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Introduction 

The starting point of this paper is the goal of con- 
structing systems with a hierarchical structure of the 
type first illustrated by E.W. Dijkstra in [1, 2]. Each 
level in such a system provides a virtual machine which 
hides (or abstracts from) some aspects of the machine 
below it. In designing such a system, we repeatedly face 
a question which a hardware designer faces only once: 
"How do I know that the instruction set provided by 
this machine is suitable for the programs which users 
will want to run upon it?" There is a risk in freezing the 
design of a level, the risk that we may force some ineffi- 
ciency upon our final system. We may even eliminate 
some essential capability. 
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The purpose of this paper is to introduce a concept 
which appears to be useful in the design of hierarchically 
structured systems. For  purposes of comparison, we 
shall review an approach which was suggested earlier, 
then introduce and illustrate the main concepts of this 
paper. 

The "Top Down" or "Outside in" Approach 

Several papers [3, 4, 5] suggest that the solution to 
software design problems lies in beginning with a pre- 
cise description of the desired system and deriving the 
internal structure from it. This would prevent design 
decisions which remove necessary capabilities and 
eliminate the risk of constructing a system with unex- 
pected undesirable properties. The papers referenced 
were all concerned with providing simulation tools 
which could be used to verify that each decision was an 
adequate one. The approach was called "top down" or 
"outside in." 

In this paper we shall refer to this approach as "out-  
side in" rather than "top down" because the latter 
appellation often leads to a confusion of this approach 
with the levels introduced by Dijkstra [1]. The "outside 
in" approach and that of Dijkstra cannot be compared 
as they are addressing quite different questions. Dijkstra 
was not discussing the sequence in which design de- 
cisions were made, he was discussing the structure of the 
final product. Higher levels in Dijkstra's sense are not 
necessarily "closer to the outside" in our sense. Some 
low level features may appear on the "outside." 

The "outside-in" approach has been discussed in 
several places (e.g. [6]) and found to involve a number 
of difficulties. 
1. The necessary specification of the "outside" is often 
difficult to obtain. In addition to the obvious difficulty 
in making such design decisions, it is difficult to express 
those decisions precisely without implying additional, 
internal, design decisions. 
2. The derivation of a design from such a specification 
is often not feasible. The set of possible internal struc- 
tures for a given external specification is so large that 
one needs some additional constraints before a search 
can be begun. These constraints are usually information 
about the "inside" (e.g. the hardware). 
3. In attempting to follow the "outside in" procedure 
it is quite easy to specify internal mechanisms which 
would simplify implementation of the desired outside 
but would themselves be impractical to implement. 
4. It is difficult to apply this method if one is actually 
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designing a set of  systems whose only description is 
"general purpose."  1 
5. As was pointed out in [7], the application of this 
method may result in a piece of  software which is un- 
necessarily inflexible (see also [8D. 
6. It  is quite common to design software in a situation 
where the inside is already fixed (e.g. the hardware for 
an operating system, or the operating system for a piece 
of  application software). 

It  is for these reasons that we have found it neces- 
sary to abandon the pure "outside in" approach and 
adopt  some additional procedures which are actually of  
an "inside out"  or "bo t tom up"  nature. We do not pro- 
pose the following as a procedure to be used instead 
of the "outside in";  we propose these as complementary 
approaches which must be used in some judicious 
combination according to the needs of the situation. 

"Transparency" of an Abstraction 

We wish to consider a typical stage in a "bo t tom 
up"  design process. We assume that we have a well de- 
fined lower level and are considering the design of the 
next highest level. The lower level may be either hard- 
ware or an intermediate level in our software design. 
We shall refer to either as the base machine. We assume 
that  we are considering a proposal  for a new abstrac- 
tion to result in a new programmable  machine which 
we shall refer to as the virtual machine. 

We must determine the set of  states which is possible 
for the base machine under arbitrary programs in the 
" language"  of the base machine. Also of interest is the 
set of  state sequences which can be obtained by arbi- 
t rary base machine language programs. 

For  any given implementation of our virtual ma- 
chine we can determine a set of  base machine states and 
sequences of  base machine states which is obtainable by 
running programs written for the virtual machine. 

