
Subject-Oriented Programming

(A Critique of Pure Objects)

William Harrison and Harold Ossher

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Abstract

Object-Oriented technology is often described in
terms of an interwoven troika of themes:
encapsulation, polymorphism, and inheritance. But
these themes are firmly tied with the concept of iden-
tity. If object-oriented technology is to be successfully
scaled from the development of independent applica-
tions to development of integrated suites of applica-
tions, it must relax its emphasis on the objecf. The
technology must recognize more directly that a mul-
tiplicity of subjective views delocalizes the concept of
object, and must emphasize more the binding concept
of identity to tie them together.

This paper explores this shift to a style of object-
oriented technology that emphasizes the subjective
views: Subject-Oriented Programming.

1. Introduction

Figure 1 illustrates the definition of a tree in a com-

monly accepted way of thinking about objects,

sometimes called the classical model [22]. In this

model, a tree is defmed by defining a class, the class

of all trees, in terms of internal state information and

methods that can be applied. Proponents of the ad-

vantages of data abstraction, a form of encapsulalion,
emphasize the fact that client programs manipulating

these trees do so only through the exposed

operations.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

. .

@ 1993 ACM O-89791-587-9/93/0003/041 1 . ..$1.50

Ideally, the designer of such an object-oriented tree

defines and works with the intrinsic properties and

behavior of a tree. In the real-world, properties of a
tree like its height, cell-count, density, leaf-mass, etc.

are intrinsic propcrtics. Intrinsic behaviors include

things like growth, photosynthesis, and other behav-

iors that affect the intrinsic properties.

This ideal classical model is utterly inadequate to deal

with the construction of large and growing suites of

applications manipulating the objects. Designers of

such suites are forced either to forego advantages of

the object-oriented style or to anticipate all future

applications, treating all extrinsic information as

though it were intrinsic to the object’s nature. Figure

2 shows an example of the situation that gives rise to

this pressure. In it, we see that a tax-assessor has his

own view of characteristics and behaviors associated

with a tree. The characteristics include its contrib-

ution to the assessed value of the property on which

it grows. The behaviors include the methods by which

this contribution is derived. These methods may vary

from tree-type to tree-type. In fact, such methods may

form part of a tax assessor’s view of all objects, tree

and non-tree alike. These characteristics and behav-

iors are extrinsic to trees. They form part of an

assessor’s subjective view of the object-oriented tree.

With the classical object model, the designer of the

tax-assessor application is faced with one of two

choices. On one hand, the application can be con-

structed as a &en/ using the encapsulated methods

but forgoing the advantages of encapsulation and

polymorphism for the tax assessor application’s state

and methods. On the other hand, the application’s

function could be integrated into the same tree class

manipulated by other applications; in effect, treating

OqPSLA’93, pp. 411-428

411

Figure 1 - An Object-Oriented Tree

the extrinsic characteristics of the tax-assessor appli-

cation as though they were intrinsic to trees. 130th

choices are objectionable.

Figure 3 illustrates how unmanageable the latter ap-

proach is by reminding us that tax-assessor is merely

one of a suite of applications, each of which has its

own subjective view, its own extrinsic state and be-

havior for the tree.

Although the theme of subjects in anthropomorphic

terms is illustrative, we should not lose sight of its

importance in tool and application integration set-

tings. The tree could easily be a node in a parse tree,

the bird an editor, the assessor a compiler, and the

woodsman a static-semantic analysis tool. Each of

these tools defmes its own state and methods on the

parse-tree nodes, e.g. the editor has display status, the

compiler has associated code expansions, and the

checker has use-definition chains.

Either the developers of these applications cannot

encapsulate their own state and behavior with the

parse-tree node to gain the advantages of
encapsulation and polymorphism, or the system de-

signer must manage an ever-expanding collection of

extrinsic state and behavior becoming part of the in-

trinsic node. In fact, in the presence of market pres-
sure to adopt applications provided by vendors rather

than do all development in-house, the defnler of the

node faces the impossible task of anticipating all fu-

ture extrinsic requirements. This burden demands a

Figure 2 - A Tax Assessor’s View of the Tree

more powerful model than the classical object model

in order to facilitate the devclopmcnt of application

suites. We propose .rul,jccl-oricnld prr~grarnmit~~q as

such a model.

Section 2 outlines the goals of subject-oriented pro-

gramming. Section 3 then provides an ovcrvicw of

subjects, and sections 4 and 5 discuss aspects of sub-

ject interaction. Section 6 then describes a model of

subjects, and claboratcs some details in terms of the

model. Section 7 discusses considerations in imple-

menting efficient support for suhjcct-oriented pro-

gramming. Section 8 provides a more concrctc

example of the use of subjects in defining software

development environments, and Section 9 discusses

related work.

2. Goals

The overall goal of subject-oricntcd programming is

to facilitate the development and evolution of suites

of cooperating applications. Applications coopcrate

both by sharing objects and by jointly contributing

to the execution of operations. ‘l‘hc following re-

quirements arc important in this context:

0 It must bc possible to develop applications scp-

aratcly and then compost them.
. The separately developed applications should not

riced to bc explicitly depcndcnt on the other ap-

plications they arc to be composed with.
. ‘T’hc composed applications might coopcratc

loosely or closely, and might bc tightly hou~~cl for

412

Figure 3 - Many Subjective Views of an Object-Oriented Tree

frequent, fast interaction, or be widely distrib-

uted.
. It must be possible to introduce a new applica-

tion into a composition without requiring mod-

ification of the other applications, and without

invalidating persistent objects already created by

them. Ideally, even recompilation of the appli-

cations should not be required, except to facili-

tate global optimization if desired.
0 Unanticipated new applications, including new

applications that serve to extend existing appli-

cations in unanticipated ways, must be sup-

ported. The notion of extending an application

by writing an “extension application” and com-

posing it with the base application is discussed in

detail in [141.
. Within each application the advantages of

encapsulation, polymorphism and inheritance -

object-oriented programming - must be re-

tained.

These requirements and their relationship to object-

oriented technology are discussed in more detail in

[lo]. As illustrated in Section 1, the classical object

model does not satisfy them.

In the subject-oricntcd paradigm, each application is

a subject or a composition of subjects: it defines just

the state and hchavior pertinent to the application it-

self, usually fragments of the state and behavior of

collections of relevant classes. As discussed in the rest

of this paper, the semantics of subject composition

and interaction ensure that the requirements listed

above arc satisfied.

3. Subjects

This section discusses general characteristics of

subject-oricntcd programming without introducing a

specific model. Recausc the use of a more format or

detailed model makes discussion more precise, how-

ever, Section 6 will introduce such a model and re-

visit some of the topics addressed in this section in

some more detail.

We USC the term .rul,jecl to mean a collection of state

and behavior specifications reflecting a particular

gestalt, a perception of the world at large, such as is

seen by a particular application or tool.’ Thus, al-

though for smoothness of flow we may occasionally

speak of subjects as individuals, they are not the in-

dividuals thcmsclvcs, but the gcncralized perception

t The term “subject” differs somewhat from its use by Coad and Yourdon [Z], although both usages share the idea or

reflecting a smaller, more l’ocussed perception of a complex shared model. We avoided the similar term “view” in order

to emphasize the stronger philosophical similarity with non-classical philosophical trends thal emphasize the idea that

subjective perception is more than just a view filtering of some objective reality. The perception adds to and trans-

forms that reality so that the world as perceived by a body of perceptive agents is more than the world in Isolation.

