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Abstract 

Object-Oriented technology is often described in 
terms of an interwoven troika of themes: 
encapsulation, polymorphism, and inheritance. But 
these themes are firmly tied with the concept of iden- 
tity. If object-oriented technology is to be successfully 
scaled from the development of independent applica- 
tions to development of integrated suites of applica- 
tions, it must relax its emphasis on the objecf. The 
technology must recognize more directly that a mul- 
tiplicity of subjective views delocalizes the concept of 
object, and must emphasize more the binding concept 
of identity to tie them together. 

This paper explores this shift to a style of object- 
oriented technology that emphasizes the subjective 
views: Subject-Oriented Programming. 

1. Introduction 

Figure 1 illustrates the definition of a tree in a com- 

monly accepted way of thinking about objects, 

sometimes called the classical model [22]. In this 

model, a tree is defmed by defining a class, the class 

of all trees, in terms of internal state information and 

methods that can be applied. Proponents of the ad- 

vantages of data abstraction, a form of encapsulalion, 
emphasize the fact that client programs manipulating 

these trees do so only through the exposed 

operations. 
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Ideally, the designer of such an object-oriented tree 

defines and works with the intrinsic properties and 

behavior of a tree. In the real-world, properties of a 
tree like its height, cell-count, density, leaf-mass, etc. 

are intrinsic propcrtics. Intrinsic behaviors include 

things like growth, photosynthesis, and other behav- 

iors that affect the intrinsic properties. 

This ideal classical model is utterly inadequate to deal 

with the construction of large and growing suites of 

applications manipulating the objects. Designers of 

such suites are forced either to forego advantages of 

the object-oriented style or to anticipate all future 

applications, treating all extrinsic information as 

though it were intrinsic to the object’s nature. Figure 

2 shows an example of the situation that gives rise to 

this pressure. In it, we see that a tax-assessor has his 

own view of characteristics and behaviors associated 

with a tree. The characteristics include its contrib- 

ution to the assessed value of the property on which 

it grows. The behaviors include the methods by which 

this contribution is derived. These methods may vary 

from tree-type to tree-type. In fact, such methods may 

form part of a tax assessor’s view of all objects, tree 

and non-tree alike. These characteristics and behav- 

iors are extrinsic to trees. They form part of an 

assessor’s subjective view of the object-oriented tree. 

With the classical object model, the designer of the 

tax-assessor application is faced with one of two 

choices. On one hand, the application can be con- 

structed as a &en/ using the encapsulated methods 

but forgoing the advantages of encapsulation and 

polymorphism for the tax assessor application’s state 

and methods. On the other hand, the application’s 

function could be integrated into the same tree class 

manipulated by other applications; in effect, treating 

OqPSLA’93, pp. 411-428 
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Figure 1 - An Object-Oriented Tree 

the extrinsic characteristics of the tax-assessor appli- 

cation as though they were intrinsic to trees. 130th 

choices are objectionable. 

Figure 3 illustrates how unmanageable the latter ap- 

proach is by reminding us that tax-assessor is merely 

one of a suite of applications, each of which has its 

own subjective view, its own extrinsic state and be- 

havior for the tree. 

Although the theme of subjects in anthropomorphic 

terms is illustrative, we should not lose sight of its 

importance in tool and application integration set- 

tings. The tree could easily be a node in a parse tree, 

the bird an editor, the assessor a compiler, and the 

woodsman a static-semantic analysis tool. Each of 

these tools defmes its own state and methods on the 

parse-tree nodes, e.g. the editor has display status, the 

compiler has associated code expansions, and the 

checker has use-definition chains. 

Either the developers of these applications cannot 

encapsulate their own state and behavior with the 

parse-tree node to gain the advantages of 
encapsulation and polymorphism, or the system de- 

signer must manage an ever-expanding collection of 

extrinsic state and behavior becoming part of the in- 

trinsic node. In fact, in the presence of market pres- 
sure to adopt applications provided by vendors rather 

than do all development in-house, the defnler of the 

node faces the impossible task of anticipating all fu- 

ture extrinsic requirements. This burden demands a 

Figure 2 - A Tax Assessor’s View of the Tree 

more powerful model than the classical object model 

in order to facilitate the devclopmcnt of application 

suites. We propose .rul,jccl-oricnld prr~grarnmit~~q as 

such a model. 

Section 2 outlines the goals of subject-oriented pro- 

gramming. Section 3 then provides an ovcrvicw of 

subjects, and sections 4 and 5 discuss aspects of sub- 

ject interaction. Section 6 then describes a model of 

subjects, and claboratcs some details in terms of the 

model. Section 7 discusses considerations in imple- 

menting efficient support for suhjcct-oriented pro- 

gramming. Section 8 provides a more concrctc 

example of the use of subjects in defining software 

development environments, and Section 9 discusses 

related work. 

2. Goals 

The overall goal of subject-oricntcd programming is 

to facilitate the development and evolution of suites 

of cooperating applications. Applications coopcrate 

both by sharing objects and by jointly contributing 

to the execution of operations. ‘l‘hc following re- 

quirements arc important in this context: 

0 It must bc possible to develop applications scp- 

aratcly and then compost them. 
. The separately developed applications should not 

riced to bc explicitly depcndcnt on the other ap- 

plications they arc to be composed with. 
. ‘T’hc composed applications might coopcratc 

loosely or closely, and might bc tightly hou~~cl for 
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Figure 3 - Many Subjective Views of an Object-Oriented Tree 

frequent, fast interaction, or be widely distrib- 

uted. 
. It must be possible to introduce a new applica- 

tion into a composition without requiring mod- 

ification of the other applications, and without 

invalidating persistent objects already created by 

them. Ideally, even recompilation of the appli- 

cations should not be required, except to facili- 

tate global optimization if desired. 
0 Unanticipated new applications, including new 

applications that serve to extend existing appli- 

cations in unanticipated ways, must be sup- 

ported. The notion of extending an application 

by writing an “extension application” and com- 

posing it with the base application is discussed in 

detail in [ 141. 
. Within each application the advantages of 

encapsulation, polymorphism and inheritance - 

object-oriented programming - must be re- 

tained. 

These requirements and their relationship to object- 

oriented technology are discussed in more detail in 

[lo]. As illustrated in Section 1, the classical object 

model does not satisfy them. 

In the subject-oricntcd paradigm, each application is 

a subject or a composition of subjects: it defines just 

the state and hchavior pertinent to the application it- 

self, usually fragments of the state and behavior of 

collections of relevant classes. As discussed in the rest 

of this paper, the semantics of subject composition 

and interaction ensure that the requirements listed 

above arc satisfied. 

3. Subjects 

This section discusses general characteristics of 

subject-oricntcd programming without introducing a 

specific model. Recausc the use of a more format or 

detailed model makes discussion more precise, how- 

ever, Section 6 will introduce such a model and re- 

visit some of the topics addressed in this section in 

some more detail. 