I f  the virtual machine and its implementation were 
completely transparent, any base machine state and any 
sequence of base machine states which we could obtain 
by programming the base machine would also be ob- 
tainable by programming the virtual machine. In the 
more common situation, where some base machine se- 
quences cannot  be obtained by programming the virtual 
machine, we term the missing state sequences the loss of  
transparency. 

In the above we have defined transparency as a 
proper ty  of  a triple consisting of the base machine, the 
virtual machine, and the implementation of the virtual 
machine on the base machine. In many cases, however, 
we can find that there is a loss of transparency for the 
virtual machine, base machine and any conceivable or 
likely to be used implementation. In such cases we shall 

1 We are indebted to C.W, Koot of NV Philips-Electrologica 
(Apeldoorn, The Netherlands), who was the first to point out to us 
the difficulties introduced when" general purpose" is included in the 
description of a future product. 
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speak loosely of  the transparency of  the virtual machine 
for a given base machine. 

In fact, in many cases we can ascertain a lack of 
transparency for a given virtual machine and any base 
machine likely to be considered. In those cases we can 
speak very loosely about the transparency of the virtual 
machine without reference to a specific base machine. 

For  the purposes of  the present paper  it is sufficient 
to rely on our intuitive understandings of  what the 
properties of  reasonable base machines and certain 
virtual machine propositions are. For  many interesting 
software design problems there is no need to resort to 
formal models. 

Preliminary Example 

The following example is intended to illustrate the 
concept of  transparency and to make the point that  a 
loss of transparency is often one of the goals of  a design. 

Figure 1 shows a diagram of a low level port ion of  a 
four wheeled vehicle. Note that each front wheel is 
connected to two strings and should a driver use such a 
vehicle, he would control the steering by pulling on a 
total of  four strings. 

It  is probably feasible for well coordinated people to 
learn to use such a control mechanism, but  it is certainly 
not convenient or pleasant. Figure 2 shows the addition 
of a higher level mechanism which uses the mechanism 
of Figure 1 to provide a more convenient virtual ma-  
chine for the driver. The ropes have been wrapped 
around a steering wheel and attached so that now the 
vehicle can be controlled by the more easily learned 
mechanism of turning the wheel in the desired direction. 
I f  this is properly done, it is a very good abstraction 
from the real machine. (If  it is not properly done, it 
may introduce all sorts of inefficiencies, including exces- 
sive tire wear and poor driving characteristics.) 

The point of  this example, however, is that  even if 
this is done in an ideal way, the abstraction is not  trans- 
parent in the sense just defined. Figure 3 shows some of 
the states which were possible with the lower level con- 
trol mechanism. Positions (a) and (b) will be possible 
by the use of  any reasonably designed steering wheel 
implementation. Positions (c) and (d) will no longer be 
possible with reasonable implementation. Very sharp 
turns (e) could be eliminated by some designs and per- 
mitted by others. 

I f  the steering wheel were an abstraction proposed 
in a "bo t tom up"  design process, we would ask that  the 
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designer  use the concept  o f  t r anspa rency  in eva lua t ing  
the val idi ty  of  the p r o p o s e d  design.  In  this pa r t i cu la r  
case the lack  o f  t r anspa rency  with regard  to  (c) and  
(d) would  be cons idered  acceptab le  because  s i tua t ions  
in which those pos i t ions  are useful  are  ex t remely  rare.  
The lack  of  t r ansparency  for  those  cases can be con- 
s idered a desi rable  feature  o f  the abs t rac t ion ;  one of  the 
purposes  of  in t roduc ing  cer ta in  abs t rac t ions  is to pre- 
vent  the occurrence o f  undes i rab le  states.  The loss of  
(e) is more  difficult to eva lua te ;  it  is undes i rable ,  bu t  it 
might  be acceptable  if  the tu rn ing  circle would  be ade-  
quate  anyway  or  if  there  was a cost  decrease  ob ta ined  
by  e l iminat ing  this ex t reme pos i t ion .  