413

of the world shared by some individuals. Similarly,

subjects are not classes. They may introduce new

classes into the universe, but subjects generally de-

scribe some of the state and behavior of objects in

many classes.

One often thinks of particular state and behavior as

being intrinsic to an object: the state and behavior

that describe its essential characteristics, as opposed

to additional state and behavior associated with it by

various subjects. For example, the height, weight and

other attributes and behavior associated with trees in

Figure 1 might be considered intrinsic to trees,

whereas the other attributes and behavior such as as-

sessed value and sale price are not. In the subject-

oriented model there is no special status accorded to

the intrinsic properties. The developer is free, if she
chooses, to have a subject that implements the in-

trinsic properties of one or more classes of objects,

and to require that any manipulation of the intrinsic

properties employ that particular subject to carry it

out.

The essential characteristic of subject-oriented pro-

gramming is that different subjects can separately de-

fme and operate upon shared objects, without any

subject needing to know the details associated with

those objects by other subjects. Only object identity

is necessarily shared.

A subject is definitional or schematic - it corresponds

to a traditional (though usually incomplete) class hi-

erarchy, describing the interfaces and classes known

to this subject. A subject does not itself contain any

state.

3.1. Activations and Compositions of Subjects

A subject activation, often referred to just as an acti-
vation, provides an executing instance of a subject,

including the actual data manipulated by a particular

subject.

Subjects can be combined to form cooperating groups

called compositions. The composition also defines a

rule, the composition rule that specifies in detail how

the components are to be combined; for example,

how methods from different subjects for the same

operation and class are to be combined, and whether

nested compositions form separate scopes or are a!l

combined into a single scope. A great variety of

composition rules is possible, and some cxamplcs will

be given in subsequent sections.

In distributed systems, subject activations may be

separated in space and time, and state changes to in-

dependent subject activations of an object may occur

in separate transactions. This makes even the concept

of a unified “state of the object” inaccurate and mis-

leading. A vital aspect of subject-oriented program-

ming is that it be possible to extend subjects and to

introduce new subject activations without disrupting

others. It is therefore important that ncithcr source

nor object code rely on the global “state of the

object” or on its format.

Accordingly, we use t.hc term object-identifier or oid
to mean the globally known unique identification of

the object as it appears in the context of one or more

subjects of interest. In the context of a particular

subject, we also use object to mean the state and be-

havior associated with an object identifier by that

subject. Similarly, there is no global concept of class:

each subject contains class descriptions that describe

state and behavior from that subject’s point of view.

Aspects of a this way of manipulating objects will bc

expanded and explored in the following sections, in

the course of explaining the features of subjcct-

oriented programming. As mcntioncd, a more precise

but also more particular model will be introduced

later in Section 6.

3.2. Relationship to O-O Technology

The classical object model is, in many respects, the

model of objects seen by any one subject. Within a

subject, an object has an implementation class that

defines the implementation of behaviors provided for

the various operations supported by the object and

the state information needed by these implcmcnta-

tions. Subject-oriented programming thus includes

object-oriented programming as one of its tcchnolog-

ical elements.

Interfaces

Interfaces describe in abstract terms the operations
that a class of objects supports. Variables that point

to objects , whether instance variables of objects,

static or dynamic program variables or paramctcrs,

are declared in terms of the interfaces their contents

must support, rather than in terms of specific classes.

414

-I-1Lis ayprwa& lea& Lu tjrt;irter encapsulation, and

hence to greater flexibility and reuse. It is being in-

creasingly accepted within the object-oriented com-

munity [S, 231. Even in languages such as C + f that

do not explicitly require separate interfaces, con-

ventions arc frequently adopted that amount to using

certain classes (abstract base classes in C + +) as

interfaces. Separation of interface definition from

implementation characterization is of even greater

importance in subject-oriented programming, because

interfaces are a point of agreement between separate

subjects as to the operations that are available on an

oid, without one subject needing to have any access

at all to the class hierarchy describing the implemen-

tations provided by another subject.

Beha viov

Behavior is specified by means of methods, which are

the actual code implementing operations on specific

classes of objects. In classical class-based models, all

methods are associated, either explicitly or by

inheritance, with the single class of which the object

is an instance. In the subject-oriented approach, the

class associated with each oid can differ from one

subject activation to another. This means that each

subject can specify its own behavior for each object.

What is more, the inheritance relationships among

classes can be different in different subjects.

State Information

State information is retained in instance variables.
Classically, all of an object’s state is treated as a unit,

and is known and accessible to all methods associated

with that object, though it might not all be used by

all of them. In the subject-oriented approach, the

state associated with a particular oid can vary from

one subject to another. In addition, since the subject

really just provides a template for state and behavior,

there can even be be multiple activations of a single

subject, each with its own state for the object.

4. Interactions Among Subjects

Since the model of an object seen by any one subject

is essentially the classical object model, this convcn-

tional model is adequate if all subjects remain iso-

lated. The need for a subject-oriented model arises

when dealing with interacting subjects. This inter-

action can take any of several forms:

. A request for function or state change to be

supplied by another subject. For example, the

woodsman’s invocation of “cut-down” affects the

tree’s height as well as her own caloric con-

sumption
Performance of an activity in which another

subject might participate e.g. the assessor’s csti-

mate of the value of a tree may be reflected by a

private interpretation of the woodsman’s decision

to estimate the effort to cut the tree down,

Notification of an occurrcncc which tnay hc of

intcrcst to another subject e.g. the bird’s ncst-

building activity might influence the woodsman’s

schedule for cutting down the tree

llse of one subject’s behavior as part of the

“larger” behavior of another e.g. the tax assessor

may use the woodsman to cut down many trees

to pay delinquent taxes (perhaps he’s the Sheriff

of Nottingham?).

Sharing of state, e.g. the bird and the woodsman

might both have the same notion of tree height.

Subjects interact only if they are composed with one

another in a universe. I>etails of the interaction are

determined by the composition rule. The rest of this

section discusses some of the semantic details of sub-

ject composition.

4.1. Operatiou Invocatiou

All code in a subject-orient4 framework executes in

the context of a particular subject activation. An op-

eration call can thcrcfore bc modclled as a tuple

(a, OP, P), where

. a is the subject activation making the call.
l op identifies the operation to be performed.
. p is a list of parameters. Some of these parame-

ters will bc oids. Some of them will be used to

control operation dispatch, details dcpendcnt on

the language used. In many embodiments, the

first parameter will be considered the “controlling

object” or “receiver”, to be used for dispatch.

When an operation is invoked in a subject-oriented

model it might cause cxccution of methods in multi-

ple subjects. ‘I’he composition rules control what

happens, so that within a subject-oriented model,

there is freedom to craft and use different composition

rules. It is therefore possible to describe complex
combinations of detailed aspects of the separate sub-

jects. The most useful composition rules, however,
are likely to be those that are simple and can specify

415

briefly some frequently useful ways of combining the

d&ails of separate subjects.

