
Programming G. Manacher
Techniques Editor

Use of the Concept of
Transparency in the
Design of Hierarchically
Structured Systems
D . L . P a r n a s
T e c h n i s c h e H o c h s c h u l e D a r m s t a d t
a n d
D . P . S i e w i o r e k
C a r n e g i e - M e l l o n U n i v e r s i t y

This paper deals with the design of hierarchically
structured programming systems. It develops a method
for evaluating the cost of requiring programmers to
work with an abstraction of a real machine. A number of
examples from hardware and software are given as
illustrations of the method.

Key Words and Phrases: hierarchical systems, bottom
up design, levels of abstraction, synchronization primitives

CR Categories: 4.20, 4.30, 6.1, 6.20

Introduction

The starting point of this paper is the goal of con-
structing systems with a hierarchical structure of the
type first illustrated by E.W. Dijkstra in [1, 2]. Each
level in such a system provides a virtual machine which
hides (or abstracts from) some aspects of the machine
below it. In designing such a system, we repeatedly face
a question which a hardware designer faces only once:
"How do I know that the instruction set provided by
this machine is suitable for the programs which users
will want to run upon it?" There is a risk in freezing the
design of a level, the risk that we may force some ineffi-
ciency upon our final system. We may even eliminate
some essential capability.

Copyright © 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported by the National Science Foundation
under Grant GJ 30127 to Carnegie-Mellon University and also by
the Advanced Research Projects Agency of the Office of the Secre-
tary of Defense (F44610-70-C-0107), monitored by the Air Force
Office of Scientific Research. Authors' address: D.L. Parnas,
Fachbereich, Informatik, Technische Hochschule Darmstadt, D-61
Darmstadt, West Germany; D.P. Siewiorek, Department of Com-
puter Science, Carnegie-Mellon University, Pittsburgh, PA 15213.

The purpose of this paper is to introduce a concept
which appears to be useful in the design of hierarchically
structured systems. For purposes of comparison, we
shall review an approach which was suggested earlier,
then introduce and illustrate the main concepts of this
paper.

The "Top Down" or "Outside in" Approach

Several papers [3, 4, 5] suggest that the solution to
software design problems lies in beginning with a pre-
cise description of the desired system and deriving the
internal structure from it. This would prevent design
decisions which remove necessary capabilities and
eliminate the risk of constructing a system with unex-
pected undesirable properties. The papers referenced
were all concerned with providing simulation tools
which could be used to verify that each decision was an
adequate one. The approach was called "top down" or
"outside in."

In this paper we shall refer to this approach as "out-
side in" rather than "top down" because the latter
appellation often leads to a confusion of this approach
with the levels introduced by Dijkstra [1]. The "outside
in" approach and that of Dijkstra cannot be compared
as they are addressing quite different questions. Dijkstra
was not discussing the sequence in which design de-
cisions were made, he was discussing the structure of the
final product. Higher levels in Dijkstra's sense are not
necessarily "closer to the outside" in our sense. Some
low level features may appear on the "outside."

The "outside-in" approach has been discussed in
several places (e.g. [6]) and found to involve a number
of difficulties.
1. The necessary specification of the "outside" is often
difficult to obtain. In addition to the obvious difficulty
in making such design decisions, it is difficult to express
those decisions precisely without implying additional,
internal, design decisions.
2. The derivation of a design from such a specification
is often not feasible. The set of possible internal struc-
tures for a given external specification is so large that
one needs some additional constraints before a search
can be begun. These constraints are usually information
about the "inside" (e.g. the hardware).
3. In attempting to follow the "outside in" procedure
it is quite easy to specify internal mechanisms which
would simplify implementation of the desired outside
but would themselves be impractical to implement.
4. It is difficult to apply this method if one is actually

401 Communications July 1975
of Volume 18
the ACM Number 7

designing a set of systems whose only description is
"general purpose." 1
5. As was pointed out in [7], the application of this
method may result in a piece of software which is un-
necessarily inflexible (see also [8D.
6. It is quite common to design software in a situation
where the inside is already fixed (e.g. the hardware for
an operating system, or the operating system for a piece
of application software).

It is for these reasons that we have found it neces-
sary to abandon the pure "outside in" approach and
adopt some additional procedures which are actually of
an "inside out" or "bo t tom up" nature. We do not pro-
pose the following as a procedure to be used instead
of the "outside in"; we propose these as complementary
approaches which must be used in some judicious
combination according to the needs of the situation.