The  fundamen ta l  a s sumpt ion  behind  our  p r o p o s e d  
" b o t t o m  u p "  a p p r o a c h  is tha t  the pr imi t ive  mechan i sms  
f rom which one bui lds  a system have the abi l i ty  to per-  
fo rm all the funct ions  finally expected o f  the system. 
( I f  that  is no t  true, the pro jec t  is hopeless  f rom the start . )  
I f  we evaluate  each level by  examin ing  the loss o f  t rans-  
pa rency  as i l lus t ra ted above  and  make  cer ta in  tha t  noth-  
ing desi rable  is lost ,  we m a y  be assured tha t  the upper  
levels will still have the desired capabi l i t ies .  

The  r ema inde r  of  this p a p e r  will be devoted  to  ex- 
amples  f rom the field o f  c o m p u t e r  systems.  

" R e g i s t e r "  for M a r k o v  A l g o r i t h m  M a c h i n e  

Figure  4 is a specif icat ion o f  a modu le  deve loped  for 
use in a M a r k o v  a lgor i thm in terpre ter  or  compi le r .  One 
can view this modu le  as p rov id ing  a v i r tual  machine  
which has a register  which has  essent ial ly  the same capa-  
bil i t ies as tha t  in the ideal ized M a r k o v  a lgo r i thm ma-  
chine. Charac te r s  m a y  be inser ted and  dele ted  at  any  
po in t  in the string, etc. The  one fundamen ta l  difference 
is that ,  because  this is a specif icat ion for a real  piece of  
software,  there  are  l imits  to its capaci ty .  

In formal ly ,  the four  opera t ions  p rov ided  can be de- 
scr ibed as fol lows:  

" L E N G T H "  reveals  the n u m b e r  of  charac te rs  in the 
register .  

" C H A R ( I ) "  gives the I th  charac te r  in the register  
i f  I _< length.  

" I N S E R T ( I , J ) "  p laces  a new charac te r  at  the specified 
po in t  in the register .  

" D E L E T E ( I , J ) "  removes  a charac te r  in the register .  
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Fig. 4. Definitions. 

INTEGER PROCEDURE: LENGTH 
possible values: an integer 0 < LENGTH < 1000 
effect: no effect on values of other functions 
parameters: none 
initial value: 0 

INTEGER PROCEDURE: CHAR (I) 
possible values: an integer 0 < CHAR < 255 
parameters: I must be an integer 
effect: no changes to other functions in modules 

if I < 0 V I > 'LENGTH' then a procedure call to a user 
written routine RGERR is performed (program cannot be 
assembled without such a routine). 

initial value: undefined 

PROCEDURE: INSERT(I, J) 
possible values: none 
parameters: I must be an integer 

J must be an integer 
effect: 

if I < 0 V I > 'LENGTH w V J < 0 V J > 255 then a 
subroutine call to a user written routine INSAER is per- 
formed (routine required). 
else LENGTH = 1LENGTH T -kl if LENGTH _> 1000 a 
subroutine call to user written function LENGER is per- 
formed. 
CHAR(K) = 

if K _< I, WCHAR(I)W 
i f K  = I -q- 1, J 
if K > I -F 1, ICHAR(K -- 1) t 

PROCEDURE: DELETE (I, J) 
possible values: none 
parameters: I, J must be integers 
effect: 

if I _< 0 V J "( 1 V I -t- J > TLENGTH I -F 1 then a pro- 
cedure call to a user written routine DELERR is performed. 
else 

LENGTH = tLENGTHI -- J. 
CHAR(K) = if K < I then tCHAR(K)t 

if K >__ I then ~CHAR(K 4- j)l 

A t  first glance this appea r s  to be a good  design.  In  
fact, it was used unsuspect ingly  and,  for qui te  a while, 
the faults  were no t  a p p a r e n t  to any of  those involved in 
the project .  The fault  is easi ly not iced  as a loss of  t rans-  
parency.  