We USC the term .rul,jecl to mean a collection of state 

and behavior specifications reflecting a particular 

gestalt, a perception of the world at large, such as is 

seen by a particular application or tool.’ Thus, al- 

though for smoothness of flow we may occasionally 

speak of subjects as individuals, they are not the in- 

dividuals thcmsclvcs, but the gcncralized perception 

t The term “subject” differs somewhat from its use by Coad and Yourdon [Z], although both usages share the idea or 

reflecting a smaller, more l’ocussed perception of a complex shared model. We avoided the similar term “view” in order 

to emphasize the stronger philosophical similarity with non-classical philosophical trends thal emphasize the idea that 

subjective perception is more than just a view filtering of some objective reality. The perception adds to and trans- 

forms that reality so that the world as perceived by a body of perceptive agents is more than the world in Isolation. 
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of the world shared by some individuals. Similarly, 

subjects are not classes. They may introduce new 

classes into the universe, but subjects generally de- 

scribe some of the state and behavior of objects in 

many classes. 

One often thinks of particular state and behavior as 

being intrinsic to an object: the state and behavior 

that describe its essential characteristics, as opposed 

to additional state and behavior associated with it by 

various subjects. For example, the height, weight and 

other attributes and behavior associated with trees in 

Figure 1 might be considered intrinsic to trees, 

whereas the other attributes and behavior such as as- 

sessed value and sale price are not. In the subject- 

oriented model there is no special status accorded to 

the intrinsic properties. The developer is free, if she 
chooses, to have a subject that implements the in- 

trinsic properties of one or more classes of objects, 

and to require that any manipulation of the intrinsic 

properties employ that particular subject to carry it 

out. 

The essential characteristic of subject-oriented pro- 

gramming is that different subjects can separately de- 

fme and operate upon shared objects, without any 

subject needing to know the details associated with 

those objects by other subjects. Only object identity 

is necessarily shared. 

A subject is definitional or schematic - it corresponds 

to a traditional (though usually incomplete) class hi- 

erarchy, describing the interfaces and classes known 

to this subject. A subject does not itself contain any 

state. 

3.1. Activations and Compositions of Subjects 

A subject activation, often referred to just as an acti- 
vation, provides an executing instance of a subject, 

including the actual data manipulated by a particular 

subject. 

Subjects can be combined to form cooperating groups 

called compositions. The composition also defines a 

rule, the composition rule that specifies in detail how 

the components are to be combined; for example, 

how methods from different subjects for the same 

operation and class are to be combined, and whether 

nested compositions form separate scopes or are a!l 

combined into a single scope. A great variety of 

composition rules is possible, and some cxamplcs will 

be given in subsequent sections. 

In distributed systems, subject activations may be 

separated in space and time, and state changes to in- 

dependent subject activations of an object may occur 

in separate transactions. This makes even the concept 

of a unified “state of the object” inaccurate and mis- 

leading. A vital aspect of subject-oriented program- 

ming is that it be possible to extend subjects and to 

introduce new subject activations without disrupting 

others. It is therefore important that ncithcr source 

nor object code rely on the global “state of the 

object” or on its format. 

Accordingly, we use t.hc term object-identifier or oid 
to mean the globally known unique identification of 

the object as it appears in the context of one or more 

subjects of interest. In the context of a particular 

subject, we also use object to mean the state and be- 

havior associated with an object identifier by that 

subject. Similarly, there is no global concept of class: 

each subject contains class descriptions that describe 

state and behavior from that subject’s point of view. 

Aspects of a this way of manipulating objects will bc 

expanded and explored in the following sections, in 

the course of explaining the features of subjcct- 

oriented programming. As mcntioncd, a more precise 

but also more particular model will be introduced 

later in Section 6. 

3.2. Relationship to O-O Technology 

The classical object model is, in many respects, the 

model of objects seen by any one subject. Within a 

subject, an object has an implementation class that 

defines the implementation of behaviors provided for 

the various operations supported by the object and 

the state information needed by these implcmcnta- 

tions. Subject-oriented programming thus includes 

object-oriented programming as one of its tcchnolog- 

ical elements. 

Interfaces 

Interfaces describe in abstract terms the operations 
that a class of objects supports. Variables that point 

to objects , whether instance variables of objects, 

static or dynamic program variables or paramctcrs, 

are declared in terms of the interfaces their contents 

must support, rather than in terms of specific classes. 
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-I-1Lis ayprwa& lea& Lu tjrt;irter encapsulation, and 

hence to greater flexibility and reuse. It is being in- 

creasingly accepted within the object-oriented com- 

munity [S, 231. Even in languages such as C + f that 

do not explicitly require separate interfaces, con- 

ventions arc frequently adopted that amount to using 

certain classes (abstract base classes in C + +) as 

interfaces. Separation of interface definition from 

implementation characterization is of even greater 

importance in subject-oriented programming, because 

interfaces are a point of agreement between separate 

subjects as to the operations that are available on an 

oid, without one subject needing to have any access 

at all to the class hierarchy describing the implemen- 

tations provided by another subject. 

Beha viov 

Behavior is specified by means of methods, which are 

the actual code implementing operations on specific 

classes of objects. In classical class-based models, all 

methods are associated, either explicitly or by 

inheritance, with the single class of which the object 

is an instance. In the subject-oriented approach, the 

class associated with each oid can differ from one 

subject activation to another. This means that each 

subject can specify its own behavior for each object. 

What is more, the inheritance relationships among 

classes can be different in different subjects. 

State Information 

State information is retained in instance variables. 
Classically, all of an object’s state is treated as a unit, 

and is known and accessible to all methods associated 

with that object, though it might not all be used by 

all of them. In the subject-oriented approach, the 

state associated with a particular oid can vary from 

one subject to another. In addition, since the subject 

really just provides a template for state and behavior, 

there can even be be multiple activations of a single 

subject, each with its own state for the object. 

4. Interactions Among Subjects 

Since the model of an object seen by any one subject 

is essentially the classical object model, this convcn- 

tional model is adequate if all subjects remain iso- 

lated. The need for a subject-oriented model arises 

when dealing with interacting subjects. This inter- 

action can take any of several forms: 

. A request for function or state change to be 

supplied by another subject. For example, the 

woodsman’s invocation of “cut-down” affects the 

tree’s height as well as her own caloric con- 

sumption 
Performance of an activity in which another 

subject might participate e.g. the assessor’s csti- 

mate of the value of a tree may be reflected by a 

private interpretation of the woodsman’s decision 

to estimate the effort to cut the tree down, 

Notification of an occurrcncc which tnay hc of 

intcrcst to another subject e.g. the bird’s ncst- 

building activity might influence the woodsman’s 

schedule for cutting down the tree 

llse of one subject’s behavior as part of the 

“larger” behavior of another e.g. the tax assessor 

may use the woodsman to cut down many trees 

to pay delinquent taxes (perhaps he’s the Sheriff 

of Nottingham?). 