"Transparency" of an Abstraction

We wish to consider a typical stage in a "bo t tom
up" design process. We assume that we have a well de-
fined lower level and are considering the design of the
next highest level. The lower level may be either hard-
ware or an intermediate level in our software design.
We shall refer to either as the base machine. We assume
that we are considering a proposal for a new abstrac-
tion to result in a new programmable machine which
we shall refer to as the virtual machine.

We must determine the set of states which is possible
for the base machine under arbitrary programs in the
" language" of the base machine. Also of interest is the
set of state sequences which can be obtained by arbi-
t rary base machine language programs.

For any given implementation of our virtual ma-
chine we can determine a set of base machine states and
sequences of base machine states which is obtainable by
running programs written for the virtual machine.

I f the virtual machine and its implementation were
completely transparent, any base machine state and any
sequence of base machine states which we could obtain
by programming the base machine would also be ob-
tainable by programming the virtual machine. In the
more common situation, where some base machine se-
quences cannot be obtained by programming the virtual
machine, we term the missing state sequences the loss of
transparency.

In the above we have defined transparency as a
proper ty of a triple consisting of the base machine, the
virtual machine, and the implementation of the virtual
machine on the base machine. In many cases, however,
we can find that there is a loss of transparency for the
virtual machine, base machine and any conceivable or
likely to be used implementation. In such cases we shall

1 We are indebted to C.W, Koot of NV Philips-Electrologica
(Apeldoorn, The Netherlands), who was the first to point out to us
the difficulties introduced when" general purpose" is included in the
description of a future product.

Fig. 1.

Driver

Fig. 2.

Steering
wheel

[]--

q-]

--O

speak loosely of the transparency of the virtual machine
for a given base machine.

In fact, in many cases we can ascertain a lack of
transparency for a given virtual machine and any base
machine likely to be considered. In those cases we can
speak very loosely about the transparency of the virtual
machine without reference to a specific base machine.

For the purposes of the present paper it is sufficient
to rely on our intuitive understandings of what the
properties of reasonable base machines and certain
virtual machine propositions are. For many interesting
software design problems there is no need to resort to
formal models.

Preliminary Example

The following example is intended to illustrate the
concept of transparency and to make the point that a
loss of transparency is often one of the goals of a design.

Figure 1 shows a diagram of a low level port ion of a
four wheeled vehicle. Note that each front wheel is
connected to two strings and should a driver use such a
vehicle, he would control the steering by pulling on a
total of four strings.

It is probably feasible for well coordinated people to
learn to use such a control mechanism, but it is certainly
not convenient or pleasant. Figure 2 shows the addition
of a higher level mechanism which uses the mechanism
of Figure 1 to provide a more convenient virtual ma-
chine for the driver. The ropes have been wrapped
around a steering wheel and attached so that now the
vehicle can be controlled by the more easily learned
mechanism of turning the wheel in the desired direction.
I f this is properly done, it is a very good abstraction
from the real machine. (If it is not properly done, it
may introduce all sorts of inefficiencies, including exces-
sive tire wear and poor driving characteristics.)

The point of this example, however, is that even if
this is done in an ideal way, the abstraction is not trans-
parent in the sense just defined. Figure 3 shows some of
the states which were possible with the lower level con-
trol mechanism. Positions (a) and (b) will be possible
by the use of any reasonably designed steering wheel
implementation. Positions (c) and (d) will no longer be
possible with reasonable implementation. Very sharp
turns (e) could be eliminated by some designs and per-
mitted by others.

I f the steering wheel were an abstraction proposed
in a "bo t tom up" design process, we would ask that the

402 Communications July 1975
of Volume 18
the ACM Number 7

Fig. 3.

-OD- -DD-
(a) (b) (c) (d) (e~

designer use the concept o f t r anspa rency in eva lua t ing
the val idi ty of the p r o p o s e d design. In this pa r t i cu la r
case the lack o f t r anspa rency with regard to (c) and
(d) would be cons idered acceptab le because s i tua t ions
in which those pos i t ions are useful are ex t remely rare.
The lack of t r ansparency for those cases can be con-
s idered a desi rable feature o f the abs t rac t ion ; one of the
purposes of in t roduc ing cer ta in abs t rac t ions is to pre-
vent the occurrence o f undes i rab le states. The loss of
(e) is more difficult to eva lua te ; it is undes i rable , bu t it
might be acceptable if the tu rn ing circle would be ade-
quate anyway or if there was a cost decrease ob ta ined
by e l iminat ing this ex t reme pos i t ion .