The simplest composition rule, closest to the rule in

C+ -!- , Smalltalk or OM<; COIiI~A[23], is perhaps:

“An operation can be dispatched to only a single

subject activation.” IIowever, this rule rather sevcrcly

limits the usefulness of composition to preplanned

extension of existing frameworks. An example of a

simple and more appealing composition rule, called

merge, is:

1. For each subject activation in arbitrary o&r

(but not in parallel), dispatch the operation

within that activation. This “local” dispatch

within an activation is whatever form of objcct-

oriented dispatch is provided by the language in

which that activation’s subject is written. When

an operation implementation is dispatched to

within a separate subject, the dispatch is dircctcd

using the receiver’s classifcation of the object.

Thus dispatch can be based on different classes

in different subjects.

2. If the methods r&urn values, all the return values

must be identical, or an exception is raised.

3. If the operation defines inour parameters, they

may be set by one method and used by the next.

IIowever, the operations performed on them

should be commutative.

These characteristics provide a commutative compo-

sition with the desirable characteristics discussed in

[14]. Tool composition in OOTIS provides a com-

position rule similar to merge, with an cflicient

underlying implementation [lo].

It is worthwhile to illustrate the way in which the

merge composition rule enables the distributed im-

plementation of an object. Assume, for example, that

both the tax assessor and the woodsman arc tracking

the existence of a nest in the tree. Ihc bird, uses op-

erations called make-nest and abandon-nest to per-

form its nest-building work. To track this behavior,

the woodsman and tax assessor each can supply be-

haviors for make-nest and abandon-nest. In the im-

plementations used by the woodsman and tax

assessor, make-nest increments a state variable in their

representation of the tree and abandon-nest dccrc-

ments the variable. So, each time a bird makes a nest

in a tree, the assessor and woodsman also update their

“mental models” of the tree to record the nesting.

Further, if one or more of the subjects (bird,

woodsman, tax-assessor) provides a has-nest the rc-

sult should always bc the same, whether the imple-

mentation is supplied locally or hy sharing from

another subject.

‘I‘he cxamplc rule above, by cycling through all sub-

ject activations, dots not respect subsidiary compos-

itions. An altcrnativc rule, calicd rtcslirzg, treats

composilions as scopes, and allows calls to propagate

beyond scopes only if specilicd rxplicitly. A dis-

cussion of nesting is made within the framework of a

more specific model in Section 6. As with mcrgc, tool

composition in OO’I’IS also provides an cflicicnl im-

plementation for a composition rule similar to ncst-

ing.

‘I‘hcse cxamplcs should make it clear that many vari-

ations arc possible, both subtle and dramatic. t;or-

mulation and cficicnt implcmcntntion of various

composition rules is an interesting topic for future

rcscarch.

4.2. Object Creation and Initialization

‘I’he sharing of behavior among suhjccts leads to the

fact that creation and initialization bchnvior tnust bc

shared as well. A rcqucst to crcatc an object can he

modcllcd as a tuplc (Q, c), whcrc

. a is the subject activation making the rcqucst.

. c is the name of a class dcfincd in (z’s subject.

For reasons nolecl below, paramctcrs specifying initial

values arc not pcrtnitted in the create request. Al-

though creation of an object is thus rcquestcd by one

subject, other subjects also riced to initiali%c informa-

tion before they opcratc upon the object.

The steps involved in object creation and initializa-

tion arc:

1. Allocation of an oid from the 0111 set.

2. I;or each subject activation, dctcrmining the ap-

propriate class.

3. I:or each subject activation, allocating space for

the object’s state

4. Placing the appropriate initial values in the stor-

age allocated.

‘I’he creation operation specifics the class to bc created

from the point of view of the activation rcqucsting the
creation. Classifying the object within that activation

is straightforward. Classifying the ohjcct for the other

subject activations itivolvcs class tnatching across

subjects according to the composition rule. This issue

416

is discussed in Section 5. The composition rule is also

responsible for specifying whether any instance vari-

ables are to be shared across subjects. 110~ this is

accomplished depends on the details of the subject

model and is explained further in Section 6.

The composition rule can use either of two ap-

proaches to the timing of a subject’s initialization of

an object:

. Immediate initialization, in which all subjects

participate in the initialization at the time the

object is created. This has the advantage of the

conceptual simplicity of its determinism.
. Deferred initialization, in which subjects pat-tic-

ipatc in initialization of the object only as they

need to respond to an operation on it at later

times. This can have substantial performance

benefits: time is saved by avoiding communi-

cation with numerous and potentially remote

subjects, and space is saved because it is not al-

located unless the subject actually participates in

behavior of the object. Dcferrcd initialization

also facilitates graceful introduction of new sub-

jects that extend existing objects. For these rea-

sons, deferred initialization was selected in
CL,ORIS[9].

Deferred initialization precludes the use of parameters

to the creation operation for determining initial val-

ues. Such parameters are undesirable in the subject-

oriented context in any case, however, since it would

be undesirable to require addition of p‘arametcrs to

all creation invocations whenever a new subject arises.

(One might, in fact, argue that the fact that even an

perception of the object’s intrinsic state and behavior

gradually evolves should argue against the use if in-

itialization parameters even in the classical model.

Considerations like this illustrate the value of viewing

even the “intrinsic” object as a subject.)

4.3. State References

When a method within an activation is executing, it

can access only the instance variables that it’s subject

specifies. Note that this subject-oriented approach to

state references provides tighter encapsulation than

classical object-oriented models: only a subset of the

instance variables are accessible to each method, in
general. Methods in different subjects can manipulate

the same instance variables if data sharing between

suhjccts is done, as described above.

4.4. Points of Agreement

It should be clear from the discussion above that two
arbitrary subjects cannot necessarily be composed

with any cxpcctation that they will cooperate cffcc-

tively. There does need to bc limited agreement be-

tween them:

. Since multiple subjects can respond to the same

operation call, thcrc needs to bc agrccmcnt

among subjects regarding the operation inter-

faces. When an operation is called, all relevant

subjects must agree as to what operation it is that

is being called, and must understand the param-

cters. Each subject contains descriptions of the

intcrfaccs provided for the classes it defines. De-

termining appropriate correspondences among

interfaces used by cotnposcd subjects is tcrtned

interface matching.
Since one subject can operate upon an object

(oid) that another subject has created, there

needs to be agreement among subjects regarding

the nature of objects. Lath subject contains its

own classification hierarchy. Dcterrnining appro-

ptiatc correspondences among classes defined by

composed subjects is termed class matching.

Interface and class matching stratcgics arc dictated by

the composition rule.

Various strategies arc possible for interface and class

matching. The simplest and most rigid requires idcn-

tity, agreeing on a set of interfaces and a set of classes

for the whole suite of subjects. Each subject is then

written with those global definitions in mind. liven

this is less restrictive than the classical model, because

agreement on classes is really only on class names;

each subject is still fret to supply its own state, be-

havior and superclass definitions for each class.

Nonetheless, identity matching is too rigid to deal

with composition of separate subjects (like pre-

existing applications or applications devclopcd com-

pletely separately) that were not written to

predetermined, global definitions. ‘I’hc tnorc flexible

matching is, the greater the differences it can cope

with, and the more potential there is for composing

diverse subjects.

