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Abstract

Object-Oriented technology is often described in
terms of an interwoven troika of themes:
encapsulation, polymorphism, and inheritance. But
these themes are firmly tied with the concept of iden-
tity. If object-oriented technology is to be successfully
scaled from the development of independent applica-
tions to development of integrated suites of applica-
tions, it must relax its emphasis on the object. The
technology must recognize more directly that a mul-
tiplicity of subjective views delocalizes the concept of
object, and must emphasize more the binding concept
of identity to tie them together.

This paper explores this shift to a style of object-
oriented technology that emphasizes the subjective
views: Subject-Oriented Programming.

1. Introduction

Figure 1 illustrates the definition of a tree in a com-
monly accepted way of thinking about objects,
sometimes called the classical model [22]. In this
model, a tree is defined by defining a class, the class
of all trees, in terms of internal state information and
methods that can be applied. Proponents of the ad-
vantages of data abstraction, a form of encapsulation,
emphasize the fact that client programs manipulating
these trees do so only through the exposed
operations.
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Ideally, the designer of such an object-oriented tree
defines and works with the intrinsic properties and
behavior of a tree. In the real-world, properties of a
trec like its height, cell-count, density, leaf-mass, etc.
are intrinsic propertics. Intrinsic behaviors include
things like growth, photosynthesis, and other behav-
iors that affect the intrinsic properties.

This ideal classical model is utterly inadequate to deal
with the construction of large and growing suites of
applications manipulating the objects. Designers of
such suites are forced cither to forego advantages of
the object-oriented style or to anticipate all future
applications, treating all extrinsic information as
though it were intrinsic to the object’s nature. Figure
2 shows an example of the situation that gives risc to
this pressure. In it, we see that a tax-assessor has his
own view of characteristics and behaviors associated
with a tree. The characteristics include its contrib-
ution to the assessed value of the property on which
it grows. The behaviors include the methods by which
this contribution is derived. These methods may vary
from tree-type to tree-type. In fact, such methods may
form part of a tax assessor’s view of all objects, tree
and non-tree alike. These characteristics and behav-
iors are extrinsic to trees. They form part of an
assessor’s subjective view of the object-oriented tree.

With the classical object model, the designer of the
tax-assessor application is faced with one of two
choices. On one hand, the application can be con-
structed as a client using the encapsulated methods
but forgoing the advantages of encapsulation and
polymorphism for the tax assessor application’s state
and methods. On the other hand, the application’s
function could be integrated into the same tree class
manipulated by other applications; in effect, treating
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Figure 1 - An Object-Oriented Tree

the extrinsic characteristics of the tax-assessor appli-
cation as though they were intrinsic to trees. Both
choices are objectionable.

Figure 3 illustrates how unmanageable the latter ap-
proach is by reminding us that tax-assessor is merely
one of a suite of applications, each of which has its
own subjective view, its own extrinsic state and be-
havior for the tree.

Although the theme of subjects in anthropomorphic
terms is illustrative, we should not lose sight of its
importance in tool and application integration set-
tings. The tree could easily be a node in a parse tree,
the bird an editor, the assessor a compiler, and the
woodsman a static-semantic analysis tool. Each of
these tools defines its own state and methods on the
parse-tree nodes, e.g. the editor has display status, the
compiler has associated code expansions, and the
checker has use-definition chains.

Either the developers of these applications cannot
encapsulate their own state and behavior with the
parse-tree node to gain the advantages of
encapsulation and polymorphism, or the system de-
signer must manage an ever-expanding collection of
extrinsic state and behavior becoming part of the in-
trinsic node. In fact, in the presence of market pres-
sure to adopt applications provided by vendors rather
than do all development in-house, the definer of the
node faces the impossible task of anticipating all fu-
ture extrinsic requirements. This burden demands a
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Figure 2 - A Tax Asscssor’s View of the Tree

more powerful model than the classical object model
in order to facilitate the development of application
suites. We propose subject-oriented programming as
such a model.

Section 2 outlines the goals of subject-oriented pro-
gramming. Section 3 then provides an overview of
subjects, and sections 4 and 5 discuss aspects of sub-
ject interaction. Section 6 then describes a model of
subjects, and claborates some details in terms of the
model.  Section 7 discusses considerations in imple-
menting efficient support for subject-oriented pro-
gramming. Scction 8 provides a more concrete
example of the usc of subjects in defining software
development environments, and Section 9 discusses
related work.

2. Goals

The overall goal of subject-oriented programming is
to facilitate the development and cvolution of suites
of cooperating applications. Applications cooperate
both by sharing objects and by jointly contributing
to the exccution of operations. 'The following re-
quirements are important in this context:

* It must be possible to develop applications sep-
aratcly and then compose them.

®  The separatcly developed applications should not
need to be explicitly dependent on the other ap-
plications they are to be composed with.

¢ The composed applications might cooperate
loosely or closely, and might be tightly bound for
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Figure 3 - Many Subjective Views of an Object-Oriented Tree

frequent, fast interaction, or be widely distrib-
uted.

* It must be possible to introduce a new applica-
tion into a composition without requiring mod-
ification of the other applications, and without
invalidating persistent objects alrecady created by
them. Ideally, even recompilation of the appli-
cations should not be required, except to facili-
tate global optimization if desired.

*  Unanticipated new applications, including new
applications that serve to extend existing appli-
cations in unanticipated ways, must be sup-
ported. The notion of extending an application
by writing an “extenston application” and com-
posing it with the base application is discussed in
detail in [14].

e  Within each application the advantages of
encapsulation, polymorphism and inheritance —
object-oriented programming — must be re-
tained.

These requirements and their relationship to object-

oriented technology are discussed in more detail in

[10]. As illustrated in Section I, the classical object
model does not satisfy them.

In the subject-oriented paradigm, cach application is
a subject or a composition of subjects: it defines just
the state and behavior pertinent to the application it-
self, usually fragments of the state and behavior of
collections of relevant classes. As discussed in the rest
of this paper, the semantics of subject composition
and interaction ensurc that the requirements listed
above are satisfied.

3. Subjects

This section discusses general characteristics  of
subject-oricnted programming without introducing a
specific model. Because the use of a more format or
detailed model makes discussion more precise, how-
ever, Section 6 will introduce such a model and re-
visit some of the topics addressed in this scction in
some more detail.