Such a modu le  has  many  poss ible  implementa t ions .  
We list jus t  a few of  the more  interes t ing or  useful ones:  
1. Regis ter  is an ar ray .  Access  is by indexing;  inserts  
and  de le t ions  require  shift ing. 
2. Regis ter  is a one-way l inked list. Access  is by  l inear  
search count ing  for the I th  i tem requested.  Inser ts  and  
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deletions require list processing opera t ions--no large 
shifts. 
3. Register is a two-way linked list. Access is by search 
from either end or from the last point accessed. Inser- 
tions require list processing operations. 
4. Register is a linked list with an "index" pointing to 
a number  of points within the list to reduce searching. 
5. Register is a linked list of small arrays. Most small 
changes can be done on a single small array as in imple- 
mentation (I). Larger changes require addition or re- 
moval  of one or more small arrays. (The small arrays 
might be machine words in which up to six characters 
are packed.) 

Each implementation would be good under some set 
of  operating conditions and costs (e.g. (1) is the minimal 
coding time version). 

We can easily imagine having designed an abstract 
machine which contained operators which could be used 
for one of the above implementations. We refer to that 
machine as the "base" machine. On any likely base ma- 
chine there will be simple sequences (e.g. a single store 
operation) which replace a single character in the regis- 
ter with another single character. These sequences in- 
volve no shifting in implementations (1) or (5) and no 
linked list operations in implementations (2)-(5). These 
sequences cannot be evoked by calling the "virtual ma- 
chine" operations defined above. Thus, this design has a 
loss of  transparency because there are sequences on the 
base machine which cannot be evoked by commands  
given to the virtual machine. Further, we see that the 
lack of transparency is undesirable because (1) the miss- 
ing sequences are both harmless and useful, (2) the work 
they accomplish can only be performed by much more 
expensive sequences evoked by the higher level. 2 

The above loss of transparency can easily be cor- 

Fig. 5. 

PROCEDURE: ALTER(I,J) 
possible values: none 
parameters: I, J must be integers 
effect: 

i f I < 0 V I > W L E N G T H  T V J < 0 V J > 2 5 5 t h e n a s u b r o u -  
tine call to a user written routine ALTERERR is performed. 

CHAR(K) = if K ¢ I then WCHAR(K)I 
i f  K = I then J 

ret ted by the addition of the "al ter"  command  specified 
in Figure 5. In our experimental project we did this 
during the project. Because of the "upward compatible"  
nature of  the improvement,  old programs continued to 
work but new ones could be written to be more effi- 
cient. In no ease did we have to reveal the inner workings 
of  a module to gain in efficiency. 

2 Even if we were willing to accept the loss of efficiency, we 
would have difficulties because of the psychological nature of good 
professional programmers. Most feel such revulsion at the writing of 
inefficient programs that they would seek some way of going be- 
neath the interface of the base machine in order to improve per- 
formance. In that case, the modular structure would be lost. Such 
behavior is readily apparent in much production software. 

For  some time we considered the amended design 
to have the proper degree of transparency, but further 
reflection has indicated an additional problem. In 
most  of the base machines there exist sequences which 
efficiently insert several characters at a given point in the 
register. For  example, in implementation (1), if we 
wished to insert four characters, we could do so (on the 
base machine) by shifting the information right four 
places and then inserting the four characters. By calling 
the commands  proposed, the base machine would prob- 
ably perform four one place shifts instead of the single 
four place shift. 

At this point there appear to be three fundamentally 
distinct solutions to this design problem. Each has ad- 
vantages and disadvantages, and we are unable to make 
a general choice among them. 
1. A more sophisticated implementation. The word 
"probably"  occurs in the above paragraph because 
there do exist possible implementations which would not 
incur the loss of efficiency described. For  example, 
" Inser t"  might be implemented so that it would not 
actually perform the insertions in the basic data struc- 
ture until a call was made to insert at a different point. 
In this way the module could "s tore"  commands  until 
it had enough information to determine the most  effi- 
cient way to perform the insertion series. Deletes are 
also possible in this way. 
2. String parameters. We could modify the routines 
defined so that they accepted strings as parameters.  In 
this way the insertion of  a string could be specified as a 
single operation. 
3. Use of"open." We could add an "open"  instruction 
which would essentially mark  a place in our register. 
Subsequent insert and delete operations would have the 
marked place as their implicit positional parameter.  
Modifications of  the fundamental  data structure could 
be postponed until a "close" command or another call 
of  "open."  

