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Abstract 

We sought to implement and determine whether incorporating cognitive based contextual focus 

into a genetic programming fitness function would play a crucial role in enabling the computer 

system to generate art that humans find "creative" (i.e. possessing qualities of novelty and aesthetic 

value typically ascribed to the output of a creative artistic process). We implemented contextual focus 

in the evolutionary art algorithm by giving the program the capacity to vary its level of fluidity and 

functional triggered dynamic control over different phases of the creative process. The domain of 

portrait painting was chosen because it requires both focused attention (analytical thought) to 

accomplish the primary goal of creating portrait sitter resemblance as well as defocused attention 

(associative thought) to creativity deviate from resemblance i.e., to meet the broad and often 

conflicting criteria of aesthetic art. Since judging creative art is subjective, rather than use quantitative 

analysis, a representative subset of the automatically produced art-work from this system was selected 

and submitted to many peer reviewed and commissioned art shows, thereby allowing it to be judged 

positively or negatively as creative by human art curators, reviewers and the art gallery going public. 
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1 Introduction 

Creativity is a complex set of cognitive process theorized to involve, among other elements, 

attention shifts between associative and analytical focus (Gabora, 2000), novel goals (Luo and 

Knoblich, 2007), and situated actions and difficult definitions of evaluation. Computational creative 

systems (CES) strive to model a variety of creativity’s aspects using computer algorithms from 

evolutionary ‘small-step’ modifications to intelligent autonomous composition and ‘big-leap’ 

innovation in an effort to better understand and replicate creative process (Boden, 2003). The focus by 

some researchers on replicating creativity in computational algorithms has been instrumental in 

learning more about human cognition (individual and collaborative) and how creative support tools 

might be used to enhance and augment human creative individuals and teams. All these aspects 



 

 

continue to evolve our perceptions of creativity and its role in computation in the current technology-

saturated world.  

 

 
 

Figure 1. Source Darwin image (top left) with examples of our evolved abstract portraits created using our 

DarwinsGaze autonomous creative genetic programming system. 

Systems modeling creativity computationally have gained acceptance in the last two decades, 

situated mainly as artistic and research projects. Several researchers in computational creativity have 

addressed questions around such computational modeling by outlining different dimensions of 

creativity and proposing schema for evaluating a "level of creativity" of a given system, for example 

(Ritchie, 2007; Jennings, 2010; Colton, Pease and Charnley, 2011). While there is ongoing research 

and scholarly discourse about how a system is realized, how the results are generated, selected and 

adjusted and how the process and product are evaluated, there is less research about direct applications 

of creative cognitive support systems in real-world situations. 

2 Contextual Focus: Associative and Analytical Thinking  

We explore creativity from theories of cognition that attempt to understand attentional shifts 

between associative and analytical focus – what we call “contextual focus” or “contextual fluidity”. 

The existence of two stages of the creative process is consistent with the widely held view that there 

are two distinct forms of thought (Neisser, 1963; Piaget, 1926; Sloman, 1996). It has been proposed 

that creativity involves the ability to vary the degree of conceptual fluidity in response to the demands 

of any given phase of the creative process (Gabora, 2000, 2002; DiPaola & Gabora, 2009). Again, this 

dimension of variability in focus is referred to as contextual focus. Focused attention produces analytic 

thought, which is conducive to manipulating symbolic primitives and deducing laws of cause and 

effect, while defocused attention produces fluid or associative thought which is conducive to analogy 

and unearthing relationships of correlation. Thus, creativity is not just a matter of eliminating rules but 

of assimilating and then breaking free of them where warranted. Said another way, divergent or 

associative processes are hypothesized to occur during idea generation, while convergent or analytic 

processes predominate during the refinement, implementation, and testing of an idea. This is referred 

to as contextual focus because it requires the ability to focus or defocus attention in response to the 

context or situation one is in. Defocused attention, by diffusely activating a broad region of memory, 

is conducive to divergent thought; it enables obscure (but potentially relevant) aspects of the situation 



 

 

thus come into play. Focused attention is conducive to convergent thought; memory activation is 

constrained enough to hone in and perform logical mental operations on the most clearly relevant 

aspects. 

This paper focuses on the implementation and applicability of contextual focus through our 

research system, DarwinsGaze, developed to use an cognitive based automatic fitness function 

inspired by contextual focus human creativity. Our analysis of their process combined with our 

knowledge of the cognitive aspects of creativity (gleaned from our early research), was used to design 

and implement the DarwinsGaze system. We concentrate on the qualitative impact made by the 

explicit incorporation of contextual focus into the system as a whole, and its ability to elevate the 

perceived quality and novelty of system output to a level audiences judged reminiscent of successful 

"artistic, human-style" creativity. 