We use the term subject to mean a collection of state
and behavior specifications reflecting a particular
gestalt, a perception of the world at large, such as is
secnt by a particular application or tool.! Thus, al-
though for smoothness of flow we may occasionally
speak of subjects as individuals, they are not the in-
dividuals themsclves, but the generalized perception

T The term “subject” differs somewhat from its use by Coad and Yourdon [2], although both usages share the idea of
reflecting a smaller, more focussed perception of a complex shared model. We avoided the similar term “view” in order
to emphasize the stronger philosophical similarity with non-classical philosophical trends that emphasize the idea that
subjective perception is more than just a view filtering of some objective reality. The perception adds to and trans-
forms that reality so that the world as perceived by a body of perceptive agents is more than the world in isolation.
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of the world shared by some individuals. Similarly,
subjects are not classes. They may introduce new
classes into the universe, but subjects generally de-
scribe some of the state and behavior of objects in
many classes.

One often thinks of particular state and behavior as
being intrinsic to an object: the statc and behavior
that describe its essential characteristics, as opposcd
to additional state and behavior associated with it by
various subjects. For example, the height, weight and
other attributes and behavior associated with trees in
Figure | might be considered intrinsic to trees,
whereas the other attributes and behavior such as as-
sessed value and sale price are not. In the subject-
oriented model there is no special status accorded to
the intrinsic properties. The developer is free, if she
chooses, to have a subject that implements the in-
trinsic properties of one or more classes of objects,
and to require that any manipulation of the intrinsic
properties employ that particular subject to carry it
out.

The essential characteristic of subject-oriented pro-
gramming is that different subjects can separately de-
fine and operate upon shared objects, without any
subject needing to know the details associated with
those objects by other subjects. Only object identity
is necessarily shared.

A subject is definitional or schematic — it corresponds
to a traditional (though usually incomplete) class hi-
erarchy, describing the interfaces and classes known
to this subject. A subject does not itself contain any
state.

3.1. Activations and Compositions of Subjects

A subject activation, often referred to just as an acti-
vation, provides an executing instance of a subiject,
including the actual data manipulated by a particular
subject.

Subjects can be combined to form cooperating groups
called compositions. The composition also defines a
rule, the composition rule that specifies in detail how
the components are to be combined; for example,
how methods from different subjects for the same
operation and class are to be combined, and whether
nested compositions form separate scopes or are all
combined into a single scope. A great variety of

composition rules is possible, and some cxamples will
be given in subsequent scctions.

In distributed systems, subject activations may be
separated in space and time, and state changes to in-
dependent subject activations of an object may occur
in separate transactions. This makes cven the concept
of a unified “state of the object” inaccurate and mis-
leading, A vital aspect of subject-oriented program-
ming is that it be possible to extend subjects and to
introduce new subject activations without disrupting
others. It is therefore important that neither source
nor object code rely on the global “state of the

object” or on its format.

Accordingly, we use the term object-identifier or oid
to mean the globally known unique identification of
the object as it appears in the context of one or more
subjects of interest. In the context of a particular
subject, we also use object to mean the state and be-
havior associated with an object identifier by that
subject. Similarly, there is no global concept of class:
each subject contains class descriptions that describe
state and behavior from that subject’s point of view.

Aspects of a this way of manipulating objects will be
expanded and explored in the following scctions, in
the course of explaining the features of subject-
oriented programming. As mentioned, a more precise
but also more particular modcl will be introduced
later in Section 6.

3.2. Relationship to O-O Technology

The classical object model is, in tany respects, the
model of objects seen by any one subject. Within a
subject, an object has an implementation class that
defines the implementation of behaviors provided for
the various operations supported by the object and
the state information nceded by these implementa-
tions. Subject-oricnted programming thus includes
object-oriented programming as one of its technolog-
ical elements.

Interfaces

[nterfaces describe in abstract terms the operations
that a class of objects supports. Variables that point
to objects , whether instance variables of objects,
static or dynamic program variables or paramcters,
are declared in terms of the interfaces their contents
must support, rather than in terms of specific classes.
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This approach lcads o greater cncapsulation, and
hence to greater flexibility and reuse. It is being in-
creasingly accepted within the object-oriented com-
munity [ 5, 23]. Even in languages such as C+ + that
do not explicitly require separate interfaces, con-
ventions are frequently adopted that amount to using
certain classes (abstract base classes in C+ +) as
interfaces.  Separation of interface definition from
implementation characterization is of even greater
importance in subject-oriented programming, because
interfaces are a point of agreement between separate
subjects as to the operations that are available on an
oid, without one subject needing to have any access
at all to the class hierarchy describing the implemen-
tations provided by another subject.

Behavior

Behavior is specified by means of methods, which are
the actual code implementing operations on specific
classes of objects. In classical class-based models, all
methods are associated, either explicitly or by
inheritance, with the single class of which the object
is an instance. In the subject-oriented approach, the
class associated with each oid can differ from one
subject activation to another. This means that each
subject can specify its own behavior for each object.
What is more, the inheritance relationships among
classes can be different in different subjects.

State Information

State information is retained in instance variables.
Classically, all of an object’s state is treated as a unit,
and is known and accessible to all methods associated
with that object, though it might not all be used by
all of them. In the subject-oriented approach, the
state associated with a particular oid can vary from
one subject to another. In addition, since the subject
really just provides a template for state and behavior,
there can even be be multiple activations of a single
subject, each with its own state for the object.

4. Interactions Among Subjects

Since the model of an object seen by any one subject
is essentially the classical object model, this conven-
tional model is adequate if all subjects remain iso-
lated. The need for a subject-oriented model arises
when dealing with interacting subjects. This inter-
action can take any of several forms:

e A request for function or state change to be
supplied by another subject. Tor example, the

woodsman’s invocation of “cut-down” affects the
tree’s height as well as her own caloric con-
sumption

e Derformance of an activity in which another
subject might participate e.g. the assessor’s esti-
matc of the value of a trce may be reflected by a
private interpretation of the woodsman’s decision
to estimate the effort to cut the tree down,

e  Notification of an occurrence which may be of
intercst to another subject e.g. the bird’s nest-
building activity might influence the woodsman’s
schedule for cutting down the tree

¢ Use of onc subject’s behavior as part of the

“larger” behavior of another ¢.g. the tax assessor
may use the woodsman to cut down many trees
to pay delinquent taxes (perthaps he’s the Shenff
of Nottingham?).

e  Sharing of state, e.g. the bird and the woodsman
might both have the same notion of tree height.