The first solution forces the module to make deci- 
sions which might not pay off. For  example, such an 
implementation would be relatively slow if used for 
random insertions of single characters. The pr imary ad- 
vantage of the first solution is that it has the same speci- 
fication as the earlier solutions so that one could freely 
choose between a simple or a sophisticated implementa- 
tion without changing the rest of the system. 

The second solution's pr imary disadvantage is that 
it requires a more complex interface between the module 
and the rest of  the system. Some format  for the passing 
of string parameters must be agreed on. This is unde- 
sirable from the point of view of [9]. I t  might also result 
in a great deal of excess computat ion being done since 
strings might be assembled twice: once in the module 
and once in the parameter  format.  A good implementa- 
tion in this direction is not impossible, but it certainly is 
difficult. 

The third solution offers the greatest efficiency po- 
tential, but it is a little more revealing of internal strut- 
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ture. In a sense, this solution shifts the burden assumed 
by the module in solution (1) to the program which 
uses the module. Although all the solutions have situa- 
tions in which they would be appropriate, this is proba- 
bly the best "general" solution. 

The above discussion permits us to discuss a funda- 
mental " tradeoff"  which exists between transparency 
and flexibility of a design. In the above examples we 
made the point that the lack of transparency intro- 

Fig. 6. Simplified block diagram for the HP 2116, 
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duced was true for all reasonable implementations of  
the proposed design. There are, however, situations in 
which a proposed virtual machine would be adequately 
transparent for some base machines, but would have a 
distinct loss of transparency for others. A design which 
would increase the transparency for one machine may 
pose great implementation difficulties or inefficiencies 
for another base machine. We can offer no better advice 
than that the designer must be alert for such situations 
and be prepared to make a difficult decision. 

A Hardware Example  

As an example of a loss of transparency at the hard- 
ware level consider the Hewlett-Packard 2116. The HP 
2116 is a 16-bit, general purpose minicomputer. A sim- 
plified block diagram is shown in Figure 6. The HP 
2116 contains six registers: memory buffer (MB), mem- 
ory address (MA), program counter (P), two accumu- 
lators or general purpose registers (A and B), and an in- 
struction register (I). 

The read/write memory cycle is divided into eight 
minor cycles. In each minor cycle one or more micro- 
operations can be performed. For  example, the A regis- 
ter can be read to the R Bus during one minor cycle. A 
partial list of  the micro-operations which can be per- 
formed in a minor cycle is given in ISP notation in Table 
I [15]. 

To see how these micro-operations may be combined 
to form a machine instruction, consider the timing 
diagram for the RAL (rotate A register left one bit) 
shown in Figure 7. 

The ISP code describes the RAL instruction execu- 
tion as follows: 

RAL --~ ( 
TO: 
TI :  
T2: 
T3: 

T6: 

(MB ~-- 0) ; next 
(I ~-- 0) ; next 
(I ~ MB(15 : 10)) ; next 
(R_Bus ~-- A) ; next 
(T_Bus ~ R_Bus X 2) ; next 
(A ~ T_Bus) ; next 
(R_Bus ~ P);  (S_Bus ~-- I); next 
(T_Bus ~ R_Bus + S_Bus) ; next 
(P ~- T_Bus)) 

Fig. 7. The timing diagram for rotation of A register. 
Read Memory 

TO T 1 T2 

(MB~O) (1~0) ( I ~M B< 15:1 O> ) 

! 
T3 

Write Memory 

! I I 

T4 T5 T6 

(R_ Bus~A); next (R_ Bus~P); 
(T_Bus~R_Bus×2);  next (S_ Bus~l ) :  next 
(A~T_Bus) ('1"_ Bus~R_ Bus+ S-Bus); next 

(P~T_Busl 

I 
T7 
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Table 1. A Partial List of Micro-operations for the HP 2116 

Read 

Store 

Function 

Micro.operations 
S_Bus ~ MB 
S_Bus ~-- MA 
S_Bus ~-- I 
R_Bus *-- P 
R_Bus ~ A 
R_Bus ~ B 

Micro-operations 
MB ~--0 
MB ~ T_Bus 
MA ~- T_Bus 
P ~ T_Bus 
A ~-- T_Bus 
B ~-- T_Bus 
I~--0 
I ~-- MB(15 : 10) 