 

 

Figure 2. We model the cognitive architecture of contextual focus (left): resemblance simulates analytical 

thinking, 3 fuzzy art rules simulate associative thinking, functionally triggering between them. On a local 

maxima, the system automatically goes wide in the search space (right) in an Aha moment or back to refinement.  

3 The DarwinsGaze System 

The DarwinsGaze system (DiPaola and Gabora, 2009) is a Creative Evolutionary System (CES) 

(Bentley and Corne, 2002) (see Figure 3) based on a variant of Genetic Programming (GP). Unlike 

typical Genetic Programming systems this system favors exploration over optimization, finding 

innovative or novel solutions over a preconceived notion of a specific optimal solution. It uses an 

cognitive theory based automatic fitness function (albeit one specific to portrait painting) allowing it 

to function without human intervention between being launched and obtaining the final, often 

unanticipated and pleasing set of results; in this specific and limited sense we refer to DarwinsGaze as 

"autonomous". The inspiration for this work is to directly explore to what extent computer algorithms 

can be creative on their own (Gabora and DiPaola, 2012). Related work has begun to use creative 

evolutionary systems with automatic fitness functions in design and music (Bentley, 2002), as well as 

building of a creative invention machine (Koza et al, 2003). Typically these systems allow a human 

user to pick those individuals that will be mated – making the human the creative judge. In contrast, 

our system used a function trigger mechanism within the contextual focus fitness function which 

allowed the process to run automatically, without any human intervention once the process was 

started. It was not until the evolutionary art process came to completion that humans looked at and 

evaluated the art. So the contribution of the DarwinsGaze work is to model, in software, newly 



 

 

theorized aspects of cognitive based human creativity, especially in terms of fluid contextual focus 

(see Figure 2). 

DarwinsGaze capitalizes on recent developments in GP called Cartesian Genetic Programming 

(CGP) (Miller 2010). CGP uses GP techniques (crossover, mutation, and survival), but differs in 

certain key respects. The program is represented by a directed graph of indexed nodes. Each node has 

a number of inputs and a function that gives an output based on the inputs. The genotype is a list of 

integers determining the connectivity and functionality of the nodes, which can be mutated and mated 

to create new directed graphs. CGP has several features that foster creativity including 1) its node 

based structure facilitates the creation of visual mapping modules, 2) its structure can represent 

complex computational input/output connectivity, thus accommodating our sophisticated tone and 

temperature-based color space model which enables designerly decision making, and most importantly 

3) its component-based approach favors exploration over optimization by allowing different genotypes 

to map to the same phenotype. The last technique uses redundancy at the input, node, and functional 

levels, allowing the genotype to contain nodes that are not connected to the output nodes and so not 

expressed in the phenotype. Having different genotypes (recipes) map to the same phenotype (output) 

provides CGP with greater neutrality (Yu and Miller, 2005). Our work is based on Ashmore and 

Miller's (2004) CGP application to evolve visual algorithms for enhanced image complexity or 

circular objects in an image. Most of their efforts involve initializing a population and then letting the 

user take over. Our system was based upon their approach, but was significantly expanded with a 

more sophisticated cognitive based (contextual focus) creativity function, and revised the system for a 

portrait painter process.  

Our GP function set has 15 functions (see Figure 3) which use unitized x and y positions of the 

portrait image as variables and additional parameter variables (noted PM) that can be affected by 

adaptive mutation. Functions are low level in nature which aids in a large ‘creative’ search space, and 

output HSV color space values between 0 and 255. An individual in our population is manifested as 

one program that runs successively for every pixel in the output image, which is then tested against 

our creative fitness function. This allows correlated painterly effects as one moves through the image. 

Functions 1 - 5 use simple logical or arithmetic manipulations of the positions (low level functions 

create a larger creative search space), whereas 7 - 14 use trigonometric or logical functions that are 

more related to geometric shapes and color graduations. 

 

  
  
Figure 3. Our modified biologically inspired CGP system which uses crossover, mutation and replication in a 

contextual focus based fitness function, the 15 genes (left) produce Java programs that generate a visual output 

(right) in populations, testing by our cognitive inspired fitness function which ran without human intervention. 