Sharing of state, e.g. the bird and the woodsman 

might both have the same notion of tree height. 

Subjects interact only if they are composed with one 

another in a universe. I>etails of the interaction are 

determined by the composition rule. The rest of this 

section discusses some of the semantic details of sub- 

ject composition. 

4.1. Operatiou Invocatiou 

All code in a subject-orient4 framework executes in 

the context of a particular subject activation. An op- 

eration call can thcrcfore bc modclled as a tuple 

(a, OP, P), where 

. a is the subject activation making the call. 
l op identifies the operation to be performed. 
. p is a list of parameters. Some of these parame- 

ters will bc oids. Some of them will be used to 

control operation dispatch, details dcpendcnt on 

the language used. In many embodiments, the 

first parameter will be considered the “controlling 

object” or “receiver”, to be used for dispatch. 

When an operation is invoked in a subject-oriented 

model it might cause cxccution of methods in multi- 

ple subjects. ‘I’he composition rules control what 

happens, so that within a subject-oriented model, 

there is freedom to craft and use different composition 

rules. It is therefore possible to describe complex 
combinations of detailed aspects of the separate sub- 

jects. The most useful composition rules, however, 
are likely to be those that are simple and can specify 
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briefly some frequently useful ways of combining the 

d&ails of separate subjects. 

The simplest composition rule, closest to the rule in 

C+ -!- , Smalltalk or OM<; COIiI~A[23], is perhaps: 

“An operation can be dispatched to only a single 

subject activation.” IIowever, this rule rather sevcrcly 

limits the usefulness of composition to preplanned 

extension of existing frameworks. An example of a 

simple and more appealing composition rule, called 

merge, is: 

1. For each subject activation in arbitrary o&r 

(but not in parallel), dispatch the operation 

within that activation. This “local” dispatch 

within an activation is whatever form of objcct- 

oriented dispatch is provided by the language in 

which that activation’s subject is written. When 

an operation implementation is dispatched to 

within a separate subject, the dispatch is dircctcd 

using the receiver’s classifcation of the object. 

Thus dispatch can be based on different classes 

in different subjects. 

2. If the methods r&urn values, all the return values 

must be identical, or an exception is raised. 

3. If the operation defines inour parameters, they 

may be set by one method and used by the next. 

IIowever, the operations performed on them 

should be commutative. 

These characteristics provide a commutative compo- 

sition with the desirable characteristics discussed in 

[14]. Tool composition in OOTIS provides a com- 

position rule similar to merge, with an cflicient 

underlying implementation [lo]. 

It is worthwhile to illustrate the way in which the 

merge composition rule enables the distributed im- 

plementation of an object. Assume, for example, that 

both the tax assessor and the woodsman arc tracking 

the existence of a nest in the tree. Ihc bird, uses op- 

erations called make-nest and abandon-nest to per- 

form its nest-building work. To track this behavior, 

the woodsman and tax assessor each can supply be- 

haviors for make-nest and abandon-nest. In the im- 

plementations used by the woodsman and tax 

assessor, make-nest increments a state variable in their 

representation of the tree and abandon-nest dccrc- 

ments the variable. So, each time a bird makes a nest 

in a tree, the assessor and woodsman also update their 

“mental models” of the tree to record the nesting. 

Further, if one or more of the subjects (bird, 

woodsman, tax-assessor) provides a has-nest the rc- 

sult should always bc the same, whether the imple- 

mentation is supplied locally or hy sharing from 

another subject. 

‘I‘he cxamplc rule above, by cycling through all sub- 

ject activations, dots not respect subsidiary compos- 

itions. An altcrnativc rule, calicd rtcslirzg, treats 

composilions as scopes, and allows calls to propagate 

beyond scopes only if specilicd rxplicitly. A dis- 

cussion of nesting is made within the framework of a 

more specific model in Section 6. As with mcrgc, tool 

composition in OO’I’IS also provides an cflicicnl im- 

plementation for a composition rule similar to ncst- 

ing. 

‘I‘hcse cxamplcs should make it clear that many vari- 

ations arc possible, both subtle and dramatic. t;or- 

mulation and cficicnt implcmcntntion of various 

composition rules is an interesting topic for future 

rcscarch. 

4.2. Object Creation and Initialization 

‘I’he sharing of behavior among suhjccts leads to the 

fact that creation and initialization bchnvior tnust bc 

shared as well. A rcqucst to crcatc an object can he 

modcllcd as a tuplc (Q, c), whcrc 

. a is the subject activation making the rcqucst. 

. c is the name of a class dcfincd in (z’s subject. 

For reasons nolecl below, paramctcrs specifying initial 

values arc not pcrtnitted in the create request. Al- 

though creation of an object is thus rcquestcd by one 

subject, other subjects also riced to initiali%c informa- 

tion before they opcratc upon the object. 

The steps involved in object creation and initializa- 

tion arc: 

1. Allocation of an oid from the 0111 set. 

2. I;or each subject activation, dctcrmining the ap- 

propriate class. 

3. I:or each subject activation, allocating space for 

the object’s state 

4. Placing the appropriate initial values in the stor- 

age allocated. 

‘I’he creation operation specifics the class to bc created 

from the point of view of the activation rcqucsting the 
creation. Classifying the object within that activation 

is straightforward. Classifying the ohjcct for the other 

subject activations itivolvcs class tnatching across 

subjects according to the composition rule. This issue 
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is discussed in Section 5. The composition rule is also 

responsible for specifying whether any instance vari- 

ables are to be shared across subjects. 110~ this is 

accomplished depends on the details of the subject 

model and is explained further in Section 6. 

The composition rule can use either of two ap- 

proaches to the timing of a subject’s initialization of 

an object: 

. Immediate initialization, in which all subjects 

participate in the initialization at the time the 

object is created. This has the advantage of the 

conceptual simplicity of its determinism. 
. Deferred initialization, in which subjects pat-tic- 

ipatc in initialization of the object only as they 

need to respond to an operation on it at later 

times. This can have substantial performance 

benefits: time is saved by avoiding communi- 

cation with numerous and potentially remote 

subjects, and space is saved because it is not al- 

located unless the subject actually participates in 

behavior of the object. Dcferrcd initialization 

also facilitates graceful introduction of new sub- 

jects that extend existing objects. For these rea- 

sons, deferred initialization was selected in 
CL,ORIS[9]. 

Deferred initialization precludes the use of parameters 

to the creation operation for determining initial val- 

ues. Such parameters are undesirable in the subject- 

oriented context in any case, however, since it would 

be undesirable to require addition of p‘arametcrs to 

all creation invocations whenever a new subject arises. 

(One might, in fact, argue that the fact that even an 

perception of the object’s intrinsic state and behavior 

gradually evolves should argue against the use if in- 

itialization parameters even in the classical model. 