Subijects interact only if they are composed with one
another in a universe. Details of the interaction are
determined by the composition rule. The rest of this
section discusses some of the semantic details of sub-
ject composition.

4.1. Operation Invocation

All code in a subject-oriented framework executes in
the context of a particular subject activation. An op-
eration call can therefore be modelled as a tuple
(a, op, p), where

*  ais the subject activation making the call.

*  op identifies the operation to be performed.

* pis a list of parameters. Some of these parame-
ters will be oids. Some of them will be used to
control operation dispatch, details dependent on
the language used. In many embodiments, the
first parameter will be considered the “controlling
object” or “receiver”, to be used for dispatch.

When an operation is invoked in a subjcct-oriented
mode! it might cause cxecution of methods in multi-
ple subjects. The composition rules control what
happens, so that within a subject-oriented model,
there is freedom to craft and use different composition
rules. It is therefore possible to describe complex
combinations of detailed aspects of the scparate sub-
jects. The most useful composition rules, however,
are likely to be those that are simple and can specify
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briefly some frequently useful ways of combining thc
details of separate subjects.

The simplest composition rule, closest to the rule in
C+ +, Smalltalk or OMG CORBA[23], is perhaps:
“An operation can be dispatched to only a single
subject activation.” However, this rule rather severely
limits the usefulness of composition to preplanned
extension of existing frameworks. An example of a
stimple and more appealing composition rule, called

merge, is:

1. For each subject activation in arbitrary order
{but not in parallel), dispatch the operation
within that activation. This “local” dispatch
within an activation is whatever form of object-
oriented dispatch is provided by the language in
which that activation’s subject is written. When
an operation implementation is dispatched to
within a separate subject, the dispatch is directed
using the receiver’s classification of the object.
Thus dispatch can be based on different classes
in different subjects.

2. If the methods return values, all the return values
must be identical, or an exception is raised.

3. If the operation defines inout parameters, they
may be set by one method and used by the next.
However, the operations performed on them
should be commutative.

These characteristics provide a commutative compo-
sition with the desirable characteristics discussed in
[14]. Tool composition in OOTIS provides a com-
position rule similar to merge, with an cfficient
underlying implementation [ 10].

It is worthwhile to illustrate the way in which the
merge composition rule enables the distributed im-
plementation of an object. Assume, for cxample, that
both the tax assessor and the woodsman arc tracking
the existence of a nest in the tree. The bird, uses op-
erations called make-nest and abandon-nest to per-
form its nest-building work. To track this behavior,
the woodsman and tax assessor each can supply be-
haviors for make-nest and abandon-nest. In the im-
plementations used by the woodsman and tax
assessor, make-nest increments a state variable in their
representation of the tree and abandon-nest decre-
ments the variable. So, each time a bird makes a nest
in a tree, the assessor and woodsman also update their
“mental models” of the tree to record the nesting.
Further, if one or more of the subjects (bird,
woodsman, tax-assessor) provides a has-nest the re-

sult should always be the same, whether the imple-
mentation is supplied locally or by sharing {rom
another subject.

The example rule above, by cycling through all sub-
ject activations, docs not respect subsidiary compos-
itions. An alternative rule, called nesting, treats
compositions as scopes, and allows calls to propagate
beyond scopes only il specified explicitly. A dis-
cusston of nesting is made within the framework of a
more specific model in Section 6. As with merge, tool
composition in OOTIS also provides an efficient im-
plementation for a composition rule similar to nest-
ing.

'These examples should make it clear that many vari-
ations are possible, both subtle and dramatic. FPor-
mulation and efficient implementation of various
composition rules is an intercsting topic for future
rescarch.,

4.2. Object Creation and Initialization

The sharing of behavior among subjects leads to the
fact that creation and initialization behavior must be
shared as well. A request to create an object can be
modelled as a tuple (g, ¢), where

*  ais the subject activation making the rcquest.
* ¢ is the name of a class defined in a’s subject.

For reasons noted below, paramcters specifying initial
values are not permitted in the create request.  Al-
though creation of an object is thus requested by one
subject, other subjects also need to initialize informa-
tion before they operate upon the object.

The steps involved in object creation and initializa-
tion are:

I.  Allocation of an oid from the OID set.

2. Tor cach subject activation, determining the ap-
propriate class.

3. Tor each subject activation, allocating space for
the object’s state

4. Placing the appropriate initial values in the stor-
age allocated.

The creation operation specifies the class to be created
from the point of view of the activation requesting the
creation. Classifying the object within that activation
is straightforward. Classifying the object for the other
subject activations involves class matching across
subjects according to the composition rule. This issuc
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is discussed in Section 5. The composition rule is also
responsible for specifying whether any instance vari-
ables are to be shared across subjects. How this is
accomplished depends on the details of the subject
model and is explained further in Section 6.

The composition rule can use either of two ap-
proaches to the timing of a subject’s initialization of
an object:

e [mmediate initialization, in which all subjccts
participate in the initialization at the time the
object is created. This has the advantage of the
conceptual simplicity of its determinism.

®  Deferred initialization, in which subjects partic-
ipate in initialization of the object only as they
need to respond to an operation on it at later
times. This can have substantial performance
benefits: time is saved by avoiding communi-
cation with numerous and potentially remote
subjects, and space is saved because it is not al-
located unless the subject actually participates in
behavior of the object. Deferred initialization
also facilitates graceful introduction of new sub-
jects that extend existing objects. For these rea-

sons, deferred initialization was selected in
CLORIS[9].

Deferred initialization precludes the use of parameters
to the creation operation for determining initial val-
ues. Such parameters are undesirable in the subject-
oriented context in any case, however, since it would
be undesirable to require addition of parameters to
all creation invocations whenever a new subject arises.
(One might, in fact, argue that the fact that even an
perception of the object’s intrinsic state and behavior
gradually evolves should argue against the use if in-
itialization parameters even in the classical model.
Considerations like this illustrate the value of viewing
even the “intrinsic” object as a subject.)

