument(X): wrap(newBasicDocument(X))

This statement is read as follows: Replace theroot form with a new form (Line 1). The
new form is indented. It is the currentroot form (Line 2) extended with the service
newDocument (Line 3).

n the
argu-

ome
mic
re,

wing

user:

re not
licit
plicit

ly

by

ice

e can
n. By
nts or
Lookup of identifiers is done in theroot form. Therefore, the body of thenew-

Document service is equivalent to:
root .wrap(root .newBasicDocument(root .X))

This more clumsy notation stresses the fact that these identifiers are looked up i
root namespace of the agent implementing the body of the service. Note that the
ment labelX is only defined in theroot form of the service body.

The static scoping offered by these conventions is fine for most purposes, but s
kinds of abstractions can only be conveniently implemented with the help of dyna
scoping. Thedynamic namespace of an agent contains whatever is explicitly put the
and is passed automatically whenever the agent invokes a service. The follo
myPrintln service includes the current user in its output:

myPrintln(Text): println(dynamic .user + ":" + Text)

A caller of this service may change its dynamic namespace to include the current
dynamic = (user = "John") # change dynamic
myPrintln("Hello") # invoke service

Note that the dynamic namespace does not break encapsulation. Values that a
put into this form remain local. The dynamic namespace is useful for passing imp
information between agents, but it should not be misused as an alternative to ex
passing of parameters.

2.3 Explicit, First-Class Namespaces
The possibility to explicitly read and assign theroot namespace enables us to direct
support the various importing facilities found in other languages, like theimport pack-
age statement of Java or thefrom package importfacility of Python. The service
load() locates a file containing a script, evaluates it, and returns the form defined
the script. Assume we have a script“hello.picl” with the contents:

File: hello.picl
info: println("This is the hello script")

The script defines a form with a service bound byinfo . We can now:
• import all the bindings of the hello script and extend ourroot with them:

root = (root , load("hello"))
info() # invoke it

This is equivalent to importing all names from a given module. If the serv
info is already defined, it will be overridden.

• import all the bindings but keep them in a separate nested formhelloFile . This
prevents ourroot namespace from getting cluttered up:
helloFile = load("hello")
helloFile.info() # and use it

• import only theinfo service under a different name:
helloInfo = load("hello").info
helloInfo() # and use the service

The reader should note that these mechanisms can be combined. For example w
import a module, store it under a new name and rename selected services withi
using first-class forms to represent packages, language-specific import stateme

elated

ased
ension
-

ally
ing.

ction
ext in

apper
the

s not
men-

situ-
it. In-

am
ck to a

ep-
ome
ed
namespace qualifiers become superfluous. We thereby overcome the problems r
to rigid namespaces mentioned in the introduction.

2.4 First-Class arguments
Services in Piccola are monadic, taking a single form as a parameter. Keyword b
arguments are transferred as nested forms. Since arguments are forms, form ext
allows us to easily modeldefault arguments. For instance, the following generic wrap
per adds pre- and post- services to a given service:

myDefaults = # a form with two (empty) services
pre: ()
post: ()

wrap(X)(Args):
(myDefaults, X).pre() # invoke pre() in X or myDefaults
res = X.service(Args) # invoke main service
(myDefaults, X).post()
return res

The servicewrap is curried. It first expects a form X with three labels:pre , service ,
andpost. Invoking the services = wrap(..) with a formArgs callspre() , then
invokes the service with the passedArgs form and finally callspost() . Observe how
thepre andpost service have a default. We prefix the argument formX with default
bindings encapsulated in the formmyDefaults . The projection(myDefaults,

X).pre will extract the service bound topre in X, if it exists. Otherwise the default
service defined inmyDefaults will be used.

3 Dynamic abstractions

This section will outline two applications using dynamic namespaces that typic
could not be implemented without either language extensions or meta-programm
The first example implements an exception handling mechanism as a library abstra
in Piccola, using dynamic namespaces to pass the exception handler to the cont
which exceptions are raised.

The second example implements an ownership abstraction, realised as a wr
for arbitrary forms and an evaluation context that may own certain objects. Only
owner can execute services of the wrapped objects. This is an example which i
commonly found as language construct. We conclude the section with some recom
dations for disciplined use of the dynamic namespace.

3.1 Exceptions
An exception is raised during program execution as a reaction to some erroneous
ation. The part of the program that detects the erroneous situation cannot handle
stead, it signals this situation and terminates execution. We say the programraises an
exception. An exception handler, which was installed at an earlier point during progr
execution, catches the error and handles the exception, i.e. brings the system ba
consistent state.