Considerations like this illustrate the value of viewing 

even the “intrinsic” object as a subject.) 

4.3. State References 

When a method within an activation is executing, it 

can access only the instance variables that it’s subject 

specifies. Note that this subject-oriented approach to 

state references provides tighter encapsulation than 

classical object-oriented models: only a subset of the 

instance variables are accessible to each method, in 
general. Methods in different subjects can manipulate 

the same instance variables if data sharing between 

suhjccts is done, as described above. 

4.4. Points of Agreement 

It should be clear from the discussion above that two 
arbitrary subjects cannot necessarily be composed 

with any cxpcctation that they will cooperate cffcc- 

tively. There does need to bc limited agreement be- 

tween them: 

. Since multiple subjects can respond to the same 

operation call, thcrc needs to bc agrccmcnt 

among subjects regarding the operation inter- 

faces. When an operation is called, all relevant 

subjects must agree as to what operation it is that 

is being called, and must understand the param- 

cters. Each subject contains descriptions of the 

intcrfaccs provided for the classes it defines. De- 

termining appropriate correspondences among 

interfaces used by cotnposcd subjects is tcrtned 

interface matching. 
Since one subject can operate upon an object 

(oid) that another subject has created, there 

needs to be agreement among subjects regarding 

the nature of objects. Lath subject contains its 

own classification hierarchy. Dcterrnining appro- 

ptiatc correspondences among classes defined by 

composed subjects is termed class matching. 

Interface and class matching stratcgics arc dictated by 

the composition rule. 

Various strategies arc possible for interface and class 

matching. The simplest and most rigid requires idcn- 

tity, agreeing on a set of interfaces and a set of classes 

for the whole suite of subjects. Each subject is then 

written with those global definitions in mind. liven 

this is less restrictive than the classical model, because 

agreement on classes is really only on class names; 

each subject is still fret to supply its own state, be- 

havior and superclass definitions for each class. 

Nonetheless, identity matching is too rigid to deal 

with composition of separate subjects (like pre- 

existing applications or applications devclopcd com- 

pletely separately) that were not written to 

predetermined, global definitions. ‘I’hc tnorc flexible 

matching is, the greater the differences it can cope 

with, and the more potential there is for composing 

diverse subjects. 

Both interface matching and class matching are inter- 

esting and important areas for future research. We do 
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not address interface matching in this paper. The next 

section discusses a spectrum of possible approaches 

to class matching. 

5. Matching Classes Across Subjects 

Subject-oriented programming can accommodate the 

real-world’s characteristic that different subjects clas- 

sify objects in different hierarchies, and that one sub- 

ject might manipulate objects that another subject has 

not classified at all. Consider, for example, Figure 4. 

The bird classifies objects into plants (nectar- 

providing plants, insect-providing plants), nestables, 

and predators. The woodsman, on the other hand, 

classifies objects into nontrees, and trees (hardwood 

and softwood). This classification represents two 

different ways of looking at an underlying instantiable 

universe of pine, maple, cherry, dandelion, 

woodsman, bird, and object. 

Often, diagrams of this sort are used to illustrate the 

fact that interface hierarchies are generally not mutu- 

ally conformable. The most important thing to real- 

ize about this illustration is that we are dealing here, 

however, with implementation hierarchies. The bird 
subject defnles state information and methods needed 

for processing plants (nectar-providing plants, insect- 

providing plants), nestables, and predators. The 

woodsman subject defines state information and 

methods needed for processing nontrees, and trees 

(hardwood and softwood). 

In all examples thus far, we have discussed the inter- 

action of subjects in a way that presumed all 

instantiable classes for which processing is shared 

across subjects are declared and classified by all sub- 

jects. This presumption is already less constraining 

than the classical object model found in language- 

based O-O technology like that provided by C+ + , 

which presumes that all classes, not just the 

instantiable ones, are declared and similarly classified 

by all subjects. However, the constraint is really still 

too strong to support the degree of independence de- 

sirable in the composition of a community of sub- 

jects. Suppose for example, as shown in Figure 5, 

that the bird is familiar with locust trees as well as the 

others. This may have resulted from the release of 

an enhanced bird and may someday be handled by 

an enhanced woodsman. But in the available world, 

locusts are known in detail only to the bird. 

Two sorts of problems arise: the semantics of coop- 

erative operation implementations and the possibility 

of direct discovery of objects of unknown classes. I,et 

us take these in turn. 

5.1. Cooperative Operations On an Unknown 

Class 

When subjects interact in a universe, diffcrcnces be- 

tween their class hierarchies must bc resolved by the 

composition rule. Such resolution is essential to cna- 

ble each subject’s classification of an object to bc set 

correctly at the object’s initialization (whether itnme- 

diate or dcferrcd). 

If the bird nests in a locust, the bird’s shared ncstablc 

behavior will include possible implementations of the 

make-nest operation from the woodsman. In conse- 

quence, the woodsman will be asked to dispatch this 

operation on a locust, a class of which she has no 

knowledge. 

One way of resolving this undefined situation is to 

specify that all such circumstances result in null in- 

vocations in the subject. In the absence of the “dis- 

covery” situations discussed next, this is a 

semantically well-formed, although perhaps unsatis- 

factory, definition. It tnerely makes the subject totally 

“blind” to objects of that class. 

‘I’his solution is unsatisfactory in that one might ex- 

pect the woodsman to treat the locust as other trees. 

But, unless the woodsman has some way to under- 

stand its tree-ness, she has no way to classify it. In 

fact, however, we also need to develop a stronger 

solution to treat the cases in which the woodsman is 

forced deal with a locust bccausc she stumbles right 

over it. 

5.2. Discovering Objects Of an Unknown Class 

In the course of normal processing, a subject obtains 

the identity of an object as the result of a function, 

instance variable reference, or operation call on an- 

other object. If the object is not yet classified by the 

subject, some determination must be made as to how 

to classify the object so that the operation can be 

properly dispatched. Such classification will be based 

on information obtained either directly from one or 

more other subjects or from the interface definit.ions 

that govern the sharing of objects. 

418 



Figure 4 - Two Class IIierarchies over 

the Same Instantiable Objects 

There are many possible approaches to performing 

this classification. Exploration of these possibilities 

is an interesting and important area of research. We 

begin this exploration by identifying a spectrum of 

approaches. The near end of the spectrum, explicit 

matching, is a simple generalization of today’s 

object-oriented repository technology. It acts as a 

proof that useful solutions exist. From that known 

point we outline several, more speculative approaches 

of increasing power: inferred class matching, 

interface-based class matching, and operational clas- 

sification. Detailed discussion and semantics of these 

approaches is beyond the scope of this paper. 

Explicit Class Matching 

Assume, for example, that the woodsman’s class de- 

finitions can share information with the bird’s. WC 

might assume, that the woodsman’s and bird’s de& 

nitions share not only the instantiable objects, but the 

general superclass object and, in addition, that the 

bird’s insect-plant class and the woodsman’s tree class 

are explicitly matched. Given this knowledge, al- 

though locust is not known to the woodsman, it is 

known to be a subclass of insect-plant which is 

matched with tree which can be used by the 

woodsman to define the behavior for locust. 