4.3. State References

When a method within an activation is executing, it
can access only the instance variables that it’s subject
specifies. Note that this subject-oriented approach to
state references provides tighter encapsulation than
classical object-oriented models: only a subset of the
instance variables are accessible to each method, in
general. Methods in different subjects can manipulate
the same instance variables if data sharing between

subjects is done, as described above.
4.4. Points of Agreement

It should be clear from the discussion above that two
arbitrary subjects cannot necessarily be composcd
with any expectation that they will cooperate cffec-
tively. There does nced to be limited agreement be-
tween them:

e Sincc multiple subjects can respond to the same
operation call, there nceds to be agreement
among subjects regarding the opcration inter-
faces. When an operation is called, all relevant
subjects must agree as to what operation it is that
is being called, and must understand the param-
clers. Fach subject contains descriptions of the
interfaces provided for the classes it defines. De-
termining appropriate correspondences among
interfaces uscd by composed subjects is termed
interface matching.

¢ Since one subject can operate upon an object
(oid) that another subject has created, there
needs to be agreement among subjects regarding
the nature of objects. Fach subject contains its
own classification hierarchy. Determining appro-
priate correspondences among classes defined by
composed subjects is termed class matching.

Interface and class matching strategics are dictated by
the composition rule.

Various strategies are possible for interface and class
matching. The simplest and most rigid requires iden-
tity, agrecing on a set of interfaces and a sct of classes
for the whole suite of subjects. Each subject 1s then
written with those global definitions in mind. I'ven
this is less restrictive than the classical model, because
agrecment on classes is rcally only on class names;
cach subjcet is still frec to supply its own state, be-
havior and superclass definitions for cach class.

Nonetheless, identity matching is too rigid to deal
with composition of separate subjects (like pre-
existing applications or applications developed com-
pletely separately) that were not written to
predetermined, global definitions. The more flexible
matching is, the greater the differences it can cope
with, and the more potential there is for composing
diverse subjects.

Both interface matching and class matching are inter-
esting and important areas for future rescarch. We do
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not address interface matching in this paper. The next
section discusses a spectrum of possible approaches
to class matching.

5. Matching Classes Across Subjects

Subject-oriented programming can accommodate the
real-world’s characteristic that different subjects clas-
sify objects in different hierarchies, and that one sub-
ject might manipulate objects that another subject has
not classified at all. Consider, for example, Figure 4.
The bird classifies objects into plants (nectar-
providing plants, inscct-providing plants), nestables,
and predators. The woodsman, on the other hand,
classifies objects into nontrees, and trecs (hardwood
and softwood). This classification represents two
different ways of looking at an underlying instantiable
universe of pine, maple, cherry, dandelion,
woodsman, bird, and object.

Often, diagrams of this sort are used to illustrate the
fact that interface hierarchies are generally not mutu-
ally conformable. The most important thing to real-
ize about this illustration is that we are dealing here,
however, with implementation hierarchies. The bird
subject defines state information and methods needed
for processing plants (nectar-providing plants, insect-
providing plants), nestables, and predators. The
woodsman subject defines state information and
methods needed for processing nontrees, and trees
(hardwood and softwood).

In all examples thus far, we have discussed the inter-
action of subjects in a way that presumed all
instantiable classes for which processing is shared
across subjects are declared and classified by all sub-
jects. This presumption is already less constraining
than the classical object model found in language-
based O-O technology like that provided by C+ +,
which presumes that all classes, not just the
instantiable ones, are declared and similarly classified
by all subjects. However, the constraint is really still
too strong to support the degree of independence de-
sirable in the composition of a community of sub-
jects. Suppose for example, as shown in Figure 5,
that the bird is familiar with locust trees as well as the
others. This may have resulted from the release of
an enhanced bird and may someday be handled by
an enhanced woodsman. But in the available world,
locusts are known in detail only to the bird.
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Two sorts of problems arise: the semantics of coop-
erative operation implementations and the possibility
of direct discovery of objects of unknown classes. Let
us take these in turn.

5.1. Cooperative Operations On an Unknown
Class

When subjects interact in a universe, differences be-
tween their class hicrarchies must be resolved by the
composition rule. Such resolution is essential to cna-
ble each subject’s classification of an object to be set
correctly at the object’s initialization (whether imme-
diate or dcferred).

If the bird nests in a locust, the bird’s shared nestable
behavior will include possible implementations of the
make-nest operation from the woodsman. In conse-
quence, the woodsman will be asked to dispatch this
operation on a locust, a class of which she has no
knowledge.

One way of resolving this undefined situation is to
specify that all such circumstances result in null in-
vocations in the subject. In the absence of the “dis-
covery” situations discussed next, this is a
semantically well-formed, although perhaps unsatis-
factory, definition. It merely makes the subject totally
“blind"” to objects of that class.

This solution is unsatisfactory in that one might ex-
pect the woodsman to treat the locust as other trees.
But, unless the woodsman has some way to under-
stand its tree-ness, she has no way to classify it. In
fact, however, we also need to develop a stronger
solution to treat the cases in which the woodsman is
forced deal with a locust because she stumbles right
over it.

5.2. Discovering Objects Of an Unknown Class

In the course of normal processing, a subject obtains
the identity of an object as the result of a function,
instance variable refercnce, or operation call on an-
other object. If the object is not yet classified by the
subject, some determination must be made as to how
to classify the object so that the operation can be
properly dispatched. Such classification will be based
on information obtained either directly from one or
more other subjects or from the interface definitions
that govern the sharing of objects.



Figure 4 - Two Class Hierarchies over
the Same Instantiable Objects

There are many possible approaches to performing
this classification. Exploration of these possibilities
is an interesting and important area of research. We
begin this exploration by identifying a spectrum of
approaches. The near end of the spectrum, explicit
matching, 15 a simple generalization of today’s
object-oriented repository technology. It acts as a
proof that useful solutions exist. From that known
point we outline several, more speculative approaches
of increasing power: inferred class matching,
interface-based class matching, and operational clas-
sification. Detailed discussion and semantics of these
approaches is beyond the scope of this paper.

Explicit Class Matching

Assume, for example, that the woodsman’s class de-
finitions can share information with the bird’s. We
might assume, that the woodsman’s and bird’s defi-
nitions share not only the instantiable objects, but the
general superclass object and, in addition, that the
bird’s insect-plant class and the woodsman’s tree class
are explicitly matched. Given this knowledge, al-
though locust is not known to the woodsman, it is
known to be a subclass of insect-plant which is
matched with tree which can be used by the
woodsman to define the behavior for locust.