Both interface matching and class matching are inter-

esting and important areas for future research. We do

417

not address interface matching in this paper. The next

section discusses a spectrum of possible approaches

to class matching.

5. Matching Classes Across Subjects

Subject-oriented programming can accommodate the

real-world’s characteristic that different subjects clas-

sify objects in different hierarchies, and that one sub-

ject might manipulate objects that another subject has

not classified at all. Consider, for example, Figure 4.

The bird classifies objects into plants (nectar-

providing plants, insect-providing plants), nestables,

and predators. The woodsman, on the other hand,

classifies objects into nontrees, and trees (hardwood

and softwood). This classification represents two

different ways of looking at an underlying instantiable

universe of pine, maple, cherry, dandelion,

woodsman, bird, and object.

Often, diagrams of this sort are used to illustrate the

fact that interface hierarchies are generally not mutu-

ally conformable. The most important thing to real-

ize about this illustration is that we are dealing here,

however, with implementation hierarchies. The bird
subject defnles state information and methods needed

for processing plants (nectar-providing plants, insect-

providing plants), nestables, and predators. The

woodsman subject defines state information and

methods needed for processing nontrees, and trees

(hardwood and softwood).

In all examples thus far, we have discussed the inter-

action of subjects in a way that presumed all

instantiable classes for which processing is shared

across subjects are declared and classified by all sub-

jects. This presumption is already less constraining

than the classical object model found in language-

based O-O technology like that provided by C+ + ,

which presumes that all classes, not just the

instantiable ones, are declared and similarly classified

by all subjects. However, the constraint is really still

too strong to support the degree of independence de-

sirable in the composition of a community of sub-

jects. Suppose for example, as shown in Figure 5,

that the bird is familiar with locust trees as well as the

others. This may have resulted from the release of

an enhanced bird and may someday be handled by

an enhanced woodsman. But in the available world,

locusts are known in detail only to the bird.

Two sorts of problems arise: the semantics of coop-

erative operation implementations and the possibility

of direct discovery of objects of unknown classes. I,et

us take these in turn.

5.1. Cooperative Operations On an Unknown

Class

When subjects interact in a universe, diffcrcnces be-

tween their class hierarchies must bc resolved by the

composition rule. Such resolution is essential to cna-

ble each subject’s classification of an object to bc set

correctly at the object’s initialization (whether itnme-

diate or dcferrcd).

If the bird nests in a locust, the bird’s shared ncstablc

behavior will include possible implementations of the

make-nest operation from the woodsman. In conse-

quence, the woodsman will be asked to dispatch this

operation on a locust, a class of which she has no

knowledge.

One way of resolving this undefined situation is to

specify that all such circumstances result in null in-

vocations in the subject. In the absence of the “dis-

covery” situations discussed next, this is a

semantically well-formed, although perhaps unsatis-

factory, definition. It tnerely makes the subject totally

“blind” to objects of that class.

‘I’his solution is unsatisfactory in that one might ex-

pect the woodsman to treat the locust as other trees.

But, unless the woodsman has some way to under-

stand its tree-ness, she has no way to classify it. In

fact, however, we also need to develop a stronger

solution to treat the cases in which the woodsman is

forced deal with a locust bccausc she stumbles right

over it.

5.2. Discovering Objects Of an Unknown Class

In the course of normal processing, a subject obtains

the identity of an object as the result of a function,

instance variable reference, or operation call on an-

other object. If the object is not yet classified by the

subject, some determination must be made as to how

to classify the object so that the operation can be

properly dispatched. Such classification will be based

on information obtained either directly from one or

more other subjects or from the interface definit.ions

that govern the sharing of objects.

418

Figure 4 - Two Class IIierarchies over

the Same Instantiable Objects

There are many possible approaches to performing

this classification. Exploration of these possibilities

is an interesting and important area of research. We

begin this exploration by identifying a spectrum of

approaches. The near end of the spectrum, explicit

matching, is a simple generalization of today’s

object-oriented repository technology. It acts as a

proof that useful solutions exist. From that known

point we outline several, more speculative approaches

of increasing power: inferred class matching,

interface-based class matching, and operational clas-

sification. Detailed discussion and semantics of these

approaches is beyond the scope of this paper.

Explicit Class Matching

Assume, for example, that the woodsman’s class de-

finitions can share information with the bird’s. WC

might assume, that the woodsman’s and bird’s de&

nitions share not only the instantiable objects, but the

general superclass object and, in addition, that the

bird’s insect-plant class and the woodsman’s tree class

are explicitly matched. Given this knowledge, al-

though locust is not known to the woodsman, it is

known to be a subclass of insect-plant which is

matched with tree which can be used by the

woodsman to define the behavior for locust.

Figure 5 - Two Class IIierarchies over

Different Instantiable Objects

infevved Class Matching

A less preplanned approach is also possible. Although

locust is undefined in the woodsman’s hierarchy, in

bird it has both insect-providing plant and nestable as

its superclasses. We can determine the set of their

instantiable subclasses to be maple. cherry, and pine.

These arc also all subclasses of the woodsman’s tree.

Hence, the inference might reasonably be drawn that

locusts should be treated as trees.

Intevface-Based CIass Matching

In the discussion thus far, we have treated all of the

non-instantiablc classes as though they were com-

plete, placing no behavioral or interface constraints

on their subclasses. If, on the other hand, they are

what are often called abstract cl~rscr, then declaring

or inferring that locust is a subclass of tree requires

locust to provide certain behaviors. Since these be-

haviors are clearly not provided by woodsman, they

are required imported behavior.

An alternative strategy for inference is to use the

interface dcfmitions rather than the implementation

hierarchy for such an inference, even though the result

is the determination of an implementation class to be

used as the object’s superclass. The refcrencc to

locust was derived with respect to an interface deli-

419

Figure 6 - Classification Using Interfaces for a Discovered Object

nition. It would be possible, therefore, to select any

implementation class that meets the same interface.

However, in the presence of a shared base of objects,

the relationships among the objects becomes a shared

property. As discussed before, each subject contains

class defmitions, one aspect of which is the specifica-

tion of relationship links (pointers) between objects.

These links are defined in terms of the interfaces that

must be supported by the target object of the link.

In the world described by two composed subjects, the

target objects must satisfy the union of the interfaces.

In fact, the object must satisfy all of the interface

constraints imposed by the relationships to it. This

implies that in classifying an unknown instantiable

class, it must be provided with all of the requisite be-

havior. Some behaviors are supplied by one subject

and other behaviors by the other, as illustrated in

Figure 6. Knowledge of the class assigned to the ob-

ject in the other subject allows the determination of

a viable classification for the new class, if one exists.

In the example we illustrate how the woodsman may

be using an operation called access-neighbors to fol-

low the neighbors relationship link from one tree to

another. The woodsman expects to find an object that

implements an interface supporting access-neighbor,
make-nest, abandon-nest, and compute-profit. The

woodsman actually encounters a locust which she

does not know how to classify. But examining the

bird’s schema elicits the information that access-
neighbor, make-nest, and abandon-nest. are provided

by the bird. Therefore the locust may safely be clas-

sified under tree because tree defines an implementa-

tion for compute-profit and imports implementations

for the others.