Figure 5 - Two Class IIierarchies over 

Different Instantiable Objects 

infevved Class Matching 

A less preplanned approach is also possible. Although 

locust is undefined in the woodsman’s hierarchy, in 

bird it has both insect-providing plant and nestable as 

its superclasses. We can determine the set of their 

instantiable subclasses to be maple. cherry, and pine. 

These arc also all subclasses of the woodsman’s tree. 

Hence, the inference might reasonably be drawn that 

locusts should be treated as trees. 

Intevface-Based CIass Matching 

In the discussion thus far, we have treated all of the 

non-instantiablc classes as though they were com- 

plete, placing no behavioral or interface constraints 

on their subclasses. If, on the other hand, they are 

what are often called abstract cl~rscr, then declaring 

or inferring that locust is a subclass of tree requires 

locust to provide certain behaviors. Since these be- 

haviors are clearly not provided by woodsman, they 

are required imported behavior. 

An alternative strategy for inference is to use the 

interface dcfmitions rather than the implementation 

hierarchy for such an inference, even though the result 

is the determination of an implementation class to be 

used as the object’s superclass. The refcrencc to 

locust was derived with respect to an interface deli- 
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Figure 6 - Classification Using Interfaces for a Discovered Object 

nition. It would be possible, therefore, to select any 

implementation class that meets the same interface. 

However, in the presence of a shared base of objects, 

the relationships among the objects becomes a shared 

property. As discussed before, each subject contains 

class defmitions, one aspect of which is the specifica- 

tion of relationship links (pointers) between objects. 

These links are defined in terms of the interfaces that 

must be supported by the target object of the link. 

In the world described by two composed subjects, the 

target objects must satisfy the union of the interfaces. 

In fact, the object must satisfy all of the interface 

constraints imposed by the relationships to it. This 

implies that in classifying an unknown instantiable 

class, it must be provided with all of the requisite be- 

havior. Some behaviors are supplied by one subject 

and other behaviors by the other, as illustrated in 

Figure 6. Knowledge of the class assigned to the ob- 

ject in the other subject allows the determination of 

a viable classification for the new class, if one exists. 

In the example we illustrate how the woodsman may 

be using an operation called access-neighbors to fol- 

low the neighbors relationship link from one tree to 

another. The woodsman expects to find an object that 

implements an interface supporting access-neighbor, 
make-nest, abandon-nest, and compute-profit. The 

woodsman actually encounters a locust which she 

does not know how to classify. But examining the 

bird’s schema elicits the information that access- 
neighbor, make-nest, and abandon-nest. are provided 

by the bird. Therefore the locust may safely be clas- 

sified under tree because tree defines an implementa- 

tion for compute-profit and imports implementations 

for the others. 

Opevational Classification 

The classification strategies described thus far can be 

thought of as “static, ” in that objects of the same class 

in one subject always have the same class in other 

subjects, This need not be so. A subject’s classilica- 

tion of an object could be based on operational tests 

made at the time the object is introduced into the 

subject’s classification. For example, if trees all sup- 

port a wood-density operation, then the woodsman 

could classify the locust tree of Figure 5 as hardwood 

or softwood rather than simply as tree, and perhaps 

different subspecies of locust would be classified dif- 

ferently even though birds see them all as locusts. 

Operational classification is one way in which a single 

class in one subject may correspond to many classes 

in some other subject. 

6. A Subject Model 

This section presents a model of subject-oriented 

programming for definitional and explanatory pur- 

poses; it is not intended to suggest or constrain im- 

plementation architecture. Section 7 discusses means 

of implementing subject-oriented support efficiently. 

Components of the model are illustrated in the con- 

text of the tree example in Figure 7. 

A subject is modelled as a tuplc S = (N, I, I), P) 

where: 

0 N is a set of class names 
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Figure 7 - A Simple Subject-Oriented Ilniverse 

. I is a set of interfaces, defining operation signa- 

tures 
. D is a class descriptionfunction, which maps class 

names to descriptions of class details, including 

instance variable declarations and methods. 
. P is a superclass function, which maps each class 

natne to a sequence of class names representing 

its immediate superclasses. 

A composition is a tuple (R, Q), where 

. R is a composition rule, and 

l Q is a sequence of components, each of which can 
be either a subject or a subsidiary composition 

that includes its own composition rule. 

As mentioned above, a great variety of composition 

rules is possible. Formalization of such rules is be- 

yond the scope of this paper. 

A subject-oriented universe is a tuple iJ = (M, A), 

where 

. h4 is a composition of subjects. Since nested 

composition is supported by the definition 

above, a universe can contain an arbitrarily large 

tree of subjects. 

l A = (OiLI, SA) is a universe activation consisting 

of a global set, Ofi), of object identifiers (called 

oids), and a set, SA, of sulject activations, each 

of which specifics the state associated with each 

oid by each of the subjects in M. There may be 

more than one activation of a subject in the 

universe. 

The key characteristic of a universe is that it is a single 

<III) space; all the subject activations associate state 

with oids in the same spacc2 This concept of a shared 

space of unique identities for the objects can be 

somewhat limiting. For cxatnplc, it hinders the simple 

inter-operation of a tool that SCM a highway as a col- 

lection of unidentified lanes and a tool which just sees 

the lanes in a non-aggregated manner. IIowever, as a 

simplifying concept it parallels the Knowlcdgc-Hased 

concept of .standard names or ri<qid designators, which 

has been found to bc a useful simplifying assumption 

in that domain as well [7]. 

A subject aclivation, often referred to just as an acti- 
vation, models the actual data manipulated by a par- 

ticular subject. It is a tuplc A = (S, T, CT’) where: 

. S is the szll?jecl 
0 7’ is the state ,function, which maps oids to 

structures of addresses of instance variables tna- 

nipulated by that subject. The state function is 

partial; not all subjects provide state corre- 

sponding to all oids. 
. C is the ilzstatzce_c~Sunction, which tnaps oids to 

class names. ‘I’hc class name corresponding to an 

oid is the name of the class that describes, from 

the point of view of this subject, the state and 

behavior associated with that oid. ‘Ilie 

instance-of function is also partial. 

An oldect in a subject-oriented universe is really just 

an object idcntifler (oid), an element of the OZI) set. 

Through its ‘I’ and C: mappings, each subject can as- 

sociate its own state and behavior with each oid. We 

deliberately avoid defining an object as the union of 

all this state and behavior.’ 

The following sections rc-visit sotnc of the discussion 

in the earlier Section 3.1, providing more detail and 

provision on certain topics. 