Figure 5 - Two Class Hierarchies over
Different Instantiable Objects

Inferred Class Matching

A less preplanned approach is also possible. Although
locust is undefined in the woodsman’s hierarchy, in
bird it has both insect-providing plant and nestable as
its superclasses. We can determine the set of their
instantiable subclasses to be maple, cherry, and pine.
These are also all subclasses of the woodsman’s tree.
Hence, the inference might reasonably be drawn that
locusts should be treated as trees.

Interface-Based Class Matching

In the discussion thus far, we have treated all of the
non-instantiable classes as though they were com-
plete, placing no behavioral or interface constraints
on their subclasses. If, on the other hand, they are
what are often called abstract classes, then declaning
or inferring that locust is a subclass of tree requires
locust to provide certain behaviors. Since these be-
haviors are clearly not provided by woodsman, they
are required imported behavior.

An alternatlive strategy for inference is to use the
interface definitions rather than the implementation
hierarchy for such an inference, even though the result
is the determination of an implementation class to be
used as the object’s superclass. The reference to
locust was derived with respect to an interface defi-
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Figure 6 - Classification Using Interfaces for a Discovered Object

nition. It would be possible, therefore, to select any
tmplementation class that meets the same interface.
However, in the presence of a shared base of objects,
the relationships among the objects becomes a shared
property. As discussed before, each subject contains
class definitions, one aspect of which is the specifica-
tion of relationship links (pointers) between objects.
These links are defined in terms of the interfaces that
must be supported by the target object of the link.

In the world described by two composed subjects, the
target objects must satisfy the union of the interfaces.
In fact, the object must satisfy all of the interface
constraints imposed by the relationships to it. This
implies that in classifying an unknown instantiable
class, it must be provided with all of the requisite be-
havior. Some behaviors are supplied by one subject
and other behaviors by the other, as illustrated in
Figure 6. Knowledge of the class assigned to the ob-
ject in the other subject allows the determination of
a viable classification for the new class, if one exists.

In the example we illustrate how the woodsman may
be using an operation called access-neighbors to fol-
low the neighbors relationship link from one tree to
another. The woodsman expects to find an object that
mmplements an interface supporting access-neighbor,
make-nest, abandon-nest, and compute-profit. The
woodsman actually encounters a locust which she
does not know how to classify. But examining the
bird’s schema elicits the information that access-
neighbor, make-nest, and abandon-nest. are provided
by the bird. Therefore the locust may safely be clas-
sified under tree because tree defines an implementa-

tion for compute-profit and imports implementations
for the others.

Operational Classification

The classification strategies described thus far can be
thought of as “static,” in that objects of the same class
in one subject always have the same class in other
subjects. This need not be so. A subject’s classifica-
tion of an object could be based on operational tests
made at the time the object is introduced into the
subject’s classification. For example, if trees all sup-
port a wood-density operation, then the woodsman
could classify the locust tree of Figure 5 as hardwood
or softwood rather than simply as tree, and perhaps
different subspecies of locust would be classified dif-
ferently even though birds sec them all as locusts.
Operational classification is one way in which a single
class in one subject may correspond to many classes
in some other subject.

6. A Subject Model

This section presents a model of subject-oricnted
programming for definitional and explanatory pur-
poses; it is not intended to suggest or constrain im-
plementation architecture. Section 7 discusses means
of implementing subject-oriented support efficiently.
Components of the model are illustrated in the con-
text of the tree example in Figure 7.

A subject is modelled as a tuple S=(N,[,D,P)
where:

¢ N is a set of class names
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Figure 7 - A Simple Subject-Oriented Universe

s [ is a set of interfaces, defining operation signa-
tures

*  Dis a class description function, which maps class
names to descriptions of class details, including
instance variable declarations and methods.

e Pis a superclass function, which maps cach class
namne to a sequence of class names representing
its immediate superclasses.

A composition is a tuple (R, ), where

* R is a composition rule, and

e  (is a sequence of components, each of which can
be cither a subject or a subsidiary composition
that includes its own composition rule.

As mentioned above, a great variety of composition
rules is possible. Formalization of such rules is be-
yond the scope of this paper.

A subject-oriented wniverse is a tuple U= (M, A),
where

e M is a composition of subjects. Since nested
composition is supported by the definition
above, a universe can contain an arbitrarily large
tree of subjects.

e 4 =(0ID,SA) is a universe activation consisting
of a global set, OID, of object identifiers (called

oids), and a sct, SA, of subject activations, cach
of which specifics the state associated with cach
oid by each of the subjects in M. There may be
more than one activation of a subject in the
universe.

The key characteristic of a universe is that it is a single
OID space; all the subject activations associate state
with oids in the same space.? This concept of a shared
space of unique identities for the objects can be
somewhat limiting. F'or example, it hinders the simple
inter-operation of a tool that sces a highway as a col-
lection of unidentified lanes and a tool which just sees
the lanes in a non-aggregated manner. However, as a
simplifying concept it parallels the Knowledge-Based
concept of standard names or rigid designators, which
has been found to be a useful simplifying assumption
in that domain as well [7].

A subject activation, often referred to just as an acii-
vation, modcls the actual data manipulated by a par-
ticular subject. It is a tuple 4 = (S, T, C) where:

e Sis the subject

e T is the state function, which maps oids to
structures of addresses of instance variables ma-
nipulated by that subject. The state function is
partial; not all subjects provide state corre-
sponding to all oids.

o Cis the instance_of function, which maps oids to
class names. The class name corresponding to an
oid is the name of the class that describes, from
the point of view of this subject, the statc and
bechavior associated  with  that  oid.  The
instance_of function is also partial.

An object in a subject-oriented universe is really just
an object identifier (0id), an element of the OID set.
Through its T and C mappings, cach subject can as-
sociate ils own state and behavior with cach oid. We
deliberately avoid defining an object as the union of
all this state and bchavior?

The following scctions re-visit some of the discussion
in the earlier Section 3.1, providing more detail and
provision on certain topics.

6.1. Operation Invocation

2 In some implementations, of course, different subjects may employ different representations for the oids.
3 Of course, explicit dependencies can arise when one subject explicitly imports behavior from another to realize its

function.
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When an operation ((a, op,p)) is invoked in a
subject-oriented universe (M, A), where M = (R,
Q), it might cause execution of methods in multiple
subjects. The composition rules in M control what
happens with a great degree of freedom. The entire
tree Q of subsidiary compositions and subjects, in full
detail, is potentially available for use by R.