Opevational Classification

The classification strategies described thus far can be

thought of as “static, ” in that objects of the same class

in one subject always have the same class in other

subjects, This need not be so. A subject’s classilica-

tion of an object could be based on operational tests

made at the time the object is introduced into the

subject’s classification. For example, if trees all sup-

port a wood-density operation, then the woodsman

could classify the locust tree of Figure 5 as hardwood

or softwood rather than simply as tree, and perhaps

different subspecies of locust would be classified dif-

ferently even though birds see them all as locusts.

Operational classification is one way in which a single

class in one subject may correspond to many classes

in some other subject.

6. A Subject Model

This section presents a model of subject-oriented

programming for definitional and explanatory pur-

poses; it is not intended to suggest or constrain im-

plementation architecture. Section 7 discusses means

of implementing subject-oriented support efficiently.

Components of the model are illustrated in the con-

text of the tree example in Figure 7.

A subject is modelled as a tuplc S = (N, I, I), P)

where:

0 N is a set of class names

420

.._......_. f... I.....
Inkme Adkalbn (A)

010

lrd

me2

Figure 7 - A Simple Subject-Oriented Ilniverse

. I is a set of interfaces, defining operation signa-

tures
. D is a class descriptionfunction, which maps class

names to descriptions of class details, including

instance variable declarations and methods.
. P is a superclass function, which maps each class

natne to a sequence of class names representing

its immediate superclasses.

A composition is a tuple (R, Q), where

. R is a composition rule, and

l Q is a sequence of components, each of which can
be either a subject or a subsidiary composition

that includes its own composition rule.

As mentioned above, a great variety of composition

rules is possible. Formalization of such rules is be-

yond the scope of this paper.

A subject-oriented universe is a tuple iJ = (M, A),

where

. h4 is a composition of subjects. Since nested

composition is supported by the definition

above, a universe can contain an arbitrarily large

tree of subjects.

l A = (OiLI, SA) is a universe activation consisting

of a global set, Ofi), of object identifiers (called

oids), and a set, SA, of sulject activations, each

of which specifics the state associated with each

oid by each of the subjects in M. There may be

more than one activation of a subject in the

universe.

The key characteristic of a universe is that it is a single

<III) space; all the subject activations associate state

with oids in the same spacc2 This concept of a shared

space of unique identities for the objects can be

somewhat limiting. For cxatnplc, it hinders the simple

inter-operation of a tool that SCM a highway as a col-

lection of unidentified lanes and a tool which just sees

the lanes in a non-aggregated manner. IIowever, as a

simplifying concept it parallels the Knowlcdgc-Hased

concept of .standard names or ri<qid designators, which

has been found to bc a useful simplifying assumption

in that domain as well [7].

A subject aclivation, often referred to just as an acti-
vation, models the actual data manipulated by a par-

ticular subject. It is a tuplc A = (S, T, CT’) where:

. S is the szll?jecl
0 7’ is the state ,function, which maps oids to

structures of addresses of instance variables tna-

nipulated by that subject. The state function is

partial; not all subjects provide state corre-

sponding to all oids.
. C is the ilzstatzce_c~Sunction, which tnaps oids to

class names. ‘I’hc class name corresponding to an

oid is the name of the class that describes, from

the point of view of this subject, the state and

behavior associated with that oid. ‘Ilie

instance-of function is also partial.

An oldect in a subject-oriented universe is really just

an object idcntifler (oid), an element of the OZI) set.

Through its ‘I’ and C: mappings, each subject can as-

sociate its own state and behavior with each oid. We

deliberately avoid defining an object as the union of

all this state and behavior.’

The following sections rc-visit sotnc of the discussion

in the earlier Section 3.1, providing more detail and

provision on certain topics.

6.1. Operation Invocation

2 In some implementations, of course, different subjects may employ different representations for the oids.

3 Of course, explicit dependencies can arise when one subject explicitly imports behavior from another to realize its

function.

421

When an operation ((a, op,p)) is invoked in a

subject-oriented universe (M, A), where M = (R,
Q), it might cause execution of methods in multiple

subjects. The composition rules in M control what

happens with a great degree of freedom. The entire

tree Q of subsidiary compositions and subjects, in full

detail, is potentially available for use by R.

As mentioned earlier, one such usage is a composition

rule called nesting. Nesting treats compositions as

scopes, and allows calls to propagate beyond scopes

only if specified explicitly. For example:

1. Delegate dispatch of an operation to the lowest

enclosing composition L, in the tree Q, of the

subject whose activation made the call.

2. L performs dispatch as described above.

3. In addition, if explicitly specified by L, the oper-

ation call is “imported”. This causes the next-

higher composition to dispatch the operation

also. By successive imports, dispatch can be

propagated all the way to the top of the tree, but

in their absence, it will be confined to a particular

subtree.

6.2. Object Creation and Initialization

Within the subject model presented here, the steps

involved in object creation and initialization are more

precisely:

1. Allocation of an oid from the OID set.

2. For each subject activation, setting the value of

the C function for the new oid, specifying the

class to which it belongs in that activation.

3. For each subject activation, allocating space for

the state information to be associated with that

oid in that activation, and setting the value of the

T function appropriately.

4. Placing the appropriate initial values in the stor-

age allocated.

Allocation of oids happens globally, and is the re-

sponsibility of the universe activation, independent

of all subjects. The remaining steps come under the

control of the composition rule, so many approaches

are possible.

The creation operation specifes the class to be created

from the point of view of the activation requesting the

creation. However the class to be created for the ob-

ject in each other subject is one of the issues ad-

dressed by the composition rules. As mentioned

earlier, the composition rule is also responsible for

specifying whether any instance variables are to be

shared across subjects. This specification affects the

allocation of storage and the details of the 7’ func-

tions; sharing is accomplished by having the results

of the 7‘ functions for different subject activations re-

fer to common addresses.

6.3. State References

The addresses of the instance variables that a subject’s

activation can manipulate arc obtained by means of

the activation’s T function. If ‘I‘ is undefined for the

activation cand oid, deferred creation and initialization

must take place as described above.

Tighter encapsulation than that obtained from clas-
sical object-oriented models is possible because only

a the subject’s subset of the instance variables arc ac-

cessible to each method.

7. Considerations in Implementing Efficient
Subject-Oriented Support

7.1. Package Sharing Between Subjects

The division of processing into a multiplicity of sub-

jects should not be presumed to imply high-overhead

implementations in which subjects are implcmcnted

as separate processes or threads, in which operation

invocation involves interpretive overheads, or in

which each subject’s representation for an object im-

plies a separate invocation of metnory allocation.

The problems involved in resolving these issues efli-

ciently are similar to those faced in the implementa-

tion of inherited characteristics in conventional

object-oriented languages. For example, in C + + the

instance information storage requirements of inde-

pendent class elements called superclasses are com-

bined efficiently; similarly, in CLOS method

combinators present potentially complex dispatching

requirements that are solved effGently.