The fundamen ta l a s sumpt ion behind our p r o p o s e d
" b o t t o m u p " a p p r o a c h is tha t the pr imi t ive mechan i sms
f rom which one bui lds a system have the abi l i ty to per-
fo rm all the funct ions finally expected o f the system.
(I f that is no t true, the pro jec t is hopeless f rom the start .)
I f we evaluate each level by examin ing the loss o f t rans-
pa rency as i l lus t ra ted above and make cer ta in tha t noth-
ing desi rable is lost , we m a y be assured tha t the upper
levels will still have the desired capabi l i t ies .

The r ema inde r of this p a p e r will be devoted to ex-
amples f rom the field o f c o m p u t e r systems.

" R e g i s t e r " for M a r k o v A l g o r i t h m M a c h i n e

Figure 4 is a specif icat ion o f a modu le deve loped for
use in a M a r k o v a lgor i thm in terpre ter or compi le r . One
can view this modu le as p rov id ing a v i r tual machine
which has a register which has essent ial ly the same capa-
bil i t ies as tha t in the ideal ized M a r k o v a lgo r i thm ma-
chine. Charac te r s m a y be inser ted and dele ted at any
po in t in the string, etc. The one fundamen ta l difference
is that , because this is a specif icat ion for a real piece of
software, there are l imits to its capaci ty .

In formal ly , the four opera t ions p rov ided can be de-
scr ibed as fol lows:

" L E N G T H " reveals the n u m b e r of charac te rs in the
register .

" C H A R (I) " gives the I th charac te r in the register
i f I _< length.

" I N S E R T (I , J) " p laces a new charac te r at the specified
po in t in the register .

" D E L E T E (I , J) " removes a charac te r in the register .

403

Fig. 4. Definitions.

INTEGER PROCEDURE: LENGTH
possible values: an integer 0 < LENGTH < 1000
effect: no effect on values of other functions
parameters: none
initial value: 0

INTEGER PROCEDURE: CHAR (I)
possible values: an integer 0 < CHAR < 255
parameters: I must be an integer
effect: no changes to other functions in modules

if I < 0 V I > 'LENGTH' then a procedure call to a user
written routine RGERR is performed (program cannot be
assembled without such a routine).

initial value: undefined

PROCEDURE: INSERT(I, J)
possible values: none
parameters: I must be an integer

J must be an integer
effect:

if I < 0 V I > 'LENGTH w V J < 0 V J > 255 then a
subroutine call to a user written routine INSAER is per-
formed (routine required).
else LENGTH = 1LENGTH T -kl if LENGTH _> 1000 a
subroutine call to user written function LENGER is per-
formed.
CHAR(K) =

if K _< I, WCHAR(I)W
i f K = I -q- 1, J
if K > I -F 1, ICHAR(K -- 1) t

PROCEDURE: DELETE (I, J)
possible values: none
parameters: I, J must be integers
effect:

if I _< 0 V J "(1 V I -t- J > TLENGTH I -F 1 then a pro-
cedure call to a user written routine DELERR is performed.
else

LENGTH = tLENGTHI -- J.
CHAR(K) = if K < I then tCHAR(K)t

if K >__ I then ~CHAR(K 4- j)l

A t first glance this appea r s to be a good design. In
fact, it was used unsuspect ingly and, for qui te a while,
the faults were no t a p p a r e n t to any of those involved in
the project . The fault is easi ly not iced as a loss of t rans-
parency.

Such a modu le has many poss ible implementa t ions .
We list jus t a few of the more interes t ing or useful ones:
1. Regis ter is an ar ray . Access is by indexing; inserts
and de le t ions require shift ing.
2. Regis ter is a one-way l inked list. Access is by l inear
search count ing for the I th i tem requested. Inser ts and

Communications July 1975
of Volume 18
the ACM Number 7

deletions require list processing opera t ions--no large
shifts.
3. Register is a two-way linked list. Access is by search
from either end or from the last point accessed. Inser-
tions require list processing operations.
4. Register is a linked list with an "index" pointing to
a number of points within the list to reduce searching.
5. Register is a linked list of small arrays. Most small
changes can be done on a single small array as in imple-
mentation (I). Larger changes require addition or re-
moval of one or more small arrays. (The small arrays
might be machine words in which up to six characters
are packed.)