6.1. Operation Invocation 

2 In some implementations, of course, different subjects may employ different representations for the oids. 

3 Of course, explicit dependencies can arise when one subject explicitly imports behavior from another to realize its 

function. 
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When an operation ((a, op,p)) is invoked in a 

subject-oriented universe (M, A), where M = (R, 
Q), it might cause execution of methods in multiple 

subjects. The composition rules in M control what 

happens with a great degree of freedom. The entire 

tree Q of subsidiary compositions and subjects, in full 

detail, is potentially available for use by R. 

As mentioned earlier, one such usage is a composition 

rule called nesting. Nesting treats compositions as 

scopes, and allows calls to propagate beyond scopes 

only if specified explicitly. For example: 

1. Delegate dispatch of an operation to the lowest 

enclosing composition L, in the tree Q, of the 

subject whose activation made the call. 

2. L performs dispatch as described above. 

3. In addition, if explicitly specified by L, the oper- 

ation call is “imported”. This causes the next- 

higher composition to dispatch the operation 

also. By successive imports, dispatch can be 

propagated all the way to the top of the tree, but 

in their absence, it will be confined to a particular 

subtree. 

6.2. Object Creation and Initialization 

Within the subject model presented here, the steps 

involved in object creation and initialization are more 

precisely: 

1. Allocation of an oid from the OID set. 

2. For each subject activation, setting the value of 

the C function for the new oid, specifying the 

class to which it belongs in that activation. 

3. For each subject activation, allocating space for 

the state information to be associated with that 

oid in that activation, and setting the value of the 

T function appropriately. 

4. Placing the appropriate initial values in the stor- 

age allocated. 

Allocation of oids happens globally, and is the re- 

sponsibility of the universe activation, independent 

of all subjects. The remaining steps come under the 

control of the composition rule, so many approaches 

are possible. 

The creation operation specifes the class to be created 

from the point of view of the activation requesting the 

creation. However the class to be created for the ob- 

ject in each other subject is one of the issues ad- 

dressed by the composition rules. As mentioned 

earlier, the composition rule is also responsible for 

specifying whether any instance variables are to be 

shared across subjects. This specification affects the 

allocation of storage and the details of the 7’ func- 

tions; sharing is accomplished by having the results 

of the 7‘ functions for different subject activations re- 

fer to common addresses. 

6.3. State References 

The addresses of the instance variables that a subject’s 

activation can manipulate arc obtained by means of 

the activation’s T function. If ‘I‘ is undefined for the 

activation cand oid, deferred creation and initialization 

must take place as described above. 

Tighter encapsulation than that obtained from clas- 
sical object-oriented models is possible because only 

a the subject’s subset of the instance variables arc ac- 

cessible to each method. 

7. Considerations in Implementing Efficient 
Subject-Oriented Support 

7.1. Package Sharing Between Subjects 

The division of processing into a multiplicity of sub- 

jects should not be presumed to imply high-overhead 

implementations in which subjects are implcmcnted 

as separate processes or threads, in which operation 

invocation involves interpretive overheads, or in 

which each subject’s representation for an object im- 

plies a separate invocation of metnory allocation. 

The problems involved in resolving these issues efli- 

ciently are similar to those faced in the implementa- 

tion of inherited characteristics in conventional 

object-oriented languages. For example, in C + + the 

instance information storage requirements of inde- 

pendent class elements called superclasses are com- 

bined efficiently; similarly, in CLOS method 

combinators present potentially complex dispatching 

requirements that are solved effGently. 

In efficiently implemented Object-Oriented systems, 

these potential inefficiencies are resolved by a deli- 

nition processor that uses information derived from 

the entire class-definition hierarchy to aggregate and 

optimize functions across class boundaries. For ex- 

ample, the C + + compiler uses the declaration of the 

entire class hierarchy to determine the total size 
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needed for an object to hold the instance variables in 

all of its subclasses. 

Similar techniques can be applied to applications 

formed from a multiplicity of subjects. Processors like 

that used for OOTIS [lo] employ a language for de- 

fling the subjects and their composition so that op- 

timized allocations and linkages can be created. Using 

that technology, subjects can be composed into a 

single application process with competitive 

operation-call costs. The objects manipulated by the 

application process contain information for all of the 

subjects, but are allocated in single invocations of the 

underlying storage allocation mechanism. 

7.2. Data Sharing Between Subjects 

The division of processing into a multiplicity of sub- 

jects should not be presumed to imply drastically in- 

efficient duplication of state information among 

subjects concerned with an object. As with the use 

of more conventional object-oriented technologies, 

when a single organizational provider is defining 

many classes or subjects, that provider may wish to 

exploit agreements about the instance variables in the 

implementation of the classes or subjects. These 

agreetnents may avoid the cost of duplicating state 

information or of indirect accesses. In C + + , for cx- 

ample, subclasses or friends of a class have direct ac- 

cess to public and protected instance information. 

These agreements take the form of a shared data 

model among subjects. Such shared data models are 

common in support frameworks for integrated appli- 

cations, and mechanisms like the schema deJ?nition set 
(SDS) and working schema defined in I’CTE [24] 

might be used in relating the instance variable deli- 

nitions provided by different subjects. In general, 

data sharing is specified in composition rules, and can 

be implemented efficiently by subject compositors 

even if the subjects involved are not developed to- 

gether. 

7.3. Separate OID Spaces 

In a distributed, heterogeneous subject-oriented envi- 

ronment, one might expect different activations to 

want to store their state in different repositories, with 

each repository having control over its own oids. This 

seems to be at odds with the requirement imposed by 

the subject-oriented model that all activations in a 

universe share the same OID space. IIowever, these 

requirements can be reconciled by an implementation 

in which the global oids required by the model are 

implemented as mappings between the separate oids 

provided by the repositories. 

7.4. Subject Compositors 

Composition rules in the model arc abstract spccifi- 

cations of the semantics of inter-subject interactions. 

A .ruJljecf composilor is a tool that combines subjects 

in an environment according to a certain rule or class 

of rules. Whcrcas performance is not an issue when 

dealing with rules in the model itself, it is very much 

an issue for compositors. Practical composition rules 

must be capable of efiicient impletnentation, espe- 

cially in cases of frequent interaction, and subject 

compositors must be built to ensure high perform- 

ance. 

There is no need for a subject compositor to be 

present at run time. It could perform its work stat- 

ically, generating code or stubs that realize inter- 

subject interaction according to the desired 

composition rule. An approach of this sort is likely 

to be necessary to achieve high performance. 

A subject compositor provides definitions for: 

1. the specification and defaulting rules for method 

combination 

2. the strategies for matching interfaces and classes 

across subjects 

3. the strategies for propagating interactions across 

compositions (scoping) 

4. the packaging of subjects into threads, processes 

and nodes, 

5. the packaging of subjects’ object state informa- 

tion into databases and local-id spaces. 