In efficiently implemented Object-Oriented systems,

these potential inefficiencies are resolved by a deli-

nition processor that uses information derived from

the entire class-definition hierarchy to aggregate and

optimize functions across class boundaries. For ex-

ample, the C + + compiler uses the declaration of the

entire class hierarchy to determine the total size

422

needed for an object to hold the instance variables in

all of its subclasses.

Similar techniques can be applied to applications

formed from a multiplicity of subjects. Processors like

that used for OOTIS [lo] employ a language for de-

fling the subjects and their composition so that op-

timized allocations and linkages can be created. Using

that technology, subjects can be composed into a

single application process with competitive

operation-call costs. The objects manipulated by the

application process contain information for all of the

subjects, but are allocated in single invocations of the

underlying storage allocation mechanism.

7.2. Data Sharing Between Subjects

The division of processing into a multiplicity of sub-

jects should not be presumed to imply drastically in-

efficient duplication of state information among

subjects concerned with an object. As with the use

of more conventional object-oriented technologies,

when a single organizational provider is defining

many classes or subjects, that provider may wish to

exploit agreements about the instance variables in the

implementation of the classes or subjects. These

agreetnents may avoid the cost of duplicating state

information or of indirect accesses. In C + + , for cx-

ample, subclasses or friends of a class have direct ac-

cess to public and protected instance information.

These agreements take the form of a shared data

model among subjects. Such shared data models are

common in support frameworks for integrated appli-

cations, and mechanisms like the schema deJ?nition set
(SDS) and working schema defined in I’CTE [24]

might be used in relating the instance variable deli-

nitions provided by different subjects. In general,

data sharing is specified in composition rules, and can

be implemented efficiently by subject compositors

even if the subjects involved are not developed to-

gether.

7.3. Separate OID Spaces

In a distributed, heterogeneous subject-oriented envi-

ronment, one might expect different activations to

want to store their state in different repositories, with

each repository having control over its own oids. This

seems to be at odds with the requirement imposed by

the subject-oriented model that all activations in a

universe share the same OID space. IIowever, these

requirements can be reconciled by an implementation

in which the global oids required by the model are

implemented as mappings between the separate oids

provided by the repositories.

7.4. Subject Compositors

Composition rules in the model arc abstract spccifi-

cations of the semantics of inter-subject interactions.

A .ruJljecf composilor is a tool that combines subjects

in an environment according to a certain rule or class

of rules. Whcrcas performance is not an issue when

dealing with rules in the model itself, it is very much

an issue for compositors. Practical composition rules

must be capable of efiicient impletnentation, espe-

cially in cases of frequent interaction, and subject

compositors must be built to ensure high perform-

ance.

There is no need for a subject compositor to be

present at run time. It could perform its work stat-

ically, generating code or stubs that realize inter-

subject interaction according to the desired

composition rule. An approach of this sort is likely

to be necessary to achieve high performance.

A subject compositor provides definitions for:

1. the specification and defaulting rules for method

combination

2. the strategies for matching interfaces and classes

across subjects

3. the strategies for propagating interactions across

compositions (scoping)

4. the packaging of subjects into threads, processes

and nodes,

5. the packaging of subjects’ object state informa-

tion into databases and local-id spaces.

8. A Software Development Example Using

Subjects

In this section we present an example to illustrate in

concrete terms some of the key features of the

subject-oriented approach. The example is from the

domain of software development environments, and

subjects are used to accomplish aspects of the tool

integration that is recognized as an important need in

such environments. Each tool is a subject, with its

own class hierarchy and definitions for the classes.

Figure 8 shows three tools to be eventually integrated

together. IIowcvcr, since we wish to present the

423

Syntactic Edltor Project Manager Schedule Trrrcker

ImyouIpoallbn

Figure 8 - A Software Development Example as

Subjects

gradual enhancement of an environment as an ongo-

ing process, we will introduce the tools one at a time.

The first subject around which the environment is

built is an extended syntactic editor, capable of editing

system structures, specifications, and code, like that

described in [15]. Although the class structure for

such an environment is complex, we will focus on

aspects of three classes: modules, includes, and spec-

ifications. They are scattered about the class hierarchy

because they do not have common implementation

structures. Each of these classes has its own rich

structure which we will not fully elaborate here, but

it is Likely that each will have state of its own, in-

cluding relationships to objects containing more de-

tail. For example, modules will probably have names

and will be related both to their includes and to the

code for the functions implemented in the module.

Includes will probably have names as well, but also

relationships to the declarations contained in the in-

cludes. Specfications may be unnamed primitive el-

ements. For the our example, we will assume that

this subject has been in use for some period of time,

and the development repository has been populated

with large numbers of objects of all sorts.

For illustration, we consider the editor’s handling of

error tracking in more detail. The editor checks on

an ongoing basis the correctness of the modules it is

editing. When errors are discovered or removed, the

set-error-status operation is called to update the

error-status state variable.

Consider, now, a hypothetical generic project man-

agement subject. This tool employs a class hierarchy

containing ownable items, a subclass of ownable

items called testable items, and a class of objects

called points for recording test status. We wish to

compose these two subjects to achieve a system

whose syntactically edited modules and includes are

managed by the gcncric project manager. To do so,

we must specify a composition rule that controls how

the subjects are to interact.

The class hierarchies of the two subjects are quite

different, which is not surprising given the different

nature of the subjects. The composition rule must

define how objects in the already populated reposi-

tory, and any new objects created by the editor, are

to be mapped to the classes defined in the newly in-

troduced subject. ‘I’his involves matching of classes

across subjects, as discussed in Section 5. Figure 8

indicates this mapping with broken lines across the

class hierarchies in the several subjects. 130th includes

and modules are ownable items, but only the modules

are testable. One of the ways that class matching

among subjects differs from simple multiple

inheritance is that in the syntactic editor modules and

includes have no subclass/superclass relationship -

having, in fact, different attributes and/or relation-

ships. On the other hand, testables are a subclass of

ownables. So different answers to a

subclass/superclass test would be given in the project

manager from those in the syntactic editor, even for

the same objects.

One of the consequences of matching class module

with class testable ownable is that any instance of

module that existed before the subject composition

took place is now also an instance of testable. As

such, it has additional operations and instance vari-

ables, as defined in the project manager subject. Ac-

cess to these operations and instance variables is

available through the object’s single oid, the same oid

it had before the composition. However, the new in-

stance variables arc directly accessible only to code

within the project manager subject. Subject-oriented

programming thus includes the ability to expand the

operations and state of existing instances.

424

The new state information belonging to the generic

project manager needs to be initialized before use,

even though this initialization must necessarily take

place after creation of the original module object by

the editor. The project manager subject is responsible

for this initialization; it must compute the appropriate

values, perhaps using information obtained from the

human user and from other subjects in the composi-

tion via operation call.

The project manager and syntactic editor interact on

the issue of error-status. The project manager main-

tains status information also, but is concerned with

other forms of status than just syntax errors. It

therefore provides more general get-status and set-
staus operations. The desired semantics for the com-

position are that the set-error-status operation of the

editor correspond to the set-status operation of the

project manager, with parameter “syntax-error” indi-

cating the kind of status. This correspondence is an

example of interface matching, mentioned in Section

5.2. The composition rule either defines this corre-

spondence explicitly, or specifies a strategy by which

it can be determined. Once it has been established,

any call on the editor’s set-en-or-status operation re-

sults in execution of both the editor’s implementation

of this operation and execution of the project man-

ager’s implementation of set-status, with the appro-

priate additional parameter.