Each implementation would be good under some set
of operating conditions and costs (e.g. (1) is the minimal
coding time version).

We can easily imagine having designed an abstract
machine which contained operators which could be used
for one of the above implementations. We refer to that
machine as the "base" machine. On any likely base ma-
chine there will be simple sequences (e.g. a single store
operation) which replace a single character in the regis-
ter with another single character. These sequences in-
volve no shifting in implementations (1) or (5) and no
linked list operations in implementations (2)-(5). These
sequences cannot be evoked by calling the "virtual ma-
chine" operations defined above. Thus, this design has a
loss of transparency because there are sequences on the
base machine which cannot be evoked by commands
given to the virtual machine. Further, we see that the
lack of transparency is undesirable because (1) the miss-
ing sequences are both harmless and useful, (2) the work
they accomplish can only be performed by much more
expensive sequences evoked by the higher level. 2

The above loss of transparency can easily be cor-

Fig. 5.

PROCEDURE: ALTER(I,J)
possible values: none
parameters: I, J must be integers
effect:

i f I < 0 V I > W L E N G T H T V J < 0 V J > 2 5 5 t h e n a s u b r o u -
tine call to a user written routine ALTERERR is performed.

CHAR(K) = if K ¢ I then WCHAR(K)I
i f K = I then J

ret ted by the addition of the "al ter" command specified
in Figure 5. In our experimental project we did this
during the project. Because of the "upward compatible"
nature of the improvement, old programs continued to
work but new ones could be written to be more effi-
cient. In no ease did we have to reveal the inner workings
of a module to gain in efficiency.

2 Even if we were willing to accept the loss of efficiency, we
would have difficulties because of the psychological nature of good
professional programmers. Most feel such revulsion at the writing of
inefficient programs that they would seek some way of going be-
neath the interface of the base machine in order to improve per-
formance. In that case, the modular structure would be lost. Such
behavior is readily apparent in much production software.

For some time we considered the amended design
to have the proper degree of transparency, but further
reflection has indicated an additional problem. In
most of the base machines there exist sequences which
efficiently insert several characters at a given point in the
register. For example, in implementation (1), if we
wished to insert four characters, we could do so (on the
base machine) by shifting the information right four
places and then inserting the four characters. By calling
the commands proposed, the base machine would prob-
ably perform four one place shifts instead of the single
four place shift.

At this point there appear to be three fundamentally
distinct solutions to this design problem. Each has ad-
vantages and disadvantages, and we are unable to make
a general choice among them.
1. A more sophisticated implementation. The word
"probably" occurs in the above paragraph because
there do exist possible implementations which would not
incur the loss of efficiency described. For example,
" Inser t" might be implemented so that it would not
actually perform the insertions in the basic data struc-
ture until a call was made to insert at a different point.
In this way the module could "s tore" commands until
it had enough information to determine the most effi-
cient way to perform the insertion series. Deletes are
also possible in this way.
2. String parameters. We could modify the routines
defined so that they accepted strings as parameters. In
this way the insertion of a string could be specified as a
single operation.
3. Use of"open." We could add an "open" instruction
which would essentially mark a place in our register.
Subsequent insert and delete operations would have the
marked place as their implicit positional parameter.
Modifications of the fundamental data structure could
be postponed until a "close" command or another call
of "open."

The first solution forces the module to make deci-
sions which might not pay off. For example, such an
implementation would be relatively slow if used for
random insertions of single characters. The pr imary ad-
vantage of the first solution is that it has the same speci-
fication as the earlier solutions so that one could freely
choose between a simple or a sophisticated implementa-
tion without changing the rest of the system.

The second solution's pr imary disadvantage is that
it requires a more complex interface between the module
and the rest of the system. Some format for the passing
of string parameters must be agreed on. This is unde-
sirable from the point of view of [9]. I t might also result
in a great deal of excess computat ion being done since
strings might be assembled twice: once in the module
and once in the parameter format. A good implementa-
tion in this direction is not impossible, but it certainly is
difficult.

The third solution offers the greatest efficiency po-
tential, but it is a little more revealing of internal strut-

404 Communications July 1975
of Volume 18
the ACM Number 7

ture. In a sense, this solution shifts the burden assumed
by the module in solution (1) to the program which
uses the module. Although all the solutions have situa-
tions in which they would be appropriate, this is proba-
bly the best "general" solution.