As mentioned earlier, one such usage is a composition
rule called nesting. Nesting treats compositions as
scopes, and allows calls to propagate beyond scopes
only if specified explicitly. For example:

1. Delegate dispatch of an operation to the lowest
enclosing composition L, in the tree Q, of the
subject whose activation made the call.

2. L performs dispatch as described above.

3. In addition, if explicitly specified by L, the oper-
ation call is “imported”. This causes the next-
higher composition to dispatch the operation
also. By successive imports, dispatch can be
propagated all the way to the top of the tree, but
in their absence, it will be confined to a particular
subtree.

6.2. Object Creation and Initialization

Within the subject model presented here, the steps
involved in object creation and initialization are more
precisely:

1. Allocation of an oid from the OID set.

2. For each subject activation, setting the value of
the C function for the new oid, specifying the
class to which it belongs in that activation.

3. For each subject activation, allocating space for
the state information to be associated with that
oid in that activation, and setting the value of the
T function appropriately.

4. Placing the appropriate initial values in the stor-
age allocated.

Allocation of oids happens globally, and is the re-
sponsibility of the universe activation, independent
of all subjects. The remaining steps come under the
control of the composition rule, so many approaches
are possible.

The creation operation specifies the class to be created
from the point of view of the activation requesting the
creation. However the class to be created for the ob-
ject in each other subject is one of the issues ad-
dressed by the composition rules. As mentioned

earlier, the composition rule is also responsible for
specifying whether any instance variables are to be
shared across subjects. This specification affects the
allocation of storage and the details of the T func-
tions; sharing is accomplished by having the results
of the T functions for different subject activations re-
fer to common addresses.

6.3. State References

The addresscs of the instance variables that a subject’s
activation can manipulate are obtained by means of
the activation’s T function. If T is undefined for the
activation and oid, deferred creation and initialization
must take place as described above.

Tighter encapsulation than that obtained from clas-
sical object-oriented models is possible because only
a the subject’s subset of the instance variables arc ac-
cessible to each method.

7. Considerations in Implementing Efficient
Subject-Oriented Support

7.1. Package Sharing Between Subjects

The division of processing into a multiplicity of sub-
jects should not be presumed to imply high-overhead
implementations in which subjects are implemented
as separate processes or threads, in which operation
invocation involves interpretive overheads, or in
which each subject’s representation for an object im-
plies a separate invocation of memory allocation.

The problems involved in resolving these issues effi-
ciently are similar to those faced in the implementa-
tion of inherited characteristics in conventional
object-oriented languages. For example, in C+ + the
instance information storage requirements of inde-
pendent class elements called superclasses are com-
bined efficiently; similarly, in CLOS mcthod
combinators present potentially complex dispatching
requirements that are solved efficiently.

In efficiently implemented Object-Oriented systems,
these potential inefficiencies are resolved by a defi-
nition processor that uses information derived from
the entire class-definition hicrarchy to aggregate and
optimize functions across class boundaries. For ex-
ample, the C+ + compiler uses the declaration of the
entire class hierarchy to determine the total size
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needed for an object to hold the instance variables in
all of its subclasses.

Similar techniques can be applied to applications
formed from a multiplicity of subjects. Processors like
that used for OOTIS [10] employ a language for de-
fining the subjects and their composition so that op-
timized allocations and linkages can be created. Using
that technology, subjects can be composed into a
single application process with competitive
operation-call costs. The objects manipulated by the
application process contain information for all of the
subjects, but are allocated in single invocations of the
underlying storage allocation mechanism.

7.2. Data Sharing Between Subjects

The division of processing into a multiplicity of sub-
jects should not be presumed to imply drastically in-
efficient duplication of state information among
subjects concerned with an object. As with the use
of more conventional object-oriented technologies,
when a single organizational provider is defining
many classes or subjects, that provider may wish to
exploit agreements about the instance variables in the
implementation of the classes or subjects. These
agreements may avoid the cost of duplicating state
information or of indirect accesses. In C+ +, for ex-
ample, subclasses or friends of a class have direct ac-
cess to public and protected instance information.

These agreements take the form of a shared data
model among subjects. Such shared data models are
common in support frameworks for integrated appli-
cations, and mechanisms like the schema definition set
(SDS) and working schema defined in PCTE [24]
might be used in relating the instance variable defi-
nitions provided by different subjects. In general,
data sharing is specified in composition rules, and can
be implemented efficiently by subject compositors
even if the subjects involved are not developed to-
gether.

7.3. Separate OID Spaces

In a distributed, heterogeneous subject-oriented envi-
ronment, one might expect different activations to
want to store their state in different repositories, with
each repository having control over its own oids. This
scems to be at odds with the requirement imposed by
the subject-oriented model that all activations in a
universe share the same O[D space. However, these

requirements can be reconciled by an implementation
in which the global oids required by the model are
implemented as mappings between the separate oids
provided by the repositories.

7.4. Subject Compositors

Composition rules in the model are abstract specifi-
cations of the semantics of inter-subject interactions.
A subject compositor is a tool that combines subjects
in an environment according to a certain rule or class
of rules. Whereas performance is not an issue when
dealing with rules in the model itself, it is very much
an issue for compositors. Practical composition rules
must be capable of efficient implementation, espe-
cially in cases of frequent interaction, and subject
compositors must be built to ensure high perform-
ance.

There is no need for a subject compositor to be
present at run time. It could perform its work stat-
ically, generating code or stubs that realize inter-
subject interaction according to the desired
composition rule. An approach of this sort is likely
to be necessary to achieve high performance.

A subjcct compositor provides definitions for:

1. the specification and dcfaulting rules for method
combination

2. the strategies for matching interfaces and classes
across subjects

3. the strategies for propagating interactions across
compositions (scoping)

4. the packaging of subjects into threads, processes
and nodes,

5. the packaging of subjects’ object state informa-
tion into databascs and local-id spaces.

8. A Software Development Example Using
Subjects

In this section we prescnt an example to illustrate in
concrete terms some of the key features of the
subject-oriented approach. The example is from the
domain of softwarc development environments, and
subjects are used to accomplish aspects of the tool
integration that is recognized as an important need in
such environments. FEach tool is a subject, with its
own class hierarchy and definitions for the classes.