This situation involved matching different operations

in the different subjects. In many cases, the subjects

being combined have similar operational concepts,

such as those being developed in connection with

Case Communique[21], in which case interface

matching is trivial. Subject-oriented programming

supports both cases, and includes the ability to have

multiple implementations from multiple subjects be

executed in response to a single operation call.

Finally, we consider the introduction of a third sub-

ject - a schedule tracker. This is a PERT-chart-like

application concerned with charts containing chart

items, indicating planned and actual schedule infor-

mation. Dy identifying the schedule tracker’s chart

items with the generic project manager’s owned items,

we allow the modules and includes to be organized

into PERT-charts. As with the introduction of the

general project manager, no magic applies here; the

schedule dependencies must be constructed by the

schedule tracker itself. We also identify behavior to

be provided for set-status in terms of the

PERT-chart’s set-futcness.

The USC of a sin& object, be it module or include,

through the three subjects lends a unity of manipu-

lation that makes it easier to discuss shared behavior,

and makes it possible to add shared behavior without

modification of the individual subjects. The existing

objects acquire more state and behavior as more

subjects arc inlroduccd into a composition, with the

manner in which the state and behavior are combined

being governed by the composition rule. The com-

position rule, or the compositor, also dictate how

tightly-coupled the subjects should bc: linked into a

single program, distributed with each running on a

separate machine, or various other options. Good

compositor implementation will permit many such

options with no change needed to the subjects thctn-

selves .

Space does not permit detailed discussion of how this

example would be handled by conventional ohject-

oriented programming. Suflicc it to say that the

compositions described, if not anticipated by the au-

thors of the subjects, could not he achicvcd without

source-code tnodilications to the individual subjects.

9. Related Work

9.1. Views of Objects

Pat-t of the motivation behind subject-orientation

arises from the need for functional-extension within

an object paradigm. ‘1‘0 satisfy this need without

widespread change and recompilation requires that

applications have their own views of data, and do not

depend on global definitions.

ln l’CTI5 [24], each tool (application) runs within the

context of a working schema, which specifies an or-

dered list of schema defirzition sets (SD&). Each SDS

defines a model of some of the data objects manipu-

lated by the tool. An SDS can extend other SD%,

such as those describing the views of data seen by

other tools. Extensions provide additional types of

objects, and additional attributes of and relationships

among both existing and new types. The subject-

oriented models extends this general concept to the

operations and methods associated with an object,

and to allowing each aubjcct to have its own classi-

fication hierarchy[1 I].

425

Shilling and Sweeney proposed an object-oriented

paradigm exploiting views, in which an object is seen

through a multiplicity of interfaces to the object

[181. Each interface determines the visibility and

sharing of operations and instance variables. The

subject-oriented approach separates the object inter-

face supported by a subject from its implementation,

relegating issues such as the sharing of state to a

characterization of the subject’s implementation. In

addition, subject-orientation emphasizes the ability

of different subjects to form different behavioral hier-
archies over the objects, rather than consolidating

them within a single class hierarchy.

In some ways, mpects of an object as defined by

Richardson and Schwarz [17] can be modelled as

different subjects providing their own classification

and categorization of the object. In addition, subjects

can provide coordinated aspects for a variety of object

classes.

9.2. Routing Messages

The topic of routing messages from originators to

participants within a suite of integrated tools is ad-

dressed in several generic settings:

Field[161

Field uses message passing as a way to connect tools

in a software development environment. Aimed pri-

marily at the integration of existing tools, Field em-

phasizes the use of one-way notifications created by

encapsulations of the tools. These notifications are

broadcast through a message server that delivers them

destinations that have registered interest by spetiifying

patterns to be matched by the message and its argu-

ments. This paradigm is being exploited by others

[21] for both event and more general operation de-

livery. The subject-oriented model provides a more

general setting in which message broadcasts can be

seen as one kind of composition (broadcast), but

provides a context for richer connection structures

such as direct or nested connections can be estab-

lished and intermixed.

Tools[IO] and Toolies[6]

The “toolies” model emphasizes the direct routing of

events that are automatically triggered by updates of

data in a shared colIection of data, and “tools” em-

phasize the intermix of events and requests. 130th

emphasize a reduction in size and monolithicity of the

packages of software that are produced that can ac-

crue from sharing a common shared model of struc-

tured data rather than bulk file manipulation. The

subject-oriented approach continues and extends this

direction, emphasizing both the need to retain private

(subject-specific) information about shared data and

the need to compose the elements with flcxiblc pack-

aging and dispatching strategies.

9.3. Composition Technology

The role of composition, including inheritance styles

of composition, is increasing in importance, as is the

attention being given to describing and constraining

the compositions.

An Object Request Broker as defined by the Object

Management Group [23] supports objects by routing

messages and by interfacing with Object Adapters that

actually support the implcmcntations. Object Re-

quest Brokers provide support for a uniform rcpre-

sentation of oids.4. Their dispatching mechanisms are

based on an object registry approach. Subject com-

positions, on the other hand, perform registry of

packaged behavior for a collection of classes at the

same time. In addition, the subject concept allows

more than one subject to provide state and behavior

for the same object. No requirement exists that the

oid representation be common across all subjects in

a composition. The CORIM spccitication provides

great latitude for implementations. Within this lati-

tude, some manufacturers have provided Object Re-

quest Brokers not well suited to support of a

subject-oriented methodology, while others have

provided more flexible realizations in anticipation of

the needs of complex environments. The Object Re-

quest Broker is one example of a compositor, but

more powerful ones exist as well.

Class composition, as in “Jigsaw” [11, separates

inheritance from the troika of encapsulation,

polymorphism, and inheritance, in effect depicting

inheritance as one of several operations by which

classes can be composed. Ilierarchy composition [4,
14, 191 extends this concept to collections of classes.

The subject-oricntcd approach goes a step further by
removing the restriction of having a shared definition

of the inheritance hierarchy.

4 [23] page 34

426

The frameworks model for object-oriented design

[20] emphasizes the use of abstract classes which are

extended to form concrete classes by either the im-

plcmentation or re-implementation of some of the

operations they define. Well-crafted frameworks

greatly facilitate application development in their

particular domains, but they are subject to two re-

strictions:

. They can be specializ,ed or extended conveniently

only in those areas specifically designed to be

extended. Yet the framework designer cannot

anticipate all future extension needs.
. Changing or further subclassing the concrete

classes leads to invalidation of existing objects.

This is especially important when the objects

exist in a persistent, shared store or repository.

The subject-oriented approach overcomes these re-
strictions. Much of the work done on methodologies

for developing and describing frameworks applies to

subject-oriented programming as well.

Contracts [121 provide an abstract way to charactcr-

ize the behavioral inter-dependencies among a col-

lection of objects. Axiotnatic specifications establish

what activities in one object are expected to lead to

what activities in other objects. Within the subject-

oriented model, contracts can bc used to characterize

the interdependencies among the objects making up

a subject. The concept can also be usefully extended

to characterizing behavioral interdependcncics among

tnultiplc subjects.