The above discussion permits us to discuss a funda-
mental " tradeoff" which exists between transparency
and flexibility of a design. In the above examples we
made the point that the lack of transparency intro-

Fig. 6. Simplified block diagram for the HP 2116,

Read/write MA
Decoder

F

Memory

MB

MA

P j _ _ _ _

]___.:
T Bus

Key
A,B General purpose registers
P Program counter
MA Memory Address register
MB Memory Buffer register
I Instruction register
ALU Arithmetic and Logic Unit
-- 16 bit wide data or control path

R Bus
S Bus

duced was true for all reasonable implementations of
the proposed design. There are, however, situations in
which a proposed virtual machine would be adequately
transparent for some base machines, but would have a
distinct loss of transparency for others. A design which
would increase the transparency for one machine may
pose great implementation difficulties or inefficiencies
for another base machine. We can offer no better advice
than that the designer must be alert for such situations
and be prepared to make a difficult decision.

A Hardware Example

As an example of a loss of transparency at the hard-
ware level consider the Hewlett-Packard 2116. The HP
2116 is a 16-bit, general purpose minicomputer. A sim-
plified block diagram is shown in Figure 6. The HP
2116 contains six registers: memory buffer (MB), mem-
ory address (MA), program counter (P), two accumu-
lators or general purpose registers (A and B), and an in-
struction register (I).

The read/write memory cycle is divided into eight
minor cycles. In each minor cycle one or more micro-
operations can be performed. For example, the A regis-
ter can be read to the R Bus during one minor cycle. A
partial list of the micro-operations which can be per-
formed in a minor cycle is given in ISP notation in Table
I [15].

To see how these micro-operations may be combined
to form a machine instruction, consider the timing
diagram for the RAL (rotate A register left one bit)
shown in Figure 7.

The ISP code describes the RAL instruction execu-
tion as follows:

RAL --~ (
TO:
TI :
T2:
T3:

T6:

(MB ~-- 0) ; next
(I ~-- 0) ; next
(I ~ MB(15 : 10)) ; next
(R_Bus ~-- A) ; next
(T_Bus ~ R_Bus X 2) ; next
(A ~ T_Bus) ; next
(R_Bus ~ P); (S_Bus ~-- I); next
(T_Bus ~ R_Bus + S_Bus) ; next
(P ~- T_Bus))

Fig. 7. The timing diagram for rotation of A register.
Read Memory

TO T 1 T2

(MB~O) (1~0) (I ~M B< 15:1 O>)

!
T3

Write Memory

! I I

T4 T5 T6

(R_ Bus~A); next (R_ Bus~P);
(T_Bus~R_Bus×2); next (S_ Bus~l) : next
(A~T_Bus) ('1"_ Bus~R_ Bus+ S-Bus); next

(P~T_Busl

I
T7

405 Communications July 1975
of Volume 18
the ACM Number 7

Table 1. A Partial List of Micro-operations for the HP 2116

Read

Store

Function

Micro.operations
S_Bus ~ MB
S_Bus ~-- MA
S_Bus ~-- I
R_Bus *-- P
R_Bus ~ A
R_Bus ~ B

Micro-operations
MB ~--0
MB ~ T_Bus
MA ~- T_Bus
P ~ T_Bus
A ~-- T_Bus
B ~-- T_Bus
I~--0
I ~-- MB(15 : 10)

T_Bus ~-- R_Bus A S_Bus
T_Bus ~-- R_Bus V S_Bus
T_Bus ~-- R_Bus -q- S_Bus
T_Bus ~-- R_Bus X 2
T_Bus ~-- R_Bus / 2

The base machine for the HP 2116 can perform a
combination of the micro-operations listed in Table I
during one minor cycle. Eight minor cycles can be
"s tacked" together to form a machine instruction. Note,
however, there are some physical limitations imposed by
the structure of the base machine. First, the data read
f rom memory during the current memory cycle isn't
available until half way through T2. This effectively
limits instruction execution to T3-T7. Also for data to
be entered into memory it has to be in the MB by the
middle of T3. The bus structure also limits some opera-
tions. For example, the A and B registers cannot be used
during the same minor cycle because they both are con-
netted to the R Bus. Finally some sequence of opera-
tions might be essentially a no-operation (NOP) such as
((R_Bus ~ A) next; (T_Bus ~ R_Bus A S_Bus)).
Since there is no store operation the A register remains
unchanged.