Figure 8 shows three tools to be eventually integrated
together. Towever, since we wish to present the
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Subijects

gradual enhancement of an environment as an ongo-
ing process, we will introduce the tools one at a time.

The first subject around which the environment is
built is an extended syntactic editor, capable of editing
system structures, specifications, and code, like that
described in [15]. Although the class structure for
such an environment is complex, we will focus on
aspects of three classes: modules, includes, and spec-
ifications. They are scattered about the class hierarchy
because they do not have common implementation
structures. FEach of these classes has its own rich
structure which we will not fully elaborate here, but
it is likely that each will have state of its own, in-
cluding relationships to objects containing more de-
tail. For example, modules will probably have names
and will be related both to their includes and to the
code for the functions implemented in the module.
Includes will probably have names as well, but also
relationships to the declarations contained in the in-
cludes. Specifications may be unnamed primitive el-
ements. For the our example, we will assume that
this subject has been in use for some period of time,
and the development repository has been populated
with large numbers of objects of all sorts.

For illustration, we consider the editor’s handling of
error tracking in more detail. The editor checks on
an ongoing basis the correctness of the modules it is

editing. When errors are discovered or removed, the
set-ervor-status operation is called to update the
ervor-status state variable.

Consider, now, a hypothetical generic project man-
agement subject. This tool employs a class hierarchy
containing ownable items, a subclass of ownable
items called testable items, and a class of objccts
called points for recording test status. We wish to
compose these two subjects to achicve a system
whose syntactically edited modules and includes are
managed by the generic project manager. To do so,
we must specify a composition rule that controls how
the subjects are to interact.

The class hierarchies of the two subjects are quite
different, which is not surprising given the different
nature of the subjects. The composition rule must
define how objects in the already populated reposi-
tory, and any new objects created by the editor, are
to be mapped to the classes defined in the newly in-
troduced subject. This involves matching of classes
across subjects, as discussed in Section 5. Figure 8
indicates this mapping with broken lines across the
class hierarchies in the several subjects. Both includes
and modules are ownable items, but only the modules
are testable. One of the ways that class matching
among subjects differs from simple multiple
inheritance is that in the syntactic editor modules and
includes have no subclass/superclass relationship —
having, in fact, different attributes and/or relation-
ships. On the other hand, testables are a subclass of
ownables. So different answers to a
subclass/superclass test would be given in the project
manager from those in the syntactic editor, even for
the same objects.

One of the consequences of matching class module
with class testable ownable is that any instance of
module that existed before the subject composition
took place is now also an instance of testable. As
such, it has additional operations and instance vari-
ables, as defined in the project manager subject. Ac-
cess to these operations and instance variables is
available through the object’s single oid, the same oid
it had before the composition. However, the new in-
stance variables are directly accessible only to code
within the project manager subject. Subject-oriented
programming thus includes the ability to expand the
operations and state of existing instances.
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The new state information belonging to the generic
project manager needs to be initialized before use,
even though this initialization must necessarily take
place after creation of the original module object by
the editor. The project manager subject is responsible
for this initialization; it must compute the appropriate
values, perhaps using information obtained from the
human user and from other subjects in the composi-
tion via operation call.

The project manager and syntactic editor interact on
the issue of error-status. The project manager main-
tains status information also, but is concerned with
other forms of status than just syntax errors. It
therefore provides more general get-status and set-
staus operations. The desired semantics for the com-
position are that the set-error-status operation of the
editor correspond to the set-status operation of the
project manager, with parameter “syntax-error” indi-
cating the kind of status. This correspondence is an
example of interface matching, mentioned in Section
5.2. The composition rule either defines this corre-
spondence explicitly, or spccifies a strategy by which
it can be determined. Once it has been established,
any call on the editor’s set-error-status operation re-
sults in execution of both the editor’s implementation
of this operation and execution of the project man-
ager’s implementation of set-status, with the appro-
priate additional parameter.

This situation involved matching different operations
in the different subjects. In many cases, the subjects
being combined have similar operational concepts,
such as those being developed in connection with
Case Communiqué[21], in which case interfacc
matching is trivial. Subject-oriented programming
supports both cases, and includes the ability to have
multiple implementations from multiple subjects be
executed in response to a single operation call.

Finally, we consider the introduction of a third sub-
ject — a schedule tracker. This is a PERT-chart-like
application concerned with charts containing chart
items, indicating planned and actual schedule infor-
mation. By identifying the schedule tracker’s chart
items with the generic project manager’s owned items,
we allow the modules and includes to be organized
into PERT-charts. As with the introduction of the
general project manager, no magic applies here; the
schedule dependencies must be constructed by the
schedule tracker itself. We also identify behavior to

be provided for set-status in terms of the

PERT-chart’s set-lateness.

The use of a single object, be it module or include,
through the three subjects lends a unity of manipu-
lation that makes it easier to discuss shared behavior,
and makes it possiblc to add shared behavior without
modification of the individual subjects. The existing
objects acquire more state and behavior as more
subjects arc introduced mto a composition, with the
manner in which the state and behavior are combined
being governed by the composition rule. The com-
position rule, or the compositor, also dictate how
tightly-coupled the subjects should be: linked into a
single program, distributed with cach running on a
separate machine, or various other options. Good
compositor implementation will permit many such
options with no change needed to the subjects them-
selves.

Space does not permit detailed discussion of how this
example would be handled by conventional object-
oriented programming. Sufficc it to say that the
compositions described, if not anticipated by the au-
thors of the subjects, could not be achieved without
source-code modifications to the individual subjeccts.

9. Related Work

9.1. Views of Objects

Part of the motivation behind subject-orientation
arises from the nced for functional-extension within
an object paradigm. To satisfy this need without
widespread change and recompilation requires that
applications have their own views of data, and do not
depend on global definitions.