Where contracts provide an axiomatic characteriza-

tion describing and constraining the interaction of

objects, the law-governed systems approach specifies

the detailed semantics of interactions by means of a

law [13]. As with the contracts model, the same

similes can be applied to messages between subjects

about an object as can be applied to messages be-

tween objects within a subject. In fact, the composi-

tion rule, R, can be seen as the “law” of a subject

composition, (R, Q).

10. Conclusion

The “software chip” is one of the 1101~ Grails of

software development. (Holy Grails are somewhat

larger than silver bullets). Objects and classes have

been seen as the software chip [3], but a class is too

stnall a package of functionality to play this role. In

a sense, objects and classes arc more like circuits, or

what the hat&arc designers call “macros”. We be-

lieve that subjects are far more likely to play the role

of software chips as the next higher-order software

building blocks in the scqucncc of procedure, class,

and subject. In many respects, a subject can be

viewed as the softwarc cquivalcnt of the hardware

micro-chip, with the subject compositor providing a

way of manufacturing the software equivalent of cir-

cuit boards.

The suhjcct-oriented approach brings into focus and

provides a model within which to explore a number

of important issues associated with software compo-

sition:

l

Composition rules and compositors
Object creation/initialization and
finalization/deletion protocols

Interface and class matching, leading eventually

to matching for applications that USC drastically

different models of common domains.

Implementation issues, including efficiency, dis-

tribution and multiple 0111 spaces.

We expect the dcveloptncnt of subject compositors

to be an important arca of research and development

over the next few years. The development of a subject

compositor along the lines of the one described for

OOTIS [IO] is proceeding at IRM’s ‘I’. .J. Watson

Research Center to support the use of a subject-

oricntcd style and to further the exploration of this

domain.

References

Cl1

PI

cv

CA1

CSI

Gilad Bracha, Gary I ,indstrom, “Modularity

meets Inheritance”, I’roccedings of the 1992

International Conference on Computer 1 ,an-

guages, (Oakland), pp. 282-290, April 1992.

I’cter Coad and Edward Yourdon, “Ohject-

oriented Design”, Prentice- I Iall, Inc.,

(Englewood Cliffs), 199 1.

Brad .J. Cox, “Object-oriented Programming -

An Evolutionary ‘Approach”, Addison-Wesley

Inc., (Reading, Mass.), 1986.

William I<. Cook, ,4 Denotational Semantics of
Inheritancr, PhD. thesis, J3rown Ilniversity,

1989.

William 1~. Cook, “Intcrfaccs and Specifications

for the Smalltalk-80 Collection Classes”, I’ro-

ceedings of tfic Confcrcncc on Object-Oriented

427

Programming: Systems, Languages, and Appli-

cations, (Vancouver), ACM, October 1992.

[6] David Garlan, Gail Kaiser, David Notkin, “IJs-

ing Tool Abstraction to Compose Systems”,

IEEE Computer, pp. 30-38, June 1992.

[7] M. Genesereth and N. Nilsson, Logical Founda-
tions of Artificial Intelligence, Morgan-

Kaufmann, 1987.

[S] William Harrison and Ilarold Osshcr,

“Extension-by-addition: Building extensible

software”, IBM Research Report RC 16127,

IBM Thomas J. Watson Research Center,

Yorktown Heights, NY, September 1990.

[9] William Harrison and IIarold Ossher, “CI,ORIS:

A clustered object-relational information store”,

Proceedings of the Experts Meeting on Object

Oriented Computed Research and Development,

Information Technology Research Centre,

Toronto, May 1991.

[lo] William Harrison, Mansour Kavianpour, and

Harold Ossher, “Integrating Coarse-grained and

Fine-grained Tool Integration”, Proceedings of

Fifth International Workshop on Computer-

Aided Software Engineering, July 1992.

[111 William Harrison, Harold Ossher, and Mansour

Kavianpour, “PCTE SDS’s For Modelling

OOTIS Control Integration”, Proceedings of the

I’CTE’93 Conference, PCTE Interface Managc-

ment Board, November 1993.

[12] Richard Helm, Ian Holland, and Dipayan

Gangopadhyay, “Contracts: Specifying Behav-

ioral Compositions in Object-Oriented

Systems”, Proceedings of the Conference on

Object-Oriented Programming: Systems, Ian-

guages, and Applications, (Vancouver), ACM,

October 1990.

[131Naftaly Minsky and David Rozenshtein, “A

Law-Based Approach to Object-Oriented I’ro-

gramming”, Proceedings of the Conference on

Object-Oriented Programming: Systems, Lan-

guages, and Applications, ACM, October 1987.

[143 Harold Ossher and William Ilarrison, “Combi-

nation of Inheritance IIierarchies”, Proceedings

of the Conference on Object-Oriented I’rogram-

ming: Systems, I .anguagcs, and Applications,

(Vancouver), ACM, October 1992.

[1 S] I Iarold Osshcr and William I Iarrison, “Support

for Change in R1’DI1l”, I’rocecdings of the

I:ourth ACM SIGSOI;‘I‘ Symposium on Soft-

wart Devclopmcnt Environments, pp. 2 I X-228,

Irvine CA, Dcccmhcr 1990

[16] S. Rciss, “Connecting ‘l’ools lJsing Message

Passing in the Field I~nvironmcnt”, IlJliI’ Soft-

ware, pp. 57-66, July 1990.

[171 Joel Richardson and I’etcr Schwarz, “Aspects:

Extending Objects to Support Multiple Inde-

pendent Roles”, I’rocccdings of the 1991 ACM

SIGMOD Confcrcncc, May 1991, 1)cnvcr CO,

pp. 298-307.

[IS] John Shilling and I’ctcr Swccncy, “‘I‘hrce steps

to views: I(xtcnding the object-oricntcd

paradigm”, I’rocccdings of the Confercncc on

Object-Oriented Programming: Systems, I ,an-

guagcs, and Applications, (New Orleans), pp.

353-361, ACM, October 1989.

[19] Alan Wills, “Capsules and types in I;rcsco!‘, In

I’icrre America (cd), Proceedings of the 5th

European Confcrcnce on Object Oriented I’ro-

gramming (13COOF ‘91), Springer, I99 1.

[20] Rebecca Wirfs-ljrock and Ralph .Johnson,

“Current Research in Object-Oricntcd Design”,
Communications of the ACM, pp. 104- 124,

ACM, Scptcmbcr 1990.

r211 -, “Achieving Agreement”, Cast

Communiqu&, 3404 I Iarmony Road, ITort

Collins CO, June 1992

[22] - , Object Management Architecture Guide,

OMG J1ocument 92. I 1.1, Ohjcct Management

Group, Septcmbcr 1992.

[23] - , Common Object Request 13roker Architec-

turc and Specification, OMG Document 9 I. 12.1,

Object Management Group, Dcccmbcr, 1991.

[24] - , Portable Common ‘1’001 Ilnvironment

(I’C’I’I~), Standard ECMA- 149, ISuropean Com-

putcr Manufacturers Association, Dcccrnber

1990.

428