When we look at the instruction code provided to the
user we find that some of the micro-operation sequences
which were possible at the base machine level cannot be
obtained by sequences of machine instructions.

Consider, for example, the shift-rotate instruction
group. In addition to the restrictions imposed by the
base machine structure the following manufacturer im-
posed rules apply to all instructions in the group:
1. Minor Cycles T3, T4, T5 are used for instruction
execution. The other minor cycles are used for house-
keeping chores such as instruction decode, incrementing
program counter, etc.
2. All shifts and rotates take place in T3 and T5.
3. All skip conditions are checked during T4. I f the
skip condition is met a flag is set so that two is added,
instead of one, during the update of the program
counter.

Since the machine instruction set allows at most two

one bit shifts per instruction, two machine instructions
are required to perform a multiply by eight. The base
machine can perform the multiply by eight in one ma-
chine instruction as indicated by the following ISP.

(MB ~ 0) ; next
(I ~-- 0) ; next
(I *-- MB(15 : 10)); next
(R_Bus *-- A) ; next
(T_Bus *-- R_Bus X 2) ; next
(A ~- T_Bus) ; next

T4: (R_Bus *-- A) ; next
(T_Bus ~-- R_Bus X 2) ; next
(A *-- T_Bus) ; next

T5: (R_Bus 4-- A) ; next
(T_Bus *-- R_Bus X 2) ; next
(A ~-- T_Bus) ; next

T6: (R_Bus ~-- P) ; (S_Bus ~-- 1) ; next
(T_Bus *-- R_Bus + S_Bus); next
(P ~-- T_Bus))

As another example of a loss of transparency con-
sider a memory reference instruction. The instruction in
Figure 7 was a register reference instruction and could
be executed in one major cycle time. In contrast, a
memory reference instruction requires at least two
major cycle times: the first to fetch the instruction, the
second to fetch the operand. During the instruction
fetch major cycle of every memory reference instruction
the address portion of the memory word is loaded into
the memory address register. This can occur any time
after T2 when the instruction is known to be a memory
reference instruction. During this time a predesignated
register could be added to the address portion of the
memory reference instruction. Thus base-displacement
(using one of the two accumulator registers as a base
register) or relative addressing (using the program
counter as the added register) could be performed by
the base machine. The ISP for the fetch portion of a
memory reference instruction using base-displacement
addressing is as follows.

Fetch ~ (
TO: (MB ~ 0); next
T I : (I ~ 0) ; next
T2: (I ~ MB(15 : 10));next
T3: (R_Bus ~-- A); (S_Bus ~ MB(9 : 0));

next
(T_Bus ~-- R_Bus + S_Bus) ; next
(MA ~ T_Bus))

Whereas the multiply by eight sequence of micro-
operations would be relatively cheap to add to the ma-
chine language level machine (add some extra decoding
to select an unused bit pattern as the op-code) the cost
of enhanced addressing modes may be higher. An alter-
nate design using the same base machine might use a
limited memory reference class of instruction (e.g. Load,
Store) with enhanced addressing modes and a large

RAL8 ~ (

TO:
T I :
T2:
T3:

406 Communications July 1975
of Volume 18
the ACM Number 7

class of register reference operations. Yet another de-
sign would use double words for memory reference in-
structions. The first word could contain the op-code and
addressing information, the second the address portion.
It is not clear which of these three virtual machines is
more desirable.

An Unsolved Transparency Problem from the Operating
System Area

The following example is a problem which we con-
sider to be an important unsolved research problem.

One of the most difficult items in the programming of
an operating system is the coordination and synchro-
nization of many concurrent activities. The handling of
interrupts (the hardware device available for coordinat-
ing concurrent activities) is very difficult for a program-
mer and likely to introduce errors. For this reason,
several operating system designers have introduced an
abstract machine for which interrupts no longer exist.
Instead, the machines are provided with "process syn-
chronization primitives" which can be used to allow
synchronization and communication between several
cooperating processes which are, at least conceptually,
operating asynchronously and in parallel. Among the
better known of these are those of Dijkstra [1, 10],
Saltzer [11], and P.B. Hansen [12, 13]. If all process
synchronization at all levels (except the lowest which
implements the primitives) are to be handled in terms
of the primitives, their transparency is an extremely im-
portant issue. The loss of any of the fundamental abili-
ties to coordinate concurrent activities would seriously
interfere with the usefulness of the operating system.