T_Bus ~-- R_Bus A S_Bus 
T_Bus ~-- R_Bus V S_Bus 
T_Bus ~-- R_Bus -q- S_Bus 
T_Bus ~-- R_Bus X 2 
T_Bus ~-- R_Bus / 2 

The base machine for the HP  2116 can perform a 
combination of  the micro-operations listed in Table I 
during one minor cycle. Eight minor cycles can be 
"s tacked"  together to form a machine instruction. Note,  
however, there are some physical limitations imposed by 
the structure of  the base machine. First, the data read 
f rom memory  during the current memory  cycle isn't  
available until half  way through T2. This effectively 
limits instruction execution to T3-T7.  Also for data to 
be entered into memory  it has to be in the MB by the 
middle of  T3. The bus structure also limits some opera- 
tions. For  example, the A and B registers cannot be used 
during the same minor cycle because they both are con- 
netted to the R Bus. Finally some sequence of  opera- 
tions might be essentially a no-operation (NOP) such as 
((R_Bus ~ A) next; (T_Bus ~ R_Bus A S_Bus)). 
Since there is no store operation the A register remains 
unchanged. 

When we look at the instruction code provided to the 
user we find that some of the micro-operation sequences 
which were possible at the base machine level cannot  be 
obtained by sequences of  machine instructions. 

Consider, for example, the shift-rotate instruction 
group. In addition to the restrictions imposed by the 
base machine structure the following manufacturer im- 
posed rules apply to all instructions in the group: 
1. Minor Cycles T3, T4, T5 are used for instruction 
execution. The other minor cycles are used for house- 
keeping chores such as instruction decode, incrementing 
program counter, etc. 
2. All shifts and rotates take place in T3 and T5. 
3. All skip conditions are checked during T4. I f  the 
skip condition is met a flag is set so that two is added, 
instead of one, during the update of  the program 
counter. 

Since the machine instruction set allows at most  two 

one bit shifts per instruction, two machine instructions 
are required to perform a multiply by eight. The base 
machine can perform the multiply by eight in one ma- 
chine instruction as indicated by the following ISP. 

(MB ~ 0) ; next 
(I ~-- 0) ; next 
(I *-- MB(15 : 10)); next 
(R_Bus *-- A) ; next 
(T_Bus *-- R_Bus X 2) ; next 
(A ~-  T_Bus) ; next 

T4: (R_Bus *-- A) ; next 
(T_Bus ~-- R_Bus X 2) ; next 
(A *-- T_Bus) ; next 

T5: (R_Bus 4-- A) ; next 
(T_Bus *-- R_Bus X 2) ; next 
(A ~-- T_Bus) ; next 

T6: (R_Bus ~-- P) ; (S_Bus ~-- 1) ; next 
(T_Bus *-- R_Bus + S_Bus); next 
(P ~-- T_Bus)) 

As another example of  a loss of  transparency con- 
sider a memory  reference instruction. The instruction in 
Figure 7 was a register reference instruction and could 
be executed in one major  cycle time. In contrast, a 
memory  reference instruction requires at least two 
major  cycle times: the first to fetch the instruction, the 
second to fetch the operand. During the instruction 
fetch major  cycle of  every memory  reference instruction 
the address portion of the memory  word is loaded into 
the memory  address register. This can occur any time 
after T2 when the instruction is known to be a memory  
reference instruction. During this time a predesignated 
register could be added to the address portion of  the 
memory  reference instruction. Thus base-displacement 
(using one of  the two accumulator registers as a base 
register) or relative addressing (using the program 
counter as the added register) could be performed by 
the base machine. The ISP for the fetch portion of  a 
memory  reference instruction using base-displacement 
addressing is as follows. 