8. A Software Development Example Using 

Subjects 

In this section we present an example to illustrate in 

concrete terms some of the key features of the 

subject-oriented approach. The example is from the 

domain of software development environments, and 

subjects are used to accomplish aspects of the tool 

integration that is recognized as an important need in 

such environments. Each tool is a subject, with its 

own class hierarchy and definitions for the classes. 

Figure 8 shows three tools to be eventually integrated 

together. IIowcvcr, since we wish to present the 
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Figure 8 - A Software Development Example as 

Subjects 

gradual enhancement of an environment as an ongo- 

ing process, we will introduce the tools one at a time. 

The first subject around which the environment is 

built is an extended syntactic editor, capable of editing 

system structures, specifications, and code, like that 

described in [15]. Although the class structure for 

such an environment is complex, we will focus on 

aspects of three classes: modules, includes, and spec- 

ifications. They are scattered about the class hierarchy 

because they do not have common implementation 

structures. Each of these classes has its own rich 

structure which we will not fully elaborate here, but 

it is Likely that each will have state of its own, in- 

cluding relationships to objects containing more de- 

tail. For example, modules will probably have names 

and will be related both to their includes and to the 

code for the functions implemented in the module. 

Includes will probably have names as well, but also 

relationships to the declarations contained in the in- 

cludes. Specfications may be unnamed primitive el- 

ements. For the our example, we will assume that 

this subject has been in use for some period of time, 

and the development repository has been populated 

with large numbers of objects of all sorts. 

For illustration, we consider the editor’s handling of 

error tracking in more detail. The editor checks on 

an ongoing basis the correctness of the modules it is 

editing. When errors are discovered or removed, the 

set-error-status operation is called to update the 

error-status state variable. 

Consider, now, a hypothetical generic project man- 

agement subject. This tool employs a class hierarchy 

containing ownable items, a subclass of ownable 

items called testable items, and a class of objects 

called points for recording test status. We wish to 

compose these two subjects to achieve a system 

whose syntactically edited modules and includes are 

managed by the gcncric project manager. To do so, 

we must specify a composition rule that controls how 

the subjects are to interact. 

The class hierarchies of the two subjects are quite 

different, which is not surprising given the different 

nature of the subjects. The composition rule must 

define how objects in the already populated reposi- 

tory, and any new objects created by the editor, are 

to be mapped to the classes defined in the newly in- 

troduced subject. ‘I’his involves matching of classes 

across subjects, as discussed in Section 5. Figure 8 

indicates this mapping with broken lines across the 

class hierarchies in the several subjects. 130th includes 

and modules are ownable items, but only the modules 

are testable. One of the ways that class matching 

among subjects differs from simple multiple 

inheritance is that in the syntactic editor modules and 

includes have no subclass/superclass relationship - 

having, in fact, different attributes and/or relation- 

ships. On the other hand, testables are a subclass of 

ownables. So different answers to a 

subclass/superclass test would be given in the project 

manager from those in the syntactic editor, even for 

the same objects. 

One of the consequences of matching class module 

with class testable ownable is that any instance of 

module that existed before the subject composition 

took place is now also an instance of testable. As 

such, it has additional operations and instance vari- 

ables, as defined in the project manager subject. Ac- 

cess to these operations and instance variables is 

available through the object’s single oid, the same oid 

it had before the composition. However, the new in- 

stance variables arc directly accessible only to code 

within the project manager subject. Subject-oriented 

programming thus includes the ability to expand the 

operations and state of existing instances. 
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The new state information belonging to the generic 

project manager needs to be initialized before use, 

even though this initialization must necessarily take 

place after creation of the original module object by 

the editor. The project manager subject is responsible 

for this initialization; it must compute the appropriate 

values, perhaps using information obtained from the 

human user and from other subjects in the composi- 

tion via operation call. 

The project manager and syntactic editor interact on 

the issue of error-status. The project manager main- 

tains status information also, but is concerned with 

other forms of status than just syntax errors. It 

therefore provides more general get-status and set- 
staus operations. The desired semantics for the com- 

position are that the set-error-status operation of the 

editor correspond to the set-status operation of the 

project manager, with parameter “syntax-error” indi- 

cating the kind of status. This correspondence is an 

example of interface matching, mentioned in Section 

5.2. The composition rule either defines this corre- 

spondence explicitly, or specifies a strategy by which 

it can be determined. Once it has been established, 

any call on the editor’s set-en-or-status operation re- 

sults in execution of both the editor’s implementation 

of this operation and execution of the project man- 

ager’s implementation of set-status, with the appro- 

priate additional parameter. 

This situation involved matching different operations 

in the different subjects. In many cases, the subjects 

being combined have similar operational concepts, 

such as those being developed in connection with 

Case Communique[21], in which case interface 

matching is trivial. Subject-oriented programming 

supports both cases, and includes the ability to have 

multiple implementations from multiple subjects be 

executed in response to a single operation call. 

Finally, we consider the introduction of a third sub- 

ject - a schedule tracker. This is a PERT-chart-like 

application concerned with charts containing chart 

items, indicating planned and actual schedule infor- 

mation. Dy identifying the schedule tracker’s chart 

items with the generic project manager’s owned items, 

we allow the modules and includes to be organized 

into PERT-charts. As with the introduction of the 

general project manager, no magic applies here; the 

schedule dependencies must be constructed by the 

schedule tracker itself. We also identify behavior to 

be provided for set-status in terms of the 

PERT-chart’s set-futcness. 

The USC of a sin& object, be it module or include, 

through the three subjects lends a unity of manipu- 

lation that makes it easier to discuss shared behavior, 

and makes it possible to add shared behavior without 

modification of the individual subjects. The existing 

objects acquire more state and behavior as more 

subjects arc inlroduccd into a composition, with the 

manner in which the state and behavior are combined 

being governed by the composition rule. The com- 

position rule, or the compositor, also dictate how 

tightly-coupled the subjects should bc: linked into a 

single program, distributed with each running on a 

separate machine, or various other options. Good 

compositor implementation will permit many such 

options with no change needed to the subjects thctn- 

selves . 

Space does not permit detailed discussion of how this 

example would be handled by conventional ohject- 

oriented programming. Suflicc it to say that the 

compositions described, if not anticipated by the au- 

thors of the subjects, could not he achicvcd without 

source-code tnodilications to the individual subjects. 