It is difficult to make a precise determination of the
transparency of such primitives because we do not have
a precise expression of the essential capabilities of the
base machine. We can, however, discuss two of the men-
tioned primitive systems with respect to a "typical" in-
terrupt system. For both cases some lack of trans-
parency can be shown, but the question of "undesira-
ble" lack of transparency remains a matter of opinion.

Consider first the following situation: We wish to
have two cooperating administrative units operating in
parallel at least part of the time. One of them is pri-
marily computation and occasionally determines that it
needs certain records from the disk. Fortunately, it de-
termines the name of the record it needs well in advance
of the time that it must have the record in order to con-
tinue. It sometimes determines the names of many rec-
ords (e.g. 10 or 12) simultaneously. In those cases it
must process the records one at a time (an error would
be introduced if two were processed at once), but the
order in which they are processed is irrelevant. The other
process (or perhaps a group of processes) can care for
the finding of the records on the disk and bringing them
to core. The computational process will proceed until it
needs one of the records requested, and if it is not avail-

able, will then wait for it. The disk handling process or
processes should bring the records to core in an order
unpredictable by the computational process. For op-
timum use of processing resources, etc., we should like
to see the computational process send one message to
the others with the names of the requested records but
receive a "signal" as each record arrives so that it will
not have to wait for all the records to arrive before be-
ginning its work.

On any reasonable base machine it would be possible
to set up such signaling (using the primitives from the
THE system, for example). Using the primitives used by
Hansen and his colleagues in the RC4000 system [12]
we cannot set up such conventions. That system has a
restriction on interprocess communication so that there
is a reply for every message (1 : 1). In this way the com-
putational process must either send 12 messages or
wait for a single reply. (An even more expensive possi-
bility is to send one message, wait for reply, then receive
12 messages and send 12 replies.) The fact that there is a
lack of transparency is clear; whether or not it is an un-
desirable one is a matter of opinion. Hansen has stated
[14] that the restriction was introduced as a means of
detecting certain common errors and that the restric-
tion was not significant in the situations for which the
system was intended.

Another lack of transparency in [12] results from a
decision to transmit an eight character message with
each synchronization signal. Thus sequences on the
base machine with simply synchronization but without
such a message are not available through the virtual
machine or nucleus. This was a decision based on
knowledge that, in the intended application areas, syn-
chronization without communication of a message
would not be needed. Apparently the system was not
intended to be able to handle teletype communication
on a character at a time basis at the nucleus level. It
would be unfortunate if each character arriving were
handled with an eight character message and similar
reply; some lower level mechanism must be used.

It is interesting to note that the primitives used by
Dijkstra in THE do not have this particular lack of
transparency. From another point of view it is possible
to make certain programming errors with those primi-
tives that would be detected by the RC4000 system nu-
cleus [14].

The authors of this paper believe the transparency
of Dijkstra's primitives is an open question; in fact, it is
a question which required careful definition. We have
seen statements of the problem which would yield a
negative answer [16]. On closer investigation, it appeared
that the statement of the problem eliminated solutions
which would be acceptable on practical grounds [17].
The heart of the difficulty lies in our ability to reassign
operating system tasks among processes (e.g. to increase
the number of processes) to avoid an apparent limita-
tion of the primitive scheme. Since we abstract from the
concept of interrupt, supply the synchronizing primi-

407 Communications July 1975
of Volume 18
the ACM Number 7

tives, and introduce the concept of process simultane-
ously, the set of achievable computations is very hard
to characterize.

From a practical point of view, the ability to stop a
process which is not executing a synchronization primi-
tive seems available on the base machine, seems essen-
tial, and seems to be missing with Dijkstra's primitives.
All attempts to go beyond this statement have failed to
date. This example is included in the hope that others
will see fit to investigate it further.

"Suggestive Transparency"

One example of a lack of transparency which re-
suited in a performance difficulty occurred in the design
of virtual memory mechanisms. Usually the virtual ma-
chine provided no means of indicating to the mecha-
nism that a segment contained useless information. As
a result, many old save areas and similar useless items
were moved between core and backup store.

This is one of many situations in which a weaker
form of transparency is important. It is often necessary
that a mechanism be able to receive suggestions about
certain base machine sequences although the virtual
machine user is not able to cause those sequences. The
user of a virtual memory mechanism should be able to
suggest removal of a segment by indicating that he will
not need it again. He must not be able to cause such re-
moval since there may be other users of the segment or
the optimal time for removal may not occur until later.