The contextual focus based fitness function varies fluidly from tightly focusing on resemblance 

(similarity to the sitter image, which in this case is an image of Charles Darwin), to swinging (based 

on functional triggers) toward a more associative process of the intertwining, and at times 

contradicting, ‘rules‘ of abstract portrait painting. Different genotypes map to the same phenotype. 

This allows us to vary the degree of creative fluidity because it offers the capacity to move though the 

search space via genotype (small ordered movement) or phenotype (large movement but still related). 



 

 

For example, in one set of experiments this is implemented as follows: if the fittest individual of a 

population is identical to an individual in the previous generation for more than three iterations, 

meaning the algorithm is stuck in analytic mode (local maxima) and needs to open up, other genotypes 

that map to this same phenotype are chosen over the current non-progressing genotype, allowing 

divergent open movement through the landscape of possibilities. 

The automatic fitness function partly uses a ‘portrait to sitter’ resemblance. Since the advent of 

photography, portrait painting has not just been about accurate reproduction, but also about using 

modern painterly goals to achieve a creative representation of the sitter. We have created a fitness 

function that mainly rewards accurate representation, but given certain situations it also dynamically 

functional triggers to reward visual painterly aesthetics using three simple rules of art creation as well 

as a portrait knowledge space. Specifically, the  aesthetic portion of our fitness function 1) weighs for 

face (centered) versus background composition, 2) uses tonal similarity over exact color similarity 

matched with a sophisticated artistic color space model which weighs for warm-cool color temperature 

relationships based analogous and complementary color harmony rules and 3) employs unequal 

dominate and subdominant tone and color rules and other artistic rules based on a portrait painter 

knowledge domain (DiPaola and Gabora, 2009) as illustrated in Figure 2. We mostly weight heavily 

towards resemblance to start, which gives us a structured system, but can under the influence of 

functional triggers allow for artistic creativity. In this way fitness function scores of resemblance 

simulates the analytical thinking of working specifically to resemblance in the fitness function, while 

our three fuzzy rules of art simulate associative thinking, with sophisticated functional triggering built 

into our architecture between both in a way that simulates human contextual fluidity. The approach 

gives us novelty and innovation from within, or better said, responding to a structured system -- a trait 

of human creative individuals.  

Generated portrait programs in the beginning of the run will look less like the sitter but from an 

aesthetic point of view might be highly desirable, since the function set has been built with painterly 

rules. Specifically, the fitness function in the DarwinsGaze system calculates four scores (resemblance 

and the three fuzzy associative painterly rules) separately and fluidly combines them in different ways 

to mimic cognitive based human creativity by moving between restrained focus (analytical 

resemblance) to more unstructured associative focus (3 rules of composition, tonality and color). To 

move fluidly between the two cognitive modes, in its default state the fitness function uses a ratio of 

80% resemblance to 20% non-proportional scoring of our three painterly rules. Several functional 

triggers can alter this ratio in different ways to simulate contextual focus. The system will also allow 

very high scoring of painterly rule individuals to be accepted into the next population. When a plateau 

or local minima is reached for a certain number of epochs, the fitness function ratio switches course 

where painterly rules are weighted higher than resemblance (on a sliding scale) and work in 

conjunction with redundancy at the input, node, and functional levels.  

Similarly, but now in reverse, to the default resemblance situation, high scoring resemblance 

individuals can pass into the next population when a percentage of painterly rule individuals is met. 

Using this more associative mode, high resemblance individuals are always part of the mix, and when 

these individuals show a marked improvement, a trigger is set to return to the more focused 80/20 

resemblance ratio. 

As the fitness score increases, portraits look more like the sitter. This gives us a somewhat known 

spread from very primitive (abstract) all the way through to realistic portraits. Thus in effect the 

system has two ongoing processes: (1) those most ‘fit’ portraits that pass on their portrait resemblance 

strategies, making for more and more realistic portraits—the family ‘resemblance’ patriarchs, and (2) 

the creative ‘strange uncles’: related to the current ‘resemblance fit’, but portraits that are more 

artistically creative or artistically fit. This dual evolving technique of patriarchs and ‘strange uncles’ 

mimics the interplay between freedom and constraint that is so central to creativity. Paradoxically, 

novelty often benefits from the existence of a known framework reference system to rebel and 

innovate from. Creative people use some strong structural rules (as in the templates of a sonnet, 



 

 

tragedy, or in this case, a resemblance to the sitter image) as a resource or base to elaborate new 

variants beyond that structure (in this case, an abstracted variation of the sitter image).  