Fetch ~ ( 
TO: (MB ~ 0); next 
T I  : (I ~ 0) ; next 
T2: (I ~ MB(15 : 10));next 
T3: (R_Bus ~-- A); (S_Bus ~ MB(9 : 0)); 

next 
(T_Bus ~-- R_Bus + S_Bus) ; next 
(MA ~ T_Bus)) 

Whereas the multiply by eight sequence of micro- 
operations would be relatively cheap to add to the ma-  
chine language level machine (add some extra decoding 
to select an unused bit pattern as the op-code) the cost 
of  enhanced addressing modes may be higher. An alter- 
nate design using the same base machine might use a 
limited memory  reference class of  instruction (e.g. Load,  
Store) with enhanced addressing modes and a large 

RAL8 ~ ( 

TO: 
T I :  
T2: 
T3: 
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class of register reference operations. Yet another de- 
sign would use double words for memory reference in- 
structions. The first word could contain the op-code and 
addressing information, the second the address portion. 
It is not clear which of these three virtual machines is 
more desirable. 

An Unsolved Transparency Problem from the Operating 
System Area 

The following example is a problem which we con- 
sider to be an important unsolved research problem. 

One of the most difficult items in the programming of 
an operating system is the coordination and synchro- 
nization of many concurrent activities. The handling of 
interrupts (the hardware device available for coordinat- 
ing concurrent activities) is very difficult for a program- 
mer and likely to introduce errors. For  this reason, 
several operating system designers have introduced an 
abstract machine for which interrupts no longer exist. 
Instead, the machines are provided with "process syn- 
chronization primitives" which can be used to allow 
synchronization and communication between several 
cooperating processes which are, at least conceptually, 
operating asynchronously and in parallel. Among the 
better known of these are those of Dijkstra [1, 10], 
Saltzer [11], and P.B. Hansen [12, 13]. If  all process 
synchronization at all levels (except the lowest which 
implements the primitives) are to be handled in terms 
of the primitives, their transparency is an extremely im- 
portant issue. The loss of any of the fundamental abili- 
ties to coordinate concurrent activities would seriously 
interfere with the usefulness of the operating system. 

It is difficult to make a precise determination of the 
transparency of such primitives because we do not have 
a precise expression of the essential capabilities of the 
base machine. We can, however, discuss two of the men- 
tioned primitive systems with respect to a "typical" in- 
terrupt system. For  both cases some lack of trans- 
parency can be shown, but the question of "undesira- 
ble" lack of transparency remains a matter of opinion. 

Consider first the following situation: We wish to 
have two cooperating administrative units operating in 
parallel at least part of the time. One of them is pri- 
marily computation and occasionally determines that it 
needs certain records from the disk. Fortunately, it de- 
termines the name of the record it needs well in advance 
of the time that it must have the record in order to con- 
tinue. It sometimes determines the names of many rec- 
ords (e.g. 10 or 12) simultaneously. In those cases it 
must process the records one at a time (an error would 
be introduced if two were processed at once), but the 
order in which they are processed is irrelevant. The other 
process (or perhaps a group of processes) can care for 
the finding of the records on the disk and bringing them 
to core. The computational process will proceed until it 
needs one of the records requested, and if it is not avail- 

able, will then wait for it. The disk handling process or 
processes should bring the records to core in an order 
unpredictable by the computational process. For  op- 
timum use of processing resources, etc., we should like 
to see the computational process send one message to 
the others with the names of the requested records but 
receive a "signal" as each record arrives so that it will 
not have to wait for all the records to arrive before be- 
ginning its work. 

On any reasonable base machine it would be possible 
to set up such signaling (using the primitives from the 
THE system, for example). Using the primitives used by 
Hansen and his colleagues in the RC4000 system [12] 
we cannot set up such conventions. That system has a 
restriction on interprocess communication so that there 
is a reply for every message (1 : 1). In this way the com- 
putational process must either send 12 messages or 
wait for a single reply. (An even more expensive possi- 
bility is to send one message, wait for reply, then receive 
12 messages and send 12 replies.) The fact that there is a 
lack of transparency is clear; whether or not it is an un- 
desirable one is a matter of opinion. Hansen has stated 
[14] that the restriction was introduced as a means of 
detecting certain common errors and that the restric- 
tion was not significant in the situations for which the 
system was intended. 