"Misleading Transparency"

A related problem occurs when the design of the
virtual machine suggests that certain virtual machine
programs are efficient although they are actually expen-
sive on the base machine. A virtual memory mechanism
which simulates a very large random access memory is
an example of such a design. To use such a virtual ma-
chine efficiently one must have certain additional in-
formation. It is often possible and preferable to design a
virtual machine in which the expensive sequences are
either impossible or difficult to evoke.

Outside in and Bottom up Procedures in Combination

Advocation of design from the outside in is based
on the engineering rule that one should not begin to de-
sign an object that is not fully specified. It is difficult to
reject this precept. Whenever one begins to build an ob-
ject with only a muddy view of what it will be, one gets a
muddy object.

The difficulties with the outside in approach come
because of a number of peculiar characteristics of soft-
ware engineering.

I. The economics of the industry are such that one is
seldom designing a single object; we are usually design-
ing a family of related objects. (Only a proper subset of
that family will actually ever exist.)
2. Because of our limited experience with man-ma-
chine symbiosis it is often impossible to specify the out-
side before construction and not want to change it after-
wards. As was pointed out in [7] the outside in procedure
often adds difficulties in such a change.

In software we begin with a specification of the
f a m i l y of objects one wishes to construct. The technique
described in [18] allows one to describe parameterized
families of objects, but the members must be highly
similar items. To describe a broad family of objects we
must describe a set of lower level mechanisms which will
be common to all members. The family being designed
consists of all possible " tops" for that lower level struc-
ture. It is at this point that the concept of transparency
becomes important. By use of this concept we may as-
sure ourselves that the class of tops which can be built
Ulann the lower level structure includes the family of
obiects that we set out to design.

Received December 1973; revised November 1974

References
1. Dijkstra, E.W., The structure of the "THE" operating system,
Comm. ACM 11, 5 (May 1968), 341-346.
2. Dijkstra, E.W. Notes on structured programming. Report of
the Technische Hoogschool Eindhoven, Eindhoven, The Nether-
lands.
3. Parnas, D.L., and Darringer, J.A. SODAS and a methodology
for system design. Proc. AFIPS 1967 FJCC, Vol. 31, AFIPS Press
Montvale, N.J., pp. 449-474.
4. Zurcher, F.W., and Randell, B. Multi-level modeling--A "
methodology for computer system design. Proc. IFIP Cong. 1968.
5. Parnas, David L. More on simulation languages and design
methodology for computer systems. Proc. AFIPS 1969 SJCC, Vol.
34, AFIPS Press, Montvale, N.J., pp. 739-743.
6. Gill, S. Thoughts on the sequence of writing software. In
Software Engineering, report of a conference in Garmisch,
Germany, Oct. 1968.
7. Parnas, D.L. Information distribution aspects of design
methodology. Proc. IFIP Cong. 1971.
8. Braden, et al. An implementation of MVT. UCLA report.
9. Parnas, D.L. On the criteria to be used in decomposing
systems into modules. Comm. ACM (to appear).
10. Dijstra, E.W. Cooperating sequential processes. Report of
Technische Hoogschool Eindhoven, Eindhoven, The Netherlands.
11. Saltzer, G. Traffic control in a multiplexed computer system.
MIT Thesis.
12. Hansen, P.B. The nucleus of a multiprogramming operating
system. Comm. ACM 13, 4 (Apr. 1970), 238-241.
13. Hansen, P.B., RC4000 Reference Manual. Regnecentralen,
Copenhagen, Denmark.
14. Hansen, P.B., private discussions.
15. Bell, C.G., and Newell, A. Computer Structures: Readings
and Examples. McGraw-Hill, New York, 1971.
16. Patil, S.S. Limitations and capabilities of Dijkstra's semaphore
primitives for coordination among processes. Proj. MAC,
Computat. Structures Group Memo 57, Feb. 1971.
17. Parnas, D.L. On a solution to the cigarette smoker's problem
(without conditional statements). Comm. ACM 18, 3 (Mar. 1975),
181-183.
18. Parnas, D.L. A technique for the software modules specifica-
tion with examples. Comm. ACM 15, 5 (May 1972), 330-336.

408 Communications July 1975
of Volume 18
the ACM Number 7