 

  

 
 

 
Figure 4. Output from our automatic cognitive based CES system have been seen by thousands in the last few 

years and have been perceived as creative art works on their own by the art public, including 6 commission or 

juried major art shows including at MIT Museum (top) and the Cambridge University Kings Art Centre (bottom). 

4  Results & Conclusion 

The automatic creative output was generated over thirty days of continuous, un-supervised 

computer use. The images in Figure 4 show a selection of representative portraits produced by the 

system. While the overall population improves at resembling Darwin‘s portrait, what is more 

interesting to us is the variety of recurring, emergent and merged creative strategies that evolve as the 

programs in different ways to become better abstract portraitists (see www.darwinsgaze.com). 

Humans rated the portraits produced by this version of portrait painting program with contextual 

focus as much more creative and interesting than a previous version that did not use contextual focus, 

and unlike its predecessor, the output of this program generated public attention worldwide. Example 



 

 

pieces were framed and submitted to galleries as a related set of work. Care was taken by the author to 

select representational images of the evolved un-supervised process; however creative human bias 

obvious exists in the representational editing process. Output has been accepted and exhibited at six 

major galleries and museums including the TenderPixel Gallery in London, Emily Carr Galley in 

Vancouver, and Kings Art Centre at Cambridge University as well as the MIT Museum, and the High 

Museum in Atlanta, all either peer reviewed, juried or commissioned shows from institutions that 

typically only accept human art work. A typical gallery installation consisted of 40-70 related portraits 

produced in time order over a given run. Gallery showings focus on “best resemblances” and those 

that are artistically compelling from an abstract portrait perspective. This gallery of work has been 

seen by tens of thousands of viewers who have commented that they see the artwork as an aesthetic 

piece that ‘ebb and flows through seemly creative ideas’ even though they were solely created by an 

evolutionary art computer program using contextual focus. Note that no attempt to create a pure 

‘creativity Turning Test’ was attempted. Besides the issues surrounding the validity of such a test 

(Pease and Colton, 2011), it was not feasible in such reputable and large art venues. However most of 

the thousands of causal viewers assumed they were looking at human created art. The work was also 

selected for its aesthetic value to accompany an opinion piece in the journal Nature (Padian, 2008), 

and was given a strong critical review by the Harvard humanities critic, Browne (2009). While these 

are subjective measures, they are standard in the art world. The fact that the computer program 

produced novel creative artifacts, both as single art pieces and as a gallery collection of pieces with 

interrelated themes, using contextual focus as a key element of its functioning, is compelling evidence 

of the effectiveness of contextual focus. 

5 Future Work  

Many significant research CES systems exist that are both innovative and useful, some with strong 

cognitive architectures. However as the field matures, there will be an increasing need to make 

cognitive based CESs production worthy and work within a creative industry environment such as a 

digital design firm. To support others in this effort for production-targeted transformation, we have 

become to shift from an autonomous fitness function based creative system, DarwinsGaze, to an 

interactive fitness function based creative support system, Evolver (DiPaola et al, 2013), for real-world 

design collaboration. DarwinsGaze operates using a complex automatic fitness function to model the 

cognitive based theory of contextual focus as well as other aspects of human creativity simulated 

internally. In shifting to the Evolver project we found that the contextual focus perspective remained 

relevant, but now re-situated to overlay the collaborative process between designer and system. Four 

design principles developed on this basis were: 1) support analytic focus by providing tools tailored to 

the designer’s specific needs and aesthetic preferences, 2) support associative or intuitive focus by 

relieving the designer’s cognitive capacity, enabling a quick and serendipitous workflow when 

desired, and offering a large variety of parameterized options to utilize, 3) support a triggering of 

focus-shift between the designer and the system through options to ‘bookmark’ and save interesting 

pieces for later, as well as to move creative material from and to the system while retaining the work’s 

semantic structure and editability, and 4) support a joint 'train of thought' between system and user by 

structuring a genotype representation compatible with human visual/cognitive intuition.  

We found that the shift to a real-world design scenario required attention to the collaboration and 

creative processes of the designers who value their experience-developed expertise. The system design 

had to act as both a support tool engaging some cognitive load of the process, and a flexible, 

interactive repository of potentially successful options. Future real-world design considerations can 

explore methods for adapting intelligent operations to the cognitive processes and constraints of 

necessary situations, taking into account the expertise of collaborators. 
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