The problem is how to transmit the flow of control from the place where the exc
tion is detected to the appropriate handler. A simple approach would be to define s
global exception-holding variables. After invocation of a service, the client is oblig

each
rent
to ex-
s val-
pt all
reply,

the

d as a
c-
r-

t the

is
ted,

f the
to check this error state and handle it if appropriated. This solution is clumsy since
function call must be followed by an error check. It also does not work in a concur
system, since all processes would share the same error slot. Another possibility is
tend the returned value to contain a flag that indicates whether the returned value i
id or an error occurred during its computation. This approach requires that we ada
return values to reflect the change. Furthermore it assumes that all services have a
which, for example, may not be necessary for distributed notifications.

Our solution is to use the dynamic namespace to transmit the exception from
raising point to the appropriate handler. The exception handler is set as follows:

try
do: ... # use exception handler
catch(E): ... # handle an exception

The servicetry takes a form containing two services. The first is thedo: service. Its
body represents the scope of the exception handler. The handler itself is specifie
servicecatch(E) whereE is the formal exception value. Whenever an exception o
curs during the execution of thedo: service, this handler is invoked instead of the no
mal continuation. Here is the implementation of thetry andraise services:

(1) raise(E): dynamic .raise(E) # delegate to dynamic rais e
(2) try(block):
(3) exception = newChannel()
(4) return OrJoin # start agents left and right
(5) left:
(6) block.catch(exception.receive())
(7) right:
(8) raise(e): # local raise abstraction
(9) exception.send(e)
(10) stop()
(11) dynamic = (dynamic , raise = raise)
(12) return block.do()

TheOrJoin service (Line 4) takes two services (left andright) and executes them
concurrently. It returns the result of whatever service first terminates. Consider firs
scenario in which a block is executed that does not lead to an exception:

1. Two agents passed toOrJoin are started. The left agent has no impact as it
blocked on the local exception channel. This agent finally gets garbage collec
since no one ever will write to the exception channel.

2. The right agent runsblock.do() (Line 12).

3. OrJoin receives the result of the right agent and returns this as the result o
try statement.

Next, consider the case where the block raises an exception:

1. The two agents are started. The left agent waits on the exception channel.

2. The right agent runs theblock.do() (Line 12).

3. To raise the exception in thedo() block, the globalraise(..) (defined on Line
1) is invoked.

4. The globalraise() delegates the exception todynamic .raise() which is the
local raise abstraction (Line 8).

9)
e

sed
ons.

ace
he er-
nt of

ts. It
are not
d to
w the
hout

apper

. An
he
rious
er, or
ip can

nly
only

The
own-

t can

ner.

to
-

5. The localraise sends the exception value along the exception channel (Line
and silently halts using thestop() service. This means that OrJoin will not se
this service terminating.

6. The left agent is the only one to continue, fetching the exception valueE, invoking
catch(E) and returning (Line 6).

The raise service can be considered as an implicit additional argument pas
during invocation. This resembles the idiom used when programming with excepti
The signature of a service that may raise an exception looks likeaService(..., Ex-

ceptionHandler e) . Compared to this approach, the explicit dynamic namesp
has several advantages. First, it supports the separation of functional aspect from t
ror handling aspect. It seems more appropriate to directly relate the formal argume
a method to its functional aspect, instead of blurring it up with contextual argumen
makes code more readable (thus maintainable) when unnecessary parameters
visible. Imagine a function which does not raise an exception itself, but is require
pass the handler down to all services it uses. Finally, dynamic namespaces allo
programmer to introduce an exception handler later in the project development wit
rewriting code that neither handles exceptions nor detects erroneous situations.

Observe that the exception abstraction cannot be implemented as a simple wr
that adds some pre- and post execution code. The reason is thatraise must be acces-
sible from anywherewithin the executed block.

3.2 Ownership
In our second example we consider ownership of objects. Anownableobject belongs
to at most one owner. Only the owner can invoke services of the owned object
ownable object can befetchedby an owner, which then has privileged access to it. T
owner may release or transfer ownership. A notion of ownership can be used in va
areas: for example synchronization for owned objects can be managed by the own
the owner can take over garbage collection issues on the owned object. Ownersh
guarantee alias free references [17].

To translate an ordinary object into an ownable object, we do the following:
• Add an instance variable to store an owner.
• Add methods to fetch, remove, and transmit ownership. Of course, fetch will o

work when the object is not owned for the moment. Remove and transmit are
possible, if the caller owns the object in question.

• Modify each method such that it expects an owner as additional argument.
precondition of the method is strengthened, as it is necessary that the passed
er be the owner of the object. Only when the passed owner owns the objec
the method be performed, otherwise an exception is raised.

• All calls to the object methods must reflect the change and also include the ow
Using explicit namespaces, it is possible to (1) build a generic abstractionwrap-

Ownable(Form) that wraps all services of the form to check for ownership, and (2)
build an evaluatorrunAsOwner(Block) that runs a block of code with an owner. As
sume we have object factories to create an owner, and an ownable:

pty)

legate.

the
s not
t

ip is
vice
newOwner:
owns(Ownable): ... # do we own the ownable?
add(Ownable): ... # add the ownable
remove(Ownable): ... # remove the ownable
loseAll: ... # remove all ownables we have

newOwnable:
addTo(Owner): ...
release: ...

Given an instanceo of ownable , theno.addTo(Owner) stores the owner, provided
o is not already owned, and notifies the owner usingOwner.add(o) .

Evaluating a block within the context of an owner is now written as:
runAsOwner(block):

create new Owner
dynamic = (dynamic , currentOwner = newOwner())
block.do() # evaluate Block
dynamic .currentOwner.loseAll() # drop all owned

This runs the block within a dynamic namespace with an associated (initially em
owner. Finally, the generic wrapper that makes a form into an ownable form is:

(1) getCurrentOwner: dynamic .currentOwner
(2) wrapOwnable(Form):
(3) ownable = newOwnable() # delegate
(4) newForm = wrapAllLambda # adapt all services
(5) form =
(6) Form
(7) releaseThisForm: ownable.release()
(8) map(service)(Args):
(9) if (getCurrentOwner().owns(ownable))
(10) then: service(Args) # invoke service
(11) else: raise(NotOwnerException)
(12) return
(13) newForm
(14) ownThisForm: ownable.addTo(getCurrentOwner())

The wrapper needs some explanation. Line 3 creates the ownable object as a de
Then all services of the wrapped formForm, extended withreleaseThisForm are
modified by a map function. The new function (Line 9 - 11) checks if the current (dy-
namic) owner owns this ownable object. If so it invokes the original service with
given arguments. Otherwise an exception is raised, signalling that the caller doe
own the object. The library servicewrapAllLambda uses form-iteration to get the se
of defined labels (i.e. the exported services) ofform .

Note that we include the additional servicereleaseThisForm (Line 7) into the
map to ensure that only the current owner may release it. (Transfer of ownersh
omitted in the code). We return the wrapped form (Line 13) extended with the ser
to acquire ownership (Line 14).

3.3 Observations
We can draw the following lessons from the two examples:

.
amic

t sen-

the

tyle
aces
ssing
pler
ects
del-

t as a
es to
dic-
with
dic-

nc-
, and

ming

urity
mode

ecurity
n am-
vices
nts

c-
elling
le
• Each feature requires a label in the dynamic namespace. Exceptions useraise ,
and ownership usescurrentOwner to store the context sensitive information
We assume that these bindings do not conflict with other usages of the dyn
namespace.

• The users of the contextual abstractions do not need to accessdynamic them-
selves. Instead it is better to provide static abstractions that access the contex
sitive information, e.g.getCurrentOwner() in the second example.

• Contextual abstractions are used in pairs: Outside is an abstraction (e.g.try) that
executes a piece of code (thedo block) within a extended context. Within this
block are clients of the contextual abstraction that invoke the service (e.g.raise)
provided by the surrounding context. Using the contextual service not within
established context is a type error: it results in looking up a label indynamic

which is not bound.

4 Related and Future Work

Objects and many different variants of inheritance (e.g. Smalltalk-style vs. Beta-s
inheritance [3]) can also be modelled as applications of forms as explicit namesp
[23]. In effect self is represented as a form containing the object’s methods. Subcla
corresponds to extending the form representing self. A form is conceptually sim
than an object, since it lacks a notion of inheritance. For instance, in Self [25] obj
have a parent link providing inheritance by means of delegation. Therefore, in Self
egation is built into the language, whereas we implement it using the forms.

Many scripting languages provide access to the environment by representing i
dictionary. Python [14] has built-in functions to return its namespaces as dictionari
enable introspection. Modification of these dictionaries, however, is undefined. A
tionary gives the programmer much more freedom than is presently possible
forms. In particular, labels of forms in Piccola are not first class values, whereas
tionaries for environments often use strings as keys.

Forms can also be compared to Odersky’s variable functions [18]. Variable fu
tions are mappings between sets of arbitrary values (not just from labels to forms)
can be updated to model state changes.

Namespaces play an emerging role in middleware: For instance the Corba na
service [19] uses nested namespaces to identify distributed objects.

Future work is required to clarify the relation between namespaces, and sec
and authentication issues. In an open system, mobile code runs in two modes: one
gives unrestricted access to local resources, while restricted access employs a s
manager to guard access and use of local resources. In the ambient calculus [4] a
bient corresponds to an administrative domain. An ambient can only access ser
within its domain. An interesting question to explore is whether we can unify ambie
and namespaces.

Pict [20] is a language that takes theπ-calculus as a core language and adds fun
tions, assignment etc. as syntactic sugar. We used Pict for experiments in mod
software composition [22]. TheπL-calculus is a result of these studies. It replaces tup
communication by form communication. Piccola is formally defined on theπL-calcu-

p-
f nec-
ional
atch-
stem
la,

dy-
aries
ava2,
-

ing
func-
ro-

ereas

r sup-
ttract-
ated
ng

ple-
e ap-

be a
com-
me-
d pack-

mic
s that
ved
pro-

k is
s for
tion,
lus. It adopts the primitives of theπL-calculus (channels, and parallel composition o
erator) but makes them available as predefined services which can be overridden i
essary. The form-calculus [23] extends the set of core form operators. The addit
operators are simple label restriction and form restriction to remove labels, and a m
ing operator to check for the existence of a label. Lumpe has developed a type sy
for theπL-calculus [13], but this system cannot be incorporated directly into Picco
because it lacks parametric polymorphism and recursive types.

Common Lisp [24] allows the programmer to declare “special” variables to be
namically scoped. Many languages now have features incorporated into their libr
that allow the programmer to create and use dynamic variables. For instance in J
the classjava.lang.ThreadLocal contains a different value for each thread. Pro
grammers use this class to store transaction identifiers or similar constructs.

Applications using dynamic namespaces have many similarities to programm
with monads in functional languages. Monads are used to model state in a purely
tional world [10][26]. The dynamic namespace builds on the notion of clients and p
viders of services. It therefore naturally extends to open, distributed systems, wh
monads are closely related to the lambda calculus.

In the area of object oriented languages, there exist several proposals to bette
port separation of concerns within a program. The proposal that seems the most a
ing is aspect-oriented programming (AOP) [8]. In AOP, aspects are explicitly separ
from normal classes. Theaspect weavermerges the aspect into the source code. Usi
AOP can greatly reduce the complexity of code [11].

Many of the applications possible using dynamic namespaces can also be im
mented using metaobjects and message passing control [5][7]. We consider th
proach with explicit namespaces to be much more lightweight.

5 Conclusion

Piccola is a small language for composing software components. It is intended to
general language suitable for expressing many different styles of components and
position abstractions. One way it achieves this is by unifying various notions of na
spaces present in other languages, such as environments, interfaces, objects an
ages, and making them explicitly manipulable as “forms.”

Explicit namespaces make it possible in Piccola to have flexible static and dyna
scoping, to support various module concepts, and to implement generic wrapper
go beyond adding pre- and post methods to services. All this flexibility can be achie
with a minimal set of operators over forms and does not require the use of meta
gramming facilities.

A stable implementation of Piccola is available from the authors’ web site. Wor
ongoing in many areas, including experimental development of compositional style
various application domains, reasoning about compositional properties, visualiza
distribution, and flexible type systems.

ular
aper,
.

t

,

ean-

Jy-

,

ary
Acknowledgements

We thank the members of the SCG for stimulating discussions and in partic
Stéphane Ducasse and Matthias Rieger for helpful comments on a draft of this p
and the anonymous referees for providing constructive and valuable suggestions

References
[1] Franz Achermann and Oscar Nierstrasz,“Applications = Components + Scripts -- A

tour of Piccola,” Software Architectures and Component Technology, Mehmet Aksit
(Ed.), Kluwer, 2000, to appear.

[2] Franz Achermann, Markus Lumpe, Jean-Guy Schneider and Oscar Nierstrasz, “Piccola -
a Small Composition Language,” Formal Methods for Distributed Processing, an Objec
Oriented Approach, Howard Bowman and John Derrick. (Ed.), Cambridge University
Press., 2000, to appear.

[3] Gilad Bracha and William Cook, “Mixin-based Inheritance,” Proceedings OOPSLA/
ECOOP’90, ACM SIGPLAN Notices, vol. 25, no. 10, Oct. 1990, pp. 303-311.

[4] Luca Cardelli and Andrew D. Gordon,“Mobile Ambients,” Foundations of Software Sci-
ence and Computational Structures, Maurice Nivat (Ed.), LNCS, vol. 1378, Springer Ver-
lag, 1998, pp. 140-155.

[5] Stéphane Ducasse, “Evaluating Message Passing Control Techniques in Smalltalk,”
Journal of Object-Oriented Programming (JOOP), vol. 12, no. 6, SIGS Press, June 1999
pp. 39-44.

[6] D. Kalev,Ansi/Iso C++ Professional Programmer’s Handbook, Que Professional Series,
1999

[7] Gregor Kiczales, Jim des Rivières and Daniel G. Bobrow,The Art of the Metaobject Pro-
tocol, MIT Press, 1991.

[8] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, J
Marc Loingtier and John Irwin, “Aspect-Oriented Programming,” Proceedings
ECOOP’97, Mehmet Aksit and Satoshi Matsuoka (Ed.), LNCS 1241, Springer-Verlag,
vaskyla, Finland, June 1997, pp. 220-242.

[9] Doug Lea, “Design for Open Systems in Java,”Proceedings COORDINATION’97, Dav-
id Garlan & Daniel Le Mètayer (Ed.), LNCS 1282, Springer-Verlag, Berlin, Germany
September 1997, pp. 32-45.

[10] Sheng Liang, Paul Hudak and Mark P. Jones,“Monad Transformers and Modular In-
terpreters“, Conference Record of POPL’95, San Francisco, California, 1995, pp. 333-
343.

[11] Martin Lippert and Cristina V. Lopes, “A Study on Exception Detection and Handling
Using Aspect-Oriented Programming,” Technical Report P9910229 CSL-99-1, Xerox
Parc Palo Alto, Dec. 1999.

[12] Markus Lumpe, Franz Achermann and Oscar Nierstrasz, “A Formal Language for Com-
position,” Foundations of Component Based Systems, Gary Leavens and Murali Sitara-
man (Ed.), Cambridge University Press., 2000, pp. 69-90.

[13] Markus Lumpe, “A Pi-Calculus Based Approach to Software Composition,” Ph.D. the-
sis, University of Bern, Institute of Computer Science and Applied Mathematics, Janu
1999.

[14] Mark Lutz,Programming Python, O’Reilly, 1996.
[15] Robin Milner, “Functions as Processes,” Proceedings ICALP’90, M.S. Paterson (Ed.),

LNCS 443, Springer-Verlag, Warwick U., July 1990, pp. 167-180.

8.

ndi-

e

[16] Robin Milner, “The Polyadic pi Calculus: a tutorial,” ECS-LFCS-91-180, Computer
Science Dept., University of Edinburgh, Oct. 1991.

[17] James Noble, John Potter and Jan Vitek, “Flexible alias protection,” Proceedings
ECOOP’98, Eric Jul (Ed.), LCNS 1445, Springer-Verlag, Brussels, Belgium, July 199

[18] Martion Odersky, “Programming with Variable Functions,” Proc. International Con-
ference on Functional Programming, Baltimore, 1998.

[19] Robert Orfali, Dan Harkey and Jeri Edwards,Instant Corba, Wiley, 1997.
[20] Benjamin C. Pierce and David N. Turner, “Pict: A Programming Language based on

the Pi-Calculus,” Technical Report, no. CSCI 476, Computer Science Department, I
ana University, March 1997.

[21] D. Sangiorgi, “Interpreting functions as Pi-calculus processes: a tutorial,” RR 3470,
INRIA Sophia-Antipolis, France, February 1999.

[22] Jean-Guy Schneider and Markus Lumpe, “Synchronizing Concurrent Objects in the Pi-
Calculus,” Proceedings of Langages et Modèles à Objects’97, Roland Ducournau and
Serge Garlatti (Ed.), Hermes, Roscoff, October 1997, pp. 61-76.

[23] Jean-Guy Schneider, “Components, Scripts, and Glue: A conceptual framework for
software composition,” Ph.D. thesis, University of Bern, Institute of Computer Scienc
and Applied Mathematics, October 1999.

[24] Guy L. Steele, Common Lisp The Language, Second Edition, Digital Press, 1990.
[25] David Ungar and Randall B. Smith, “Self: The Power of Simplicity,” Proceedings

OOPSLA’87, ACM SIGPLAN Notices, December 1987, pp. 227-242.
[26] Philip Wadler, “Monads for functional programming,” Advanced Functional Program-

ming, J. Jeuring and E. Meijer (Ed.), LNCS 925.

	Explicit Namespaces
	1 Introduction
	2 Piccola
	2.1 Separation of Concerns
	2.2 Static and Dynamic Namespaces
	2.3 Explicit, First-Class Namespaces
	2.4 First-Class arguments

	3 Dynamic abstractions
	3.1 Exceptions
	3.2 Ownership
	3.3 Observations

	4 Related and Future Work
	5 Conclusion