9. Related Work 

9.1. Views of Objects 

Pat-t of the motivation behind subject-orientation 

arises from the need for functional-extension within 

an object paradigm. ‘1‘0 satisfy this need without 

widespread change and recompilation requires that 

applications have their own views of data, and do not 

depend on global definitions. 

ln l’CTI5 [24], each tool (application) runs within the 

context of a working schema, which specifies an or- 

dered list of schema defirzition sets (SD&). Each SDS 

defines a model of some of the data objects manipu- 

lated by the tool. An SDS can extend other SD%, 

such as those describing the views of data seen by 

other tools. Extensions provide additional types of 

objects, and additional attributes of and relationships 

among both existing and new types. The subject- 

oriented models extends this general concept to the 

operations and methods associated with an object, 

and to allowing each aubjcct to have its own classi- 

fication hierarchy[ 1 I]. 
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Shilling and Sweeney proposed an object-oriented 

paradigm exploiting views, in which an object is seen 

through a multiplicity of interfaces to the object 

[ 181. Each interface determines the visibility and 

sharing of operations and instance variables. The 

subject-oriented approach separates the object inter- 

face supported by a subject from its implementation, 

relegating issues such as the sharing of state to a 

characterization of the subject’s implementation. In 

addition, subject-orientation emphasizes the ability 

of different subjects to form different behavioral hier- 
archies over the objects, rather than consolidating 

them within a single class hierarchy. 

In some ways, mpects of an object as defined by 

Richardson and Schwarz [17] can be modelled as 

different subjects providing their own classification 

and categorization of the object. In addition, subjects 

can provide coordinated aspects for a variety of object 

classes. 

9.2. Routing Messages 

The topic of routing messages from originators to 

participants within a suite of integrated tools is ad- 

dressed in several generic settings: 

Field[ 161 

Field uses message passing as a way to connect tools 

in a software development environment. Aimed pri- 

marily at the integration of existing tools, Field em- 

phasizes the use of one-way notifications created by 

encapsulations of the tools. These notifications are 

broadcast through a message server that delivers them 

destinations that have registered interest by spetiifying 

patterns to be matched by the message and its argu- 

ments. This paradigm is being exploited by others 

[21] for both event and more general operation de- 

livery. The subject-oriented model provides a more 

general setting in which message broadcasts can be 

seen as one kind of composition (broadcast), but 

provides a context for richer connection structures 

such as direct or nested connections can be estab- 

lished and intermixed. 

Tools[ IO] and Toolies[6] 

The “toolies” model emphasizes the direct routing of 

events that are automatically triggered by updates of 

data in a shared colIection of data, and “tools” em- 

phasize the intermix of events and requests. 130th 

emphasize a reduction in size and monolithicity of the 

packages of software that are produced that can ac- 

crue from sharing a common shared model of struc- 

tured data rather than bulk file manipulation. The 

subject-oriented approach continues and extends this 

direction, emphasizing both the need to retain private 

(subject-specific) information about shared data and 

the need to compose the elements with flcxiblc pack- 

aging and dispatching strategies. 

9.3. Composition Technology 

The role of composition, including inheritance styles 

of composition, is increasing in importance, as is the 

attention being given to describing and constraining 

the compositions. 

An Object Request Broker as defined by the Object 

Management Group [23] supports objects by routing 

messages and by interfacing with Object Adapters that 

actually support the implcmcntations. Object Re- 

quest Brokers provide support for a uniform rcpre- 

sentation of oids.4. Their dispatching mechanisms are 

based on an object registry approach. Subject com- 

positions, on the other hand, perform registry of 

packaged behavior for a collection of classes at the 

same time. In addition, the subject concept allows 

more than one subject to provide state and behavior 

for the same object. No requirement exists that the 

oid representation be common across all subjects in 

a composition. The CORIM spccitication provides 

great latitude for implementations. Within this lati- 

tude, some manufacturers have provided Object Re- 

quest Brokers not well suited to support of a 

subject-oriented methodology, while others have 

provided more flexible realizations in anticipation of 

the needs of complex environments. The Object Re- 

quest Broker is one example of a compositor, but 

more powerful ones exist as well. 

Class composition, as in “Jigsaw” [ 11, separates 

inheritance from the troika of encapsulation, 

polymorphism, and inheritance, in effect depicting 

inheritance as one of several operations by which 

classes can be composed. Ilierarchy composition [4, 
14, 191 extends this concept to collections of classes. 

The subject-oricntcd approach goes a step further by 
removing the restriction of having a shared definition 

of the inheritance hierarchy. 

4 [23] page 34 
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The frameworks model for object-oriented design 

[20] emphasizes the use of abstract classes which are 

extended to form concrete classes by either the im- 

plcmentation or re-implementation of some of the 

operations they define. Well-crafted frameworks 

greatly facilitate application development in their 

particular domains, but they are subject to two re- 

strictions: 

. They can be specializ,ed or extended conveniently 

only in those areas specifically designed to be 

extended. Yet the framework designer cannot 

anticipate all future extension needs. 
. Changing or further subclassing the concrete 

classes leads to invalidation of existing objects. 

This is especially important when the objects 

exist in a persistent, shared store or repository. 

The subject-oriented approach overcomes these re- 
strictions. Much of the work done on methodologies 

for developing and describing frameworks applies to 

subject-oriented programming as well. 

Contracts [ 121 provide an abstract way to charactcr- 

ize the behavioral inter-dependencies among a col- 

lection of objects. Axiotnatic specifications establish 

what activities in one object are expected to lead to 

what activities in other objects. Within the subject- 

oriented model, contracts can bc used to characterize 

the interdependencies among the objects making up 

a subject. The concept can also be usefully extended 

to characterizing behavioral interdependcncics among 

tnultiplc subjects. 

Where contracts provide an axiomatic characteriza- 

tion describing and constraining the interaction of 

objects, the law-governed systems approach specifies 

the detailed semantics of interactions by means of a 

law [13]. As with the contracts model, the same 

similes can be applied to messages between subjects 

about an object as can be applied to messages be- 

tween objects within a subject. In fact, the composi- 

tion rule, R, can be seen as the “law” of a subject 

composition, (R, Q). 

10. Conclusion 

The “software chip” is one of the 1101~ Grails of 

software development. (Holy Grails are somewhat 

larger than silver bullets). Objects and classes have 

been seen as the software chip [3], but a class is too 

stnall a package of functionality to play this role. In 

a sense, objects and classes arc more like circuits, or 

what the hat&arc designers call “macros”. We be- 

lieve that subjects are far more likely to play the role 

of software chips as the next higher-order software 

building blocks in the scqucncc of procedure, class, 

and subject. In many respects, a subject can be 

viewed as the softwarc cquivalcnt of the hardware 

micro-chip, with the subject compositor providing a 

way of manufacturing the software equivalent of cir- 

cuit boards. 

The suhjcct-oriented approach brings into focus and 

provides a model within which to explore a number 

of important issues associated with software compo- 

sition: 

l 

Composition rules and compositors 
Object creation/initialization and 
finalization/deletion protocols 

Interface and class matching, leading eventually 

to matching for applications that USC drastically 

different models of common domains. 

Implementation issues, including efficiency, dis- 

tribution and multiple 0111 spaces. 

We expect the dcveloptncnt of subject compositors 

to be an important arca of research and development 

over the next few years. The development of a subject 

compositor along the lines of the one described for 

OOTIS [IO] is proceeding at IRM’s ‘I’. .J. Watson 

Research Center to support the use of a subject- 

oricntcd style and to further the exploration of this 

domain. 
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