Another lack of transparency in [12] results from a 
decision to transmit an eight character message with 
each synchronization signal. Thus sequences on the 
base machine with simply synchronization but without 
such a message are not available through the virtual 
machine or nucleus. This was a decision based on 
knowledge that, in the intended application areas, syn- 
chronization without communication of a message 
would not be needed. Apparently the system was not 
intended to be able to handle teletype communication 
on a character at a time basis at the nucleus level. It 
would be unfortunate if each character arriving were 
handled with an eight character message and similar 
reply; some lower level mechanism must be used. 

It is interesting to note that the primitives used by 
Dijkstra in THE do not have this particular lack of 
transparency. From another point of view it is possible 
to make certain programming errors with those primi- 
tives that would be detected by the RC4000 system nu- 
cleus [14]. 

The authors of this paper believe the transparency 
of Dijkstra's primitives is an open question; in fact, it is 
a question which required careful definition. We have 
seen statements of the problem which would yield a 
negative answer [16]. On closer investigation, it appeared 
that the statement of the problem eliminated solutions 
which would be acceptable on practical grounds [17]. 
The heart of the difficulty lies in our ability to reassign 
operating system tasks among processes (e.g. to increase 
the number of processes) to avoid an apparent limita- 
tion of the primitive scheme. Since we abstract from the 
concept of interrupt, supply the synchronizing primi- 
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tives, and introduce the concept of process simultane- 
ously, the set of achievable computations is very hard 
to characterize. 

From a practical point of view, the ability to stop a 
process which is not executing a synchronization primi- 
tive seems available on the base machine, seems essen- 
tial, and seems to be missing with Dijkstra's primitives. 
All attempts to go beyond this statement have failed to 
date. This example is included in the hope that others 
will see fit to investigate it further. 

"Suggestive Transparency" 

One example of a lack of transparency which re- 
suited in a performance difficulty occurred in the design 
of virtual memory mechanisms. Usually the virtual ma- 
chine provided no means of indicating to the mecha- 
nism that a segment contained useless information. As 
a result, many old save areas and similar useless items 
were moved between core and backup store. 

This is one of many situations in which a weaker 
form of transparency is important. It is often necessary 
that a mechanism be able to receive suggestions about 
certain base machine sequences although the virtual 
machine user is not able to cause those sequences. The 
user of a virtual memory mechanism should be able to 
suggest  removal of a segment by indicating that he will 
not need it again. He must not be able to cause such re- 
moval since there may be other users of the segment or 
the optimal time for removal may not occur until later. 

"Misleading Transparency" 

A related problem occurs when the design of the 
virtual machine suggests that certain virtual machine 
programs are efficient although they are actually expen- 
sive on the base machine. A virtual memory mechanism 
which simulates a very large random access memory is 
an example of such a design. To use such a virtual ma- 
chine efficiently one must have certain additional in- 
formation. It is often possible and preferable to design a 
virtual machine in which the expensive sequences are 
either impossible or difficult to evoke. 

Outside in and Bottom up Procedures in Combination 

Advocation of design from the outside in is based 
on the engineering rule that one should not begin to de- 
sign an object that is not fully specified. It is difficult to 
reject this precept. Whenever one begins to build an ob- 
ject with only a muddy view of what it will be, one gets a 
muddy object. 

The difficulties with the outside in approach come 
because of a number of peculiar characteristics of soft- 
ware engineering. 

I. The economics of the industry are such that one is 
seldom designing a single object; we are usually design- 
ing a family of related objects. (Only a proper subset of  
that family will actually ever exist.) 
2. Because of our limited experience with man-ma- 
chine symbiosis it is often impossible to specify the out- 
side before construction and not want to change it after- 
wards. As was pointed out in [7] the outside in procedure 
often adds difficulties in such a change. 

In software we begin with a specification of the 
f a m i l y  of objects one wishes to construct. The technique 
described in [18] allows one to describe parameterized 
families of objects, but the members must be highly 
similar items. To describe a broad family of objects we 
must describe a set of lower level mechanisms which will 
be common to all members. The family being designed 
consists of all possible " tops" for that lower level struc- 
ture. It is at this point that the concept of transparency 
becomes important. By use of this concept we may as- 
sure ourselves that the class of tops which can be built 
Ulann the lower level structure includes the family of 
obiects that we set out to design. 
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