In PCTE [24], each tool (application) runs within the
context of a working schema, which specifies an or-
dered list of schema definition sets (SDSs). Each SDS
defines a model of some of the data objects manipu-
lated by the tool. An SDS can extend other SDSs,
such as those describing the views of data seen by
other tools. Lxtensions provide additional types of
objects, and additional attributes of and relationships
among both existing and new types. The subject-
oriented models extends this general concept to the
operations and mecthods associated with an object,
and to allowing each subject to have its own classi-
fication hierarchy[ 11].
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Shilling and Sweeney proposed an object-oriented
paradigm exploiting views, in which an object is seen
through a multiplicity of interfaces to the object
[18]. Each interface determines the visibility and
sharing of operations and instance variables. The
subject-oriented approach separates the object inter-
face supported by a subject from its implementation,
relegating issues such as the sharing of state to a
characterization of the subject’s implementation. In
addition, subject-orientation emphasizes the ability
of different subjects to form different behavioral hier-
archies over the objects, rather than consolidating
them within a single class hierarchy.

In some ways, aspects of an object as defined by
Richardson and Schwarz [17] can be modelled as
different subjects providing their own classification
and categorization of the object. In addition, subjects
can provide coordinated aspects for a variety of object
classes.

9.2. Routing Messages

The topic of routing messages from originators to
participants within a suite of integrated tools is ad-
dressed in several generic settings:

Field[ 16]

Field uses message passing as a way to connect tools
in a software development environment. Aimed pri-
marily at the integration of existing tools, Field em-
phasizes the use of one-way notifications created by
encapsulations of the tools. These notifications are
broadcast through a message server that delivers them
destinations that have registered interest by specifying
patterns to be matched by the message and its argu-
ments. This paradigm is being exploited by others
[21] for both event and more general operation de-
livery. The subject-oriented model provides a more
general setting in which message broadcasts can be
seen as one kind of composition (broadcast), but
provides a context for richer connection structures
such as direct or nested connections can be estab-
lished and intermixed.

Tools[ 107 and Toolies[ 6]

The “toolies” model emphasizes the direct routing of
events that are automatically triggered by updates of
data in a shared collection of data, and “tools” em-

4 [23] page 34

phasize the intermix of events and requests. Both
emphasize a reduction in size and monolithicity of the
packages of software that are produced that can ac-
crue from sharing a common shared model of struc-
tured data rather than bulk file manipulation. The
subject-oriented approach continues and extends this
dircction, emphasizing both the need to retain private
(subject-specific) information about shared data and
the need to compose the elements with flexible pack-
aging and dispatching strategies.

9.3. Composition Technology

The role of composition, including inheritance styles
of composition, is increasing in importance, as is the
attention being given to describing and constraining
the compositions.

An Object Request Broker as defined by the Object
Management Group [23] supports objects by routing
messages and by interfacing with Object Adapters that
actually support the implementations. Object Re-
quest Brokers provide support for a uniform repre-
sentation of oids.*. Their dispatching mechanisms are
based on an object registry approach. Subject com-
positions, on the other hand, perform registry of
packaged bechavior for a collection of classes at the
same time. In addition, the subject concept allows
more than one subject to provide state and behavior
for the same object. No requirement exists that the
oid representation be common across all subjects in
a composition. The CORBA specification provides
great latitude for implementations. Within this lati-
tude, some manufacturers have provided Object Re-
quest Brokers not well suited to support of a
subject-oriented methodology, while others have
provided more flexible realizations in anticipation of
the needs of complex cnvironments. The Object Re-
quest Broker is one example of a compositor, but
more powerful ones exist as well.

Class composition, as in “Jigsaw” [1], separates
inheritance from the troika of encapsulation,
polymorphism, and inheritance, in effect depicting
inheritance as one of several operations by which
classes can be composed. /Hierarchy composition [4,
14, 19] extends this concept to collections of classes.
The subject-oriented approach goes a step further by
removing the restriction of having a shared definition
of the inheritance hierarchy.
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The frameworks model for object-oriented design
[20] emphasizes the use of abstract classes which are
extended to form concrete classes by either the im-
plementation or re-implementation of some of the
operations they define.  Well-crafted frameworks
greatly facilitate application development in their
particular domains, but they are subject to two re-
strictions:

*  They can be specialized or extended conveniently
only in those areas specifically designed to be
extended. Yet the framework designer cannot
anticipate all future extension needs.

e  Changing or further subclassing the concrete
classes leads to invalidation of existing objects.
This is especially important when the objects
exist in a persistent, shared store or repository.

The subject-oriented approach overcomes these re-
strictions. Much of the work done on methodologies
for developing and describing frameworks applies to
subject-oriented programming as well.

Contracts [12] provide an abstract way to character-
ize the behavioral interdependencies among a col-
lection of objects. Axiomatic specifications establish
what activities in one object are expected to lead to
what activities in other objects. Within the subject-
oriented model, contracts can be used to characterize
the interdependencics among the objects making up
a subject. The concept can also be usefully extended
to characterizing behavioral interdependencics among
multiple subjects.

Where contracts provide an axiomatic characteriza-
tion describing and constraining the interaction of
objects, the law-governed systems approach specifies
the detailed semantics of interactions by means of a
law [13]. As with the contracts model, the same
similes can be applied to messages between subjects
about an object as can be applied to messages be-
tween objects within a subject. In fact, the composi-
tion rule, R, can be seen as the “law” of a subject
composition, (R, Q).

10. Conclusion

The “software chip” is one of the Holy Grails of
software development. (Holy Grails are somewhat
larger than silver bullets). Objects and classes have
been seen as the software chip [3], but a class is too

small a package of functionality to play this role. In
a sense, objects and classes are more like circuits, or
what the hardware designers call “macros”. We be-
lieve that subjects are far more likely to play the role
of software chips as the next higher-order software
building blocks in the sequence of procedure, class,
and subject. In many rcspects, a subject can be
viewed as the software equivalent of the hardware
micro-chip, with the subjeet compositor providing a
way of manufacturing the software equivalent of cir-
cuit boards.

The subject-oriented approach brings into focus and
provides a model within which to explore a number
of important issues associated with software compo-
sition:

s Composition rules and compositors

s Object creation/initialization and
finalization/deletion protocols

¢ Interface and class matching, leading eventually
to matching for applications that usc drastically
different models of common domains.

¢ Implementation issues, including efficiency, dis-
tribution and multiple O/D spaces.

We expect the development of subject compositors
to be an important arca of research and development
over the next few years. The development of a subject
compositor along the lines of the one described for
OOTIS {107 1s proceeding at IBM’s T. ). Watson
Research Center to support the use of a subject-
oriented style and to further the exploration of this
domain